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COMMENTATIONES MATHEMATICAi UNIVERSITATIS CAROLINA! 

' 28.1 (1987) 

UOUVILLE TYPE CONDITION AND THE INTERIOR REGULARITY 
OF QUASIUNEAR PARABOLIC SYSTEM 
(THE CASE OF BMO-SOLUTIONS) 
J. STARA, J. DANtCEK, O. JOHN 

Abstract: The Liouville property of quasilinear parabolic 
system Implies the regularity of this system also in case that 
both the Liouville condition and the regularity of the system 
are formulated for the weak solutions with finite BMO-seminorms. 
On the other hand (again in the framework of BMO) from the 
slightly modified condition of the regularity of the system it 
follows that this system has the Liouville property. 

Key words: Quasilinear parabolic systems, BMO-seminorms, 
regularity, Liouville property. 

Classification: 35K55 

1. Introduction. The aim of this note is to extend the stu

dy of the connection between the Liouville type condition and 

the interior regularity of the weak solutions of quasilinear pa

rabolic systems . Meanwhile in the papers 113,121 we dealt with 

the bounded solutions, here we are concerned in the case of the 

solutions belonging to the space BMO. In contrast with the papers 

just mentioned, also the equivalence of the Liouville type condi

tion with the regularity is studied more in d e t a i l s . 

In general, it is not known tiow to prove the boundedness of 

the solutions of the initial-boundary value problems for quasi-

linear systems . On the other hand, Danidek [33 gave (in eiliptic 

case) an example of the class of quasilinear systems for which 

each weak solution of the Dirichlet problem belongs to the space 

BMO. This fact stimulated our interest in the theme described 

above, (In the elliptic case it was proved by Qan6cek in his The

sis that the Liouville type condition implies the regularity in 

the framework of BMO.) 

In the bibliography, we restrict ourselves just to the 

items we need for references. For the more representative list 

of articles see 121. 
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2. Preliminaries .Let Q=-Q.xJR where il be a domain in/Rn, n ^ 2 . 

Denote z=[x,tJ, x=Cx, , . . . ,xR] , u=[u ,...,u
mJ, rai?l. Let us consi

der the system 

%T - *fc(aip(z'u) l ^ ) = -fi(z.u.°xu)' i,J = l,•...•; *./S-l....,n, 

which we rewrite as 

(1) ut - div(A(z,u)Dxu)= - f(z,u,Dx u). 

Together with (1) we deal with the systems 

(1*) ut - div(A(zQ,u)Dxu)=0, z Q6Q. 

Let the following assumptions on the coefficients A="fa"}̂ l 

and the right hand side functions f={f I be satisfied: 

(2) A is uniformly continuous and bounded on Q x IRm. 

( 3 ) There exists ft>0 such that 

<A<z,u)£,$)£A |||2, V f e R m n, [z,u]cQxlR m. 

(4) lim A(z,u)=d(z) uniformly in Q (with respect to z). 

(5) f(z,u,p) is continuous on Q X I R ^ X I R " " 1 . 

(6) |f(z,u,p)|i clpl2" where x < 2. 

The function ueWi'iQC(Q) is said to be a weak solution of 

(1) in Q if for each cp e C^(Q) holds 

(7) f Lu9?t-A(z,u)DxuDx9?J dz= J^ f (z ,u ,Dxu) tp dz . 

For z0=-x0,t03 and R> 0 define Q(zo,R)=B(xo,R)x (tQ-R
2,tQ+R

2), 

i.e., the open ball in ?Rn+ with the centre z and radius R with 

respect to the parabolic metric. Denote further 

(8) \X^Tf 4.e;R)
u(z)dz 

( 9 ) U ( V R ) = ^ /«te0,R)l
u(2)-Uzo,R|

2dZ-

Define now BM0( R n + ) as the class of all measurable functi

ons u on IRn+1 for which the set U=4U(zo,R); zQ& |R n + 1,R>0* is 

bounded, putting 

(10) IIIu III „ - =sup U. 
BM0((Rn+i) 
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In a similar way the class BMO(Q) can be in t roduced . In this 
case we take for U the set of all U(z ,R) with z eQ and 

R-<dist(zn, 8 Q ) . 

3 . Main results 

Definition 1, The system (1) is said to be (L) (to have 

Liouville property) if for each z £Q and each weak solution u of 

(1*) in !Rn+1 holds the following: u e BM0( |Rn+1) implies that u 

is a constant vector f u n c t i o n . 

Definition 2 . The system (1) is said to be (R) (regular) if 

each weak solution of this system which belongs to BMO(Q) is lo

cally Holder continuous ( i . e . , u e C° 0 0
, o c / 2(Q), ooe(0,D). 

Definition 3. The system (1) is said to be (UR)(uniforrnly 

regular) if for each <u > 0 and each KcQ, K compact, there exists 

C(K,(U.)>0 such that for each weak solution u of (1), ueBMO(Q), 

we have 

*llul11 RMntn^ * V* ^ l,lul11 n .v „/9 ^C(K,/vc). BMOCQ) * „o ,cc,oc/2/^\ '« 

(Here illulll n ^ rf/7 =sup ( l " ^ " " ^ ]/»; z,zeK, z+ z f.) 
co,c<,cc/2(K)

 H ] Ix.xp+lt-tl0"72 J 

Definition 4. The system (1) is said to be (SURKstrongly 

uniformly regular) if for each z e Q the system (1*) is (UR) 

with respect to the domain Q(0,2). 

Theorem 1. Let (1) be (SUR); then it is (L). 

Theorem 2. Let (1) be (L); then it is (UR). 

Remarks. It follows from Definition 1 that if the system 

(1) is (L), then each of systems (1*) is (L). Thus Theorem 2 

yields: (L) -«-> (SUR). So we obtained the equivalence of (L) and 

(SUR). On the other hand, from Theorems 1, 2 and Definitions we 
get (SUR) *--> (UR) **> (R). 

Does (UR)=*-> (SUR) take place? 

4. Proofs 

Proof of Theorem 1. Let for some z £ Q the function u be a 

weak solution of the system (1*) in |Rn+ which belongs to 

BM0 ( fRn + 1 ) . Denote u = III u III . . 
f BM0((Rn+1) 
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for R>0 put $«Cf ftr3* [$, $j) and define uRf$)=u(Rf ,R2r) . 
As the functions uR are again the solutions of (1*) in IR

 + , 
they are also the solutions of (1*) in Q(0,2) . Obviously, 
WuRttl Durj/Q/n 2)1^ ̂

 8n£* so (according to Definition 4) there 
is a constant C such that 

*>0 R Co,<st'^/2(B(0,l)) 

Let now z * t R n + 1 . We have |u(z)-u(0) | = |uR( £, i?)-uR(0)|£ 

* C \-f^f/2 if only R>|x| + | t | 1 / 2 . " 

Passing to the limit with R —>• +oo we obtain that u(z)=u(0) 
and so u is a constant vector funct ion . 

Proof of Theorem 2. Let Kc Q be a given compact set and let 
£* > 0, According to the partial regularity theory for parabolic 
systems (see e .g . C41) it is sufficient to prove that 

(11) lim U(i,R)=0 uniformly with respect to K and Q£ = |u; u is 

a weak solution of (1) in Q with W u^nMn(n)^ r4 -̂
Suppose that (11) is false, i . e . that: 

(12) There exist some compact Kc Q, two positive numbers <a and 
e and the sequences 4zhJcK, (R. U R , R.\ 0 and -CujHu. 
is a weak solution of (1) in Q for which llluhJH nugrQ)^ (** )> 
such that Uh(zh,Rh)£ & , h = l,2,... 

In what follows we shall prove that (12) leads to the contra
diction with (L). 

P u t f * - * h * - t h 1 

* l %RZ J 

(13) 

V P - V V Һ Ś • VRh ť)- ( uh)Z h,Rh-
From (12) and (13) we obtain (for an arbitrary constant function 

q) 

(U) e & Uh(zh,Rh) = (R h)-"-
2 /« fz A lR A)l" h

(^)-(%) Z h, R hl
2 dz = 

• /«(o,-)ivi)i2°s* 4 O , „ I ^ ? H I 2 ^ -

x) It is not difficult to prove that the crucial lemma 8 of the 
paper £43 is valid - under our assumptions on the coeffici
ents A - even in case when the boundedness of u R be substi
tuted by the condition that U€8M0(Q). z» 
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The f unc t i ons v h so lve the systems 

( 1 5 ) JoR - * h * - - A < V R h S , V R 2 r , v h ( p + ( u h ) Z h R h ) n f v h n f y 3 d £ » 

= 4 R h f ( x h + R h | . V R h { . vh (P + (uh )
Zh,Rh 'Rh1 V h ) 9 M j ^ 

where 0R i s the image of Q i n the mapping J de f ined by ( 1 3 ) . 

h 
For each T > 0 there exists h(T)e*N such that for hJh(T) 

the inclusion Q(0,T)cc 0D holds. So each v.(hi£h(T)) solves (15) 
Rh n 

in Q(0,T). It follows from (2), (3) that the coefficients Ah(J)* 
=A(xh+R|£ , th+Rhtf ,

 v
nCJ)

 + (u» ) R ) are measurable and equiboun-
h' h 

ded with respect to h on Q(0,T) and satisfy the ellipticity con
dition with the same constant &. 

The assumptions (5) and (6) yield 
Rhlf(xh+Rh^VRh^vh(?) + (uh)Zh,Rh'

Rh1 Vh(?))| -

4C R^r|Dfvh(p|^, 

so the right hand sides of (15) have a controllable growth, uni
form with respect to h. 

From these facts we can conclude that there exists a const
ant C(T) > 0 for which 

(16) l l v h l l 2 l , l / 2 ( Q ( 0 ) T / 2 ) ) *
c ( T ) ,lvh,,2

2(Q(0,T)).
 h S h ( T ) 

Further we need to show that the right hand side in (16) can 
be estimated by some absolute constant, depending only on T. For 
this purpose we give the estimate of ftv.ft . /«/« r\\ by 

^ uh^BM0(Q)* Tnis fac* can be d e r i v e d as a particular case of 
Lemma 3.Ill in £51. For the convenience of the reader we give 
here the proof. Omitting index h, we have 

(17) 8vlL2(Q(0,T))- W)|v<?>l
2 -J «""n_2/-f*RT)lu«>-

-u2>R|
2dZ«.2 ^T

n + 2(TR)- n" 2 /fl(s;,RT)|u(Z)-uZ)RT|
2d5+ 

+ R" n" 2 /«(x l RT)t
U
Z,RT-

u
Z,Rl

2^62T" + 2 AIHU«» 2 M 0 ( Q ) + 

+ * 1 U
Z , R T -

U
Z , R I

2 J ' 

where ae, is the volume of Q(0,1). 
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To estimate |u^ D T-u, Dl
 we restrict ourselves to the case 

i x) Z,KI Z ,K 

that T = 2 . ' Putting <p =TR we estimate at first u -u /n\ 
2 2, Z,P Z,9> 

4 2 4 l<-z p~u(z) | +|uz ( D/2"*
U^^ I * • A^"ter the integration over 

Q(z, jo/2) we get 

9e(p/2) n + 2|u Z ) ?-u I ) f / 2|
2^2{/ a f e ) ? )| U z p-u(z)|

2dz + 
+ ^( Z,p/^

u ( 5 )- Uz, 5 B/2l
2 d z}' 

and from here 

luz,p-
uz,?/2l

2* l ( 2 n + 2 + 1)lllulllBM0(Q)-

Iterating this estimate, we have 

|uz,R-uz,RTl2=luz,?/2
i-uz,?>l

2^i [luz,y-uz,?/2l
2+'-- + 

+ luz,?/2i-r
uz,so/2i | 2J^' l l u l t tBM0(Q) ( 2 n + 2 + 1 > -

Substituting to (17) we obtain finally: 

( 1 8 ) livh11L2(Q(0,T))^
 C ( T ) llluhnl BMO(Q) *C<T><"- > 

which together with (16) gives 

(19) llv.il2, 1/9 4 c(T)<a, (h£h(T)). 
n W1'1/2(Q(0,T/2)) 

The estimate (19) together with the compactness of imbedding 

of Wl5l/2(Q(0,T/2)) into L2(Q(0,T/2)) enable us to assert (using 

the diagonal process) that there exists a subsequence (we use the 

same notation for it) such that 

(20) z h - ^ z o e K , 

(21) v h — > v in L2(a(0,T)) for each T>0, 

(22) Dcv h—> DfV weakly in L2(Q(0,T)) for each T > 0 , 

(23) vh — > v almost everywhere in lRn+ , 

(24) either ( V ^ - * P e IR
m or U i ^ I K ^ . R J =+0° ' 

Further, it is easy to check that 

(25) veBM0(|R n + 1), WvB! B M 0 ( Rn+l
) - f^' 

x) The case of general T can be easily derived from here using 
the standard technique. 
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Taking in (15) the fixed test-function 9? we pass to the 

limit with h —> 00 and (using (20) - (24)) we obtain that v is a 

weak solution either of the system 

<26> 4 * + l C v < ? * " A ( z ° , v ( S ) + p ) V D-9.3U5-0 

or of the system 

(27) / R « » [ v « ( i e - d ( z o ) 0 . v D ř 9 ] d J = 0 . 

In case of (26), v is a constant vector-function because of 

(25) and the assumption (L). In case of (27), v is a constant 

function again because it is a weak solution of the system with 

constant coefficients which belongs to BM0(lRn"f ). 

Coming back to (14) and putting v for q we obtain 

1 2. & ś W ) 1 Vç>-v|2-ç 
But the last integral tends to the zero as h —^00 and so we get 

the contradiction. 
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