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COMMFNTATIONES MATHEMAT1CAE UNIVERSITATIS CAROLINAE 
28.1 (1987) 

LINEAR FUNCTIONALS lU SLM-SPACES 
J. MICHALEK 

Abstract: This article deals with linear junctionals 
define(r on statistical linear spaces in Menger's sense (SLM-spa-
ces). The main aim is to describe all continuous linear functio
n a l defined on a SLM-space (S,/T",T) as a SLM-space, too. For the
se purposes we shall define a statistical norm of a linear func
tional which in a simple way characterizes continuous linear 
functionals. 

Key words: Statistical metric space, statistical linear 
space"J t- i| -topology,, t-norm. 

Classification: 60B99 

Let a SLM-space (S,^,T) be given. Let S* be a vector space 
of all linear functionals defined on (S,Jf,T), let S' be a linear 
subset S c S* of all linear functionals continuous in the 6-72,-
topology. The basic properties of the g-^ -topology are given in 
C1J, C23. A special case of the dual space to a SLM-space is stu
died in £33. 

Definition 1 . Let a SLM-space (S,^>T) be given, let feS*, 
f4G. A function Ff(«) defined by 

Ff(u)«l-sup p ( Hi-i-ll + *>F (lliSiL)} for u > 0 
* -{*:$(*&*& x u x u 

Ff(u)*0 for u* 0, 

(o>Fx(u) is the jump of F (•) at u), will be called a statistical 
norm of the functional f. For f m 0 on S we put F (u)=H(u) where 
H(u)=G for u *G and H(u)*l otherwise. / 

Properties «f the statistical ncrm: 

1. Let 0 < u , 4 u , then \t^xn z I -f C x > | for every x c s . it implies 
A Z U * Un 

that for every x with f(x)#0 \ 
L <Fx(%iL)+ttF (!ii*2lrt 4.1- {? (il^)+«F¥(iliS-l)» 

X U | x u* x u » x u 2 
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and hence F-(u1)*6F{(u2). The statistical norm of feS*is a non-

decreasing function in reals. Further, it is evident that 0---F„(uU 

£ 1 for every u £ iB 

2. The function Ff(-) has at most a countable number of disconti

nuity points and at every point the limits at the left and at the 

right exist. 

3. In general, it is not true that lim F*(u)=l. In every case, 
Uy^"0O I 

of course, lim F«(u) exists and lim F-(u)^ 1. 
U.-VOO I 4J,~*00 i 

4. If Ff(u)=H(u) for every u e ft, , then f(x)=0 for every xeS. 

5. In case of such a SLM-space (S,JC,T) where o>F (0) = 0 for eve

ry x4-0 the statistical norm Ff can be expressed in the form 

Fft-)-1" ™j^<^>*^<-US^4 t0°-
Definition 2. A functional fe S* is said to be bounded with 

respect to the statistical norm if 

lim F~(u)>0. 
44,+ CO I 

Theorem 1 . A functional f e S* is bounded with respect to the 

statistical norm if and only if f is continuous in the 6-^-topo

l o g y . 

Proof. Let f£ S* and let f be bounded with respect to the 

statistical norm. As f is linear it is sufficient to prove its 

continuity at the null vector in S. Assuming lim F~(u)= € > 0 

then 

lim . sup 4J (1 f ( x ) I)+ c>F( 1 f ( x ) I)} =1- fcn and hence for 
U->*» -v*ifl*V*Oi X U X U 0 

every x,|f(x)|>0, lim iF ( lf ( x ) I)+ a>F( lf ( x ) 1)} ̂ 1 - g. . Let 

M.-* <*> x U x U 0 

•tx !**_•, be any sequence in S, x 4- 0 for every n 6 71 and x —> 0 
in the e-% -topology. It is clear that for every n e 71 

U(x n)| |f(x )| 
lim {F (-_J2_) + wF y (

 n )} =*>Fy (0)^1- e . 
*,-**> *n u xn u xn o , 

Let us suppose that |f(x )|-/*0\ Then there exist Such an 

6->0 and such a subsequence ^x l̂ J.i c U ] * , that 

|f(xn ) ! > ; & , for every k & 71. 

Hence I-<"„)! l-<-„>l £, 
Fxn ( - - J - - ->+ w Fxn < — i r ^ ^ V ^ - ^ x <ir> 

nk nk nk n
k 
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also for every k € 71 and it implies that for every u > 0 
If(xn )| |f(xn )| 

lim 4FV ( -J-_)+c .>FY ( Tr*—)} =1 because xn -> 0 
It-* co xn^ u x ^ u nk 

in the t-^- topology. 
But as follows from the properties of the supremum 

lf(xn )| |f(xn )| 

i r ^ ( ^ , + u ^ 1 ^ ) i ^ F x ' ( ^ L • ) t o F \ ( - ^ , 

for every k e % and therefore 

sup XF (lf(x)l)-K^F (lf(x)l.)lsl for every u > 0 . 

This last equality is contrary to the assumption that 

ii»..w, „.-tF (lf(x)l)+&>Fx(-Ul
xli)} =i- e / i . 

This result implies that feS* must be continuous in the z-\ -to
pology. 

Let us suppose, on the contrary, that f e S ' is not bounded 
with respect to the statistical norm, i.e. for every u > 0 

зup íғ (l f ( x )
l)

+ C J
F (l

f ( x )
l)} -i. 

T-Ғ&+DГ
 x u x u u3 

As f is a linear functional, Definition 1 implies that for 

arbitrarily chosen k > 0 

F
f

( u ) = 1
- , x . f

i
m > l ^

{ F x (
^

) + C 0 F x
^

) 1
'
 t00

' 
Further, f is continuous and hence |f(x)|-£k in an £-^ -neigh
borhood &(iQ, *IQ) . Now, let u •"+€©, s \i 0. Then for every n e H 
there exists y e S where |f(yn)|-k and therefore y — / > O i n the 
e-^-topology but 

i- 6<sup 4F,<l£-£lU„F (M2iii)^F (If(yn)l)+ 
<x:fM*Ol x % > x un V un 

U<y n3| k k 

+ WF •( — ,+ t i E tF (_ii)+wF (—) =6 
V un, } &n Bn yn

 un ^ V 

* 6n + Fv (u~ + d*n ) where ̂ n ^ 0 -Jn n 

It implies that 1-U+S )<F ( r r + ^ n ^ i,e' yn e0/(t-+8n'tT+c/n) 

yn n n 
(for every n eTl) and we have proved that y — > 0 in the fc-T£-topo-
logy. This result, of course, is in contradiction to the continuity 
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of the functional f at the null vector in S. Q.E.D. 

Let a SLM-space (S,1,T) be given. Let a<£<Q,l) and let us de

fine n (x)=-inf-ta> 0:Fx(A ) > a L If x = 0 then ng(0)=0 for every 

afe<0,l). On the contrary, if n (x) = 0 for every ae<0,l) then 

x = 0 in S because x = 0 if and only if F (u)=H(u) for every u <& dFL . 
x l 

At the first sight it is clear that n (Ax)=|^|n (x) for every 

% e Jt, and xeS. Unfortunately, it is not true that n (x+y)-=. 
-sn (x)+n (y) for every pair x,y<sS in (S,J-,T) besides the stron

gest t-norm T(a,b)=min(a,b). Nevertheless, we can define for eve

ry feS* and every ae<0,l) 
«ffta=sup {|f(x)|:nJx)*ll. 

Let us denote (7 = ix 6 S:n (x)£ I V From the definition of n (•) 

it follows that when a^b, then n (x)-^n.(x) for every x^S and 

hence Cr z> CT. . Further, we immediately obtain that llflLarRflL 
a b ' 3 a b 

if a-b. We also see that for every real !\ 
H^flla=|-A| ilflla for every ae<0,l) and 

every feS*. We can prove, in an easy way, the triangular inequ

ality 

I f + g » a * ll,flla+ l lg l la 

for every f,geS* and every ae<0,l) because we know that 

sup 4|f(x)fg(x)|l.<sup A|f(x)|i +sup 4|g(x)|}. If <7e S* is the 

null functional in S ( C(x) = 0 for every xeS), then surely 

110"II =0 for every a€<0,l). On the contrary, let us suppose that 

JlflL=0 for every a6<0,l). This assumption implies that f(x) = 0 

for every x e C = { x € S:n (x) -. ll. Since for every x&S there 
exists such a vector y € C , y=^x, we obtain that f(x)=0 for 

every xeS. We can prove a stronger statement even that ftfII =0 

implies f(x)=0 for every xeS. The assumption llf.i=0 gives that 

f(x) = 0 for every x c (T = {xtS:n(x)*l}. Let x £ S, nQ(x )> 1. a a u a o 
x 

So, y =. i° x e (7 and hence f ( y _ ) = 0 . It implies that also f(x_)= 
o "«>**<-.' a o o 

=0 and it yields together that f(x)=0 for every xeS. The proved 

results lead us to the formulation of the following definition. 

Definition 3. Let a SLM-space (S,2,T) be given. Let f be a 

linear functional in (S,$,T), let ae<0,l). Then the number 

|)fHa»sup -l|f<x)|:na(x)«*l} 
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where nQ(x) = inf { ̂  > 0:Fx(^ )>a} will be called a conjugate norm 

to n a ( * ) . 

The conjugate norm Nfl can assign the infinite value, too . 

iifii is defined in <0,1), is nonincreasing and we put HfH- = 

= inf \ftfft -a<lj. As for every xeS the corresponding probability 

distribution function F is left continuous, then for every xeS 

n (x) as a function in the argument a in<0,l) is right continu

ous. 

Theorem 2. Let f be a linear functional defined in a SLM-

space ( S , y , T ) . f is continuous in the t-\ -topology if and only 

if there exists a £<0, 1) such that 

IU1L < °o • 
ao 

Proo f . Let us suppose t ha t i i f t L < +00 f o r a e < 0 , l ) . As 
o 

HfH i s nonincreasing i n < 0 , l ) , then iifii < + 00 for every 
a € < a ,1> , iifii, =inf , iifii , From the d e f i n i t i o n of the conjuga
te norm ilflL i t follows tha t for every x & 0>= - ix:nQ ( x ) - * l i 

a a a_̂  
o o 

|f(x)|-£ Uf IL . Since nQ (x)<l iff F(l)>a . we see that the a _ a x o o o 

functional f(») is bounded in the e - ^ -neighborhood 0*(a ,1) and 

hence f is continuous in the e-^-topology. 

On the contrary, let us suppose that f is a continuous line-

for every a & < 0 , l ) . This assumption implies that for every n e 71 

there exists x eS such that |f(x )|>n and x e C , a .** 1 . If 

xn |f(xn)|
 n , 

we put yn= — , then |f(y )|= - >1 for every n and yRe - 0"a = 
n 

= i 4xg Sm (x) £l\ = \x eS:nQ (x)£ ~\ and hence yn —* 0 i n the n a a n n n n 
e-7>-topology although |f(yn)|:>l. It is impossible because we as

sumed continuity of the functional f at the null vector in S. Q.E.O. 

At the beginning of our considerations we defined the statis

tical norm of a linear functional defined in a SLM-space (S,J.,T). 

At this situation ja natural question arises about the relation 
between the statistical norm Ff and the conjugate norm ttfil in 

case of a continuous linear functional defined in S. 

For this purpose let us put aQ=inf { a.Jlf ||g< + 00} in case of a con

tinuous functional f and iifii 1 = infg<1 l\flla. By these relations we 
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def ined a nonincreas ing f u n c t i o n ttftt i n the i n t e r v a l <a ,1> w i th 

f i n i t e values i n ( a Q , l > . I t i s c lea r t ha t l l l f l l l a = l l f l l j . g , 

a e < 0 , l - a > i s a nondecreasing f u n c t i o n i n < 0 , l - a > . 

Now, l e t h Z 0 and l e t us de f ine 

F f U ) = i n f - £a>0 : litf 111 a >M i f « {a>0 : lllf M a > A i * 0 

F f ( 3 0 = l i f { a > 0 : \Hf IHa> A? = 0. 

In t h i s way we ob ta in a nondecreasing f u n c t i o n def ined i n <0,+co ) 

which i s l e f t con t inuous , l i m F „ ( /A ) = l -a . Let us put fc~=lim 7,(A). 
A~»t» 1 0 I >->co i 

Theorem 3. For every continuous linear functional f defined in 

a SLM-space ( S , J , T ) the function Ff defined above is a nondecrea

sing left continuous real valued function in <0,a>) with 

lim f,(* ) = l-a n6 1 and f,(0) = 0. .X̂ voo I o I 

Proof. As \||f 111 = Hflli..a --
n <0,l-a / is a nondecreasing func

tion then 4a > 0 : lllf HI > %^ o {a > 0 : lllf 111 > ^ 21 for every pair 

7il £ ̂ 2
 and n e n c e P'fC ̂ i ^ £ ^ f ^ ^ 2 ^ ' Let ^ > ° De fixed and let 

us consider %^/ \ ; surely supR f f( - \ n ) £ Ff ( 2\ ). From the defini
tion of F « ( A ) we know that for every e > 0 there exists a > 0 

V n 

such that Ff ( ̂ R ) + e > a
n
 antf Ulf IU r ^ for every n G U . Since 

n 
X̂ 6 ^ n +i for every n 6 71 we can choose a in the same way, a ^ 
£ a n i 1 . and hence lim a =a, exists. Surely lim ^ 4 ? ( A „ ) > a - e . n+1' rrv-*oo n + J /a-y«> f n + 
The function lllf III is nondecreasing, hence lim III f ill £ lllf 111 , 

a a' m,~f.oo aR a' 

then HI fill 2- A which implies that F * ( . / \ ) : £ a . In this way we 

have proved that lim F~( !A )=F~( vA ) and hence F „ ( » ) is left con-
rrv-voo i n I I 

t i n uous i n ( 0 , + oo) at those po in t s ^ € < 0 , + oo) where 

{ a : lllf 111 .£ M 4 = 0 - I t l a s t s to prove the l e f t c o n t i n u i t y at t h a t 

% e ( 0 , + co) where { a : l l l f 111 a > - M =0. Let ^n<*X and -fa : lllf HI a -t A} =0 . 

I f , at l e a s t f o r one n e 7 l { a : lllflll > A $ i s empty, t o o , then by 

the d e f i n i t i o n of F f ( » ) F f ( & n ) = l and hence F f ( . ) i s l e f t con-, 

t inuous at % . Let us suppose t ha t f o r every n e 71 {a: III f l\l £ % \ 

i s nonempty, i . e . f o r every A n there e x i s t s a e ( 0 , l - a ) such 

t h a t l l l f l l l 2r A . Since UJflll i s nondecreasing i n (0 ,1 -a ) we 
can choose -£a \ as a nondecreasing sequence, t o o ; l i m a =a+ . 

Hence l i m l l l f l l l *-. lllf III and l l l f l l l > A but i t means t h a t the n^eo aR a+ a+ 

set 4a : l l l f l\\ £ h\ i s nonempty which i s con t ra ry to the assumpt i 
on . So, a number n^ e 71 must e x i s t sudh t ha t -ta: l l lf HI > ^ „ } =0 

' o a n * 
o 
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and F
f
(.) is left continuous at J\ . Q.E.D. 

Theorem 4. Let f be a linear continuous functional defined 

in a SLM-space (S,^,T). Then the statistical norm F
f
(.) and Ff(*) 

are equal at all p o i n t s . 

Proof . First we shall prove the implication 

F
f
(u)<a => III fill BZ u . 

Let ae\0,l) and u>0 be such that F f ( u ) * < a . By the definition 

F
f
(u)< a implies 

1 1 V Ь^<-Ч->--.c--S->.>i-.. 
It means there exists x eS with f(x

o
)4'0 such that 

U ( x 0 ) | | f ( x Q ) | 
F ( 2L-)+ o>F ( 2—) > i . a . 

v U Xn U 

o o 

Then we can s t a t e by means of n, (x ) = i n f { 7 . > 0:F (.A ) > l - a l 

t h a t ° 
, ^ | f ( X 0 } l 

V a ( x 0 u - _ a -
ux 

Now if we put z
Q
= ig» •) i then t*

1-a
(z )£1, |f(z )|=u and hence 

Hfll1^a=sup •{|f(z)|:a1_a(z)^lj>u. 

It proves: if Ff(u)< a then IIfill >u. This implication can be 

expressed in the following form 

{a:Ff(u)< alc<a: III f llla> u5. 

Now, let us prove the opposite implication 

Ff(u)> a =» lllf |llâ  u . 

Let a € < 0 , l ) and u > 0 be such t h a t F f ( u ) 2 : a , i . e . 

S l ^ n . ^ X ( l l ^ l L ) + ^ F X ( l l % i i ) ^ 1 - a --Ui -fC*H0i x u x u 

This implies that Fx( l
f W I) £ l~a if f(x)*0. 

The definition of »i a(*)
 a n d the monotony of F give 

•-^^l-aCO. 
The last inequality holds for f(x)=0 of course, too. It means the 

inequality |f(x) \& u must hold for every xeS satisfying tx^ Ax) £ 

£1. The definition of Nfll^g gives immediately that 
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llftf1-a* » f » a * u . 

We proved the implications 

U: yif l i l a > u l c { a : F f ( u ) < a } c i a : Wf 111 g 2r u } . 

Further, i f e is any pos i t ive number, then 

4 a : F f ( u ) < a l e Ut |llf III a > u } c - t a : IMf III g > u-e ! c { a : F f ( u - e ) < aJ. 

Now, by means of the definition of Ff we obtain 

F f(u-e)*F f(u)£F f(u) 

and the left semicontinuity of Ff gives that 

Ff(u)=Ff(u), 

In case ^a: Wfttl £u$ = 0 we have also -{a :Ff (u)< a $ = 0 and thus 

F f ( u ) = f f ( u ) = l . Q.E.D. 

We have not so far mentioned the existence of a nontrivial 

continuous linear functional in a SLM-space (S,^,T). In every SLM-

space (S,^,T) the trivial continuous linear functional 0 exists, 

0(x)=0 for every x£ S. The existence of a nontrivial continuous 

functional is closely connected with the strongest locally convex 

topology which is weaker than the e-^-topology. The collection 

of all convex circled neighborhoods of 0 in the e-^-topology 

forms a base for such a locally convex topology. In case of a 

SLM-space (S,^.,T) with t-norm M(a,b)=min(a,b) every t->i -neigh
borhood is convex and circled and hence the topological dual 

space S' is sufficiently rich in continuous linear functionals. 

In case of the space (S,^f,M) we know, further, that for every 

a 6<0,1) the number 

na(x) = inf-U > 0:Fx(a )>al 

is a seminorm in S and in case of continuity at 0 of F for eve

ry x4-0 n (•) is a norm even for every a 6(0,1). But without any 

assumption about a form of t-norm T in a SLM-space (S,^,T) we 

can prove that.the conjugate norm 

»flla=sup 4|f(x)|;na(x)-* ll, a 6<0,1) 

has propert ies s imi lar to a norm because 110It =0 fo r every 

a c < 0 , l ) , i f llflla=0 then f *0 i n S, l l fc f | l a =U I « * I A for any 
7i € &x i f ||f Ba< + oo and llf+g »a-< llf Ha+ ||g |1Q for every a c <0 ,1) 

i f J f lL< +oo f 11 o 11 < +oo . Using the conjugate norm we construc-

ted the funct ion F f fo r every continuous l inear funct ional f i n 
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S where Ff(*) is defined in<Q, + ©o), nondecreasing and left con

tinuous with lim f%(u)= e-, e* € (0,1> . Let us construct a map-

pino/ 0 u * Q 

2<:S'~»3" , ^'(f)(u)=Ff(u)=/ 
1 x Ff(u) for u> 0 

where S' is the topological dual space of S, 9' is the set of all 

left continuous condtecreasing functions defined in 3L with non-

negative values less or equal to 1. 

If f=0, then llf»a=0 for every afi<0,l) and .»fllJa=0 for 

(0,1> , too, which implies that F'(u)=H(u) for every u. If 

Ff(u) = l for every u> 0, tff IV < +oo for ac<0,l~a M), and therefore 

Ff(u)< l-aQ but it is impossible. It implies that lllfll • < + a> 

in <0,1). Let us suppose that for every u > 0 there exists a e<0,l) 

such that III fill a ^ u. As follows from the definition of TAu) in 
this case Ff (u)£ a 0< 1/and it is also impossible, it means, that 

{a: Iflf M a * u>0? is empty and the only possibility is that W f W a « 

=0. This fact implies that f=0 in S. Let ft be any real number 

and f any continuous linear functional in S. Then for every a c 

6<0,1) with Ulf llla< +oo l»iaflla»|*| W f» a and f or & * 0 

{a: IIIAfHla2ul M a : Ulf HI a* TJJ} and hence F^(u)*Ff(j-j-f)* 

In case A =0 we have &f=0 and F^f(u)=H(u) and if we put Ff(|)-« 

=H(u) for every u > 0 then Ff(«^-r)=H(u) for every u > 0 . Let us 

prove the generalized triangular inequality given by the t-norm 

T(a,b)=min(a,b), i.e. 

Ff +g
( u + v ) ? r n t n ( Ff<«>. Fg< v>)-

Surely, it is possible to consider the case u > 0 , v > 0 only. The 

functionals f, g are continuous and for f there exists such a num

ber £ f > 0 that Ulf l\la< + oo in <0, e f ) , similarly for g, HfgW a< 

< +oo in<0, ,eQ). It follows that for every 

a €<0,min( 6f, e_)) 

Hlf+gHV * lllfHt + » l g l l i a . 

By the definition 

* F f ( u ) = in f í a : t l l fШ a г u î 

í F ' ( v ) * i n f ł a : ШgW a Ł v l 
f g a 

U: i fШ a-iuт-ФØ-Ha: IИgЯ,* v! 
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and 4a: |l if+g i\l_2 u+v l c 4 a : |i lf 111 _+itlg l i i_2 u+v? as w e l l . Now, l e t 

us suppose tha t 

F f ( u + v ) < m i n ( F f ( u ) , F _ ( v ) ) . 

It means that there exists such a number a Z: 0 that 

ae e 4a : l l if+g ill 2 u + v l a c - e < F.I (u+v) < ae < m i n ( F J ( u ) , F ' ( v ) ) . 
*-* a ° i+ y fcJt i P 

Then f o r every a 2 m in ( i n f -I a : III f HI _ 2 u r, i n f i a : ilig ill > v l ) 

I t means that llif III < u , ill g III < v , which together g ives 
% , % 

Hi f i l l + ill gill 

As f o r a€ llif+g ill 2 u+v, then t h i s f a c t i s con t ra ry to the conc lu

s ion tha t 

i f Hl + lüg Hl < u+v 
H 

This proves the inequality 

Ff (u+v)2 min(Ff(u),Fg(v)) 

must hold. 

Now, we must consider the case Ff(u) = l, F_(v)=inf 4 a: llig III > vl . 

It means that 4 a : III f III > u} = 0 and 4 a : III g III > vH 4- 0 . In case if 

4a: II f+gii_2 u+vr# 0 F ' (u+v) = inf 4 a: II f +g ll_2 u+v} . Now, let us 

suppose the contrary again, i.e. 

F ' (u+v)< min(Ff(u),F'(v)); then for some 

a^6 4a: lllf+glll _> u+v} 

afc- e < Ff (u+v)< at< min 4F'(v),1\. It means, of course, 

t ha t III g ill < v, | i | f l l i < u f o r every a e < 0 , l ) and hfince 111 g HI + as a ae 
+ lliflli < u+v. As l l l f+gl l l > u+v then HI f i l l + l lg ML 2 u+v, which ae a$ ag a g 

is impossible and the generalized inequality *nust hold. Now, sup
pose that 4a: ,lf+gi|2u+v? =0. Then, by the definition Fl „(u+v) = 

a i+g 

=1 and the generalized triangular inequality holds in a trivial 

way. 

The last possibility is the case 4a: II f+g II 2 u+vl-r* 0 but 

4a: HfllgSuH =4a: llg|la>.vl =0. Then Ff(u) = l, Ff(v) = l, too. Let 

us suppose Ff (u+v)<l. Then there exists ac < 1 such that 

Ff (u+v) < a&< 1. As we suppose 4a: llf+gll 2 u+vi is nonempty then 
Hf+glL -2 u+v which implies either ilf II 2 u or IIgII Z v. This con-â  â , a& 
elusion is of course impossible and the generalized triangular 

inequality holds in this case, too. 
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Vie have proved that to every f c S ' it is possible to assign 

a function Ff such that f=0 iff Ff=H, 

F'f (u)=Ff (I j
Ur ) for every u e &, and every A e &, 

and the generalized triangular inequality 

Ff+g(u+v)> min(Ff(u),Fg(v)) 

holds for every f,geS' and u,v e 5t. 

In general, Ff need not be a probability distribution func
tion because lim F-(u)= z~ need not be equal to one. This fact 

<n,~*oo I t ^ 
leads us to the following definition. 

Definition 4. Let S be a linear space, let T be a t-norm, 

let £' be the set of all real valued nondecreasing functions defi

ned in reals which are left continuous and lim F(u)=0, 
At-> CO * 

lim F(u)^l for every Ft $'. If £' is a mapping ^':5—>£" such 

that 

1. (x = 0)«=-*> (^'(x)=H) where H(0) = 0, H(u) = l for every u>0 

2'(x)tOT=0 
2. ̂ '(Ax)tu]=^'(x)[-p-u-|] for every xcS and every A e 3^ 

" 3.3'(x+y)tu+v3 >T(y(x)[u3,y(y)lv]) for every x,y€S and 

u, v € #£, 

then the triple (S,^',T) is called a generalized statistical line

ar space in the sense of Menger (GSLM-space). 

The definition 4 is nonempty because every SLM-space is a GSLM-

space, of course, and the dual space (S,^',min) to every SLM-spa

ce (S,^,T) is a GSLM-space, too. 

Theorem 5. Let a SLM-space (S,%,T) be given. Then its tor/o-

logical dual space S' can be understood as a GSLM-space (S',^'»min) 

where 

^'(f)=Ff(.) for f e S'. 

The proof of this Theorem 5 was given before. We shall try 

to use the mapping ^' in the dual space S' to introduce an analo

gical topology to the e-^-topology . Similarly, as for the g-^-

topology, we shall define a family of neighborhoods which forms 

a base of a topology. Let e»€(0,l> , ^ > 0 , then the subset in S' 

<y'(fot<£ ,>] )= lie S':Ff^f (*) )>l-el 
o 

will be called an e-^-neighborhood of f in S'. It is clear that 

the family -?U=i<y'(fo,fc,*>),€,e(0,l>,«72>0?, f0€ S'f forms a 
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f,-f (">i>>i-& ' i - e0-

base for a topology which we shall call the e - -q -topology, too. 
It is clear that for every <r'(f0, e, $ ) fQe o-

/(fQ, e , *? ) becau
se Ff , (u)=H(u) = l for u > 0 . For any pair a'(f , e. n J , i = l,2 

0 0 u i i 

there exists such an c'(f , e . i?„) that 
o> o' *o 

*'(fo> *o> * 0
) c a ' ( f o « *i> V n < y ' ( f o > *2' V -

It is sufficient to put eQ=min( e x, e 2),
 120=»"in( i j , ^ 2 ) . Fur

ther, if <r'(f , e , 1? ) is given then for every e .* e o, 
n * 1o <7'(fo> e> ̂  * c °r/(fo> eo> ^ o ) ; s i m i l a r ly» for every 
e ? e 0 . n * l o *'(fo> e,?)3<y'(f0, e0, ? p ) . if 
f j e o - ^ ^ , eQ, ?20), i.e. Ff _f (^ 0)>1- e0, then there exists 

1 o 
<*"(*!» &*> y*> such that 

cr'(flf e*, i*)c<r'(ffll e 0, ? 0 ) . 
As the function Ff f ( w ) is left continuous at y there ex-

1 o 
ist e < eo,Tl< *lQ such that 

Vxo 
Let 0 < w* < 1£ - ri t e* = 6 and consider the Z-\ -neighborhood 
<f'(tlt e* ,^*)= Cf €S':Ff_f (^*)>1- e * V Let f ̂  tf'Upfc- , ^ ) 

then F' ( ̂ Q)=Fl f ( r* - TJ + ̂  ) > min(F' f (^),Ff f, (*%)) z 
o o 1 1 o 

> min(l- e*,l- % ) >1- e Q hence f 6<y'(fQ, e Q, ^ 0>. 

We have proved that the system of the e-^-neighborhoods in 
S/ defines a topology. This topology will be called also the 
gf i^-topology and thanks to the generalized triangular inequali
ty Ff (u+v)>,min(Ff(u),F'(v)) it is no problem to prove that 
every net "Cf^i^ in S' has at most one limit point because Ff =H 
if and only if f=0 in S'. This fact proves that the e- ?j-topolo
gy is a Hausdorffian t o p o l o g y . The generalized triangular inequ
ality enables us to prove also that 

if f —> f and g —-> g then f +g —-> f + g . 
OC oC Ot oC 

Unfortunately, it is not true that A^f —*- 0, in general, in this 
e-ij-topology if .A —> 0 in reals because if e f < l then 

lim £' .p(u)= lim flit J* i) = e*< 1 for every u> 0. 

This fact says that the £-*£-topology in S' is not a linear topo
logy, i.e. the operation of j\» f need not be continuous in 3tx S * 
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Theorem 6. The s- "^-topology in the dual space (S', 2f',min) 

of a SLM-space (S,J,T) is a linear topology if and only if &f*l 

for every f e S'. 

Proof. The proof is very simple. If fef = l for every feS , 

then for every t̂>"~"* 0 of reals and every f fiS' 

, lim F' Au)= lim F'(. ,u, .,) = z =1 

for every u>0 and hence ^ f —> 0 in the £ -^ -topology. 

If there exists, at least, one f n£S' with & f < 1 then 

OV'fQ-7^0 in the £-T|-topology which cannot be a linear topology 

in such a case. Q.E.D . 

Theorem 7. The t-^-topology in the dual space (S', ̂ ',min) 

of a SLM-space ( S ^ T ) is metrizable. 

Proof. The mapping y(f) is constructed using the conjuga

te norm II f 8Q=sup 4 |f (x) | :ng(x) 6 l \ , ae<0,l), f €S'. For our 

purposes we have put UlfRI = tlfII, for ae(0,l> and ef = 

=sup -£a: WfIII < + oo? . Now, we use (I) f III for the definition of 

a metric in the dual space S'. Let us define for every f,g€S' 

Hlf-gflla 
n a ( f ~ 9 ) = l+l..f-gitia

 f o r a e < 0 > *f-0> 

na(f-8) = l for a c < 6 f ,1). 

Using the inequality fcf+Q> min( e f, e Q) we can immediately 

prove that for every ae<0,l) 71 (•) is a metric defined in S'. 

Since 71 (.) ̂  1 for every a&<0,l) then the integral 

p(f;g)= Jo /Ha
(f"9) da 

exists and f>(f ;g) is also a metric in S'. Let -Cf } be a sequence 

in S' such that tp(0:f ) -—> 0. As 

f ( 0 » f n ) = : h 7 l a ( f ) d a = / o V l + i H f I d a+ ( 1" ef } f o r e v e r y n€%> 
e. IWfnJla 

i t i s clear that e f — • 1 and f *«* [(^ m \ i da —> 0 i f n -~>oo* 

Illflllg i s a nonde'creasing function in < 0 , 1 ) hence ?-a(*) i s also 

a noncjecreasing function in ^ 0 , 1 ) and the convergence p(Q,f )—* 

—> 0 implies that 7 l a <f n )—> Q for every a c < 0 , l ) hence 

fflfnlll —> 0 i f n—*oo for every a g < 0 , l ) . 

Now, l e t u be any pos i t ive real number, then according to 
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the d e f i n i t i o n of Fi(u) 
F; (u) = inf \a: l«f n Hl a -i u l 

OГ 

F ; (u)=i if ia: liftem a l> u i =0. 
L n 3 n 

We proved that lllf III — > 0 for a
r i
6<0,l), i . e . for every 

n
 o 

a e<0,l) and every u > 0 there exists a natural n such that for 

every n > n 

It means that Fl ^
u

0
> *

a
o *

o r e v e r
y
 n
 -

 n

Q
 •

 T n e
 arbitrariness of 

u and of a impSies immediately that 

lim F; (u
n
)=l. 

This fact proves the convergence of ff^™* to the null functi

onal in S' with respect to the e-^ -topology. 

Now, on the*contrary, let a sequence ffj„ , converge to 0 

'
 J

 ' n n=l 
in S' with respect to the e-^-topology, i.e. 

lim ғ; (u)=l 
n ti-* &> * 

for every u > 0 . We have for every e > 0 and every u > 0 there ex
ists a natural n^ such that for every n > n 

o J o 

Ff n(u)> 1- e, . 

As follows from the de f in i t ion of F^(.) either -Ca: Hlf III > u? = 0 
or in f 4a: l i l f l l l > U } > 1 - e . I t implies that n a r 

{a : IM f n « l a <u}o<0 , l -& ) 

Then ft l a : lllf III < u}> 1- e- ( ft is^ the Lebesgue measure) for eve
ry u>0 and th is proves that til f III - » 0 i f n —* oo for every 
a 6<0,1) . As i a g ( f n ) ^ l for every n € 71 , thus 

f ( 0 > f n > = / ( > a ( f n ) d a ~ * n 

where n ~~> oo and Theorem 7 is proved. Q.E.D. 

Theorem 6. Let a SLM-space (S^min) be given. Let 

(S',^',min) be its dual space. Then the t-^i -topology in 
(S,^,min) is normable if and only if 

inf z*> 0. 
-?eS' r 

Proof. Let (S,^,min) be given and let the e-^-topology in 
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S be normable. Then there exists such a convex neighborhood K 

which is % -^-bounded. It means that the set K must be bounded 

with respect to every seminorm •*.(•), ae<Q,l); in other words, 

for every ae<0,l) there exists K such that for every xeK, 

n „(x) £ K < + oo . Let f be any continuous linear functional defi

ned in S. The continuity of f implies that sup.. |f (x) | £ K* < + <x> -

Further, since K -forms a neighborhood in the e- 17 -topology in S, 

there exists (y( e Q ) ijQ) in S such that cr(^,ti)cK, £o>^0, 

i2Q >0. It means that for every x s &( e , -w ) |f(x)|.£Kf, too. 

As <f ( eQ, ^0)="^
X:nx_e (x)<--»20l

 =^ 0^
X : nl-£ (x^-^ "fcnen 

for every xe-Cx:n, (x)^l^ and ffeS' 
0 K 

sup i |f(x)| :xe tx:n1-e (x)< lH-* •—- < + co . 
0 "lo 

Further, f is continuous and by the aid ^f Definition 3 we ob

tain 

(If!!, =sup { | f ( x ) | :x £ (K- ? =sup {|f(x)| :n- (x)^ll-- «£ 
0 . ° *b "" Yo 

which imp l ies t ha t l l l f l l l < +00 f o r every f e S ' , I t says tha t 
e o 

Gf £ t Q > 0 for every f e S ' , i . e . inf { e f :f e S '} > 0 .' 

Let us suppose, v ice versa , t ha t i n f~ «, e f= ^ • o
> 0 - I * means 

t ha t f o r every a e < 0 , &Q) and every f e S ' lil f III a < + 00 and III fill 

i s a norm i n S ' . As f o r any a e < 0 , t> ) 

Hlfllla= « f l l 1 . a = sup f | f ( x ) | : n 1 _ a ( x ) ^ l i < + «> 

then {x:n.^(x)^l\ must be £ - ?2 -bounded. Further, 4x:n,(x)-£l$ 

is an absolutely convex neighborhood of 0 in the e-7^-topology as 

was shown in £13. 

This e- t\ -boundedness proves that the e-^-topology is norm-

able by a norm 

llxll =inf-U> 0:n1_a(x)^j\^ =n1_a(x). Q.E.D. 

Theorem 9. Let B be a Banach space and B' its topological 

dual space. Then B = (B,^,min) where # ( x ) t . u ] =H(u- II x|l) and B' = 

= (B',->',min) where >'(f)[u3 =H(u- l l f l l ) . 

Proof . First, we must verify all the requirements which are 

put on J ,y . If x = 0 in B, then llxll =0 and J(Q)tu} =H(u) . As 

yax!)=|JM llxir, then H(u- II A xll)=H(u- M || x ll)=H(-^ ~ fix 1! ) 

and therefore >( ̂  x) Lu3= ̂ (x)[-r^rl. If H(u- l|xl|)=H(u) for every 
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u > 0 then it is possible only if x=0 because Ix II is a norm. 
Thanks to the triangular inequality llx+y lUllx II + II yU it holds that 

H(u+v-Bx+yII) > minfH(u-llxa),H(v-l|yB)l. 

The same properties cart be proved for the mapping # ' • T n e mapping 
$* cart be defined using the s t a t i s t i c a l norm of f e S ' , i . e . 

y( f )Cu3«l-supA if ( l i i i U ) + a > F ( i l £ i l l ) | = 

* l - 8 u p A Í H ( l í Í 2 l L - | | x l l ) + « H ( i i i i U - llxH)} = x i O u u 
=H(u-llf!J) because for every xcB If (x) | £ II xll l l f l i . 

0.E.Ö, 
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