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COMMENTATIONES MATHEMATICAL UNIVERSITATIS CAROLINAE 

28,2(1987) 

ON THE MULTIPLICITY POINTS OF MONOTONE OPERATORS ON SEPARABLE 

BANACH SPACES II 

Libor VESELY 

Abstract: The results from [1] are sharpened, e.g. it is 
proved that the set of multiplicity points of a monotone opera
tor on a separable real Banach space can be written as a union 
of countably many subsets of Lipschitz hypersurfaces, having 
"finite convexity on curves with finite convexity". 

Key words: Multiplicity points of monotone operators, fi
nite convexity, Lipschitz surfaces in Banach spaces. 

Classification: Primary 47H05 

Secondary 52A20 

Let T be a monotone operator on a real Banach space X,i.e. 

T:X —*>exp X* and <x-y, x*-y*> > 0 whenever x*eTx and y*eTy. De

note by coTx a convex hull of the set Tx and put 

A = -tx & X:dim(coTx) > n], 

A »{xfeX:coTx contains a ball of codimension n}. 

In [1] there was proved that if X (or X* , respectively) is 

separable then A (or A
n
, resp.) is representable as a countable 

union of Lipschitz fragments of codimension n (of dimension n, 

resp.), where F (see Definition-2) has "linearly finite convexi

ty" (i.e. uniformly bounded convexity on lines). 

By finer calculations with the Lipschitz fragments construc

ted in [1], the stronger result is obtained: they are in fact 

CFC-fragments (see Definition 3). 

X will always be a real Banach space; by _Q-(x,r) we shall 

denote an open ball in X with centre x and radius r > 0 . 

Definition 1. Let ScR and c:S-^-X.If card S>3 we define 

Й(c,S) = sup .51 
ź = i 

c(s . ̂ -c^s .) 

s j + l - s j 
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c(s.)-c(s. ^) 

SJ-SJ-I 



where "sup" is taken over all finite sequences s < s,< .. .<s. , 

in M. We put 3C(c,S)=0 if card S £ 2 . 

3C(c,S) is called convexity of c on S. 

Basic properties of mappings with finite convexity can be 

found in 111, part 2. 

Definition 2. Let Be X, n e N, and n<dim X. We shall say 

that B is a Lipschitz fragment of dimension n (of codimension 

n, resp.) iff the following is satisfied: 

There exist subspaces W and Z of X and a set M c W such that 

(i) X = W © Z 

(ii) dim W=n (codim W=n, resp.) 

(iii) B= i w+F(w):w e M } where F:M — s * Z is a Lipschitz 

mapping. 

( ® denotes a topological sum.) 

Fragments with M=W are called surfaces. 

Definition 3. Let Be X be a Lipschitz fragment. We shall 

say that B is CFC-fragment (of the same dimension or codimensi

on) iff W,Z,M,F from Definition 2 can be chosen in such way that 

for any mapping c:S—*-M with Sc R the following inequality holds: 

K(Fo c,S)&a -JC(c,S")+b.Lip(c), 

where a and b are nonnegative constants independent on c and 

Lip(c)=sup {|| c(s)-c(s'> I :s,S-s S, s*s"}. 
s-s 

Theorem. Let T be a monotone operator on a separable Banach 

space X and n<dim X be a positive integer. Then A is represen-

table as a union of countably many CFC-fragments of codimension 

n. If the dual space X* is separable then An is representable 

as a countable union of CFC-fragments of dimension n. 

Proof. We shall prove both the propositions of the theorem 

simultaneously. Without any loss of generality we can assume 

that T is maximal monotone, hence Tx is always convex. 

There was proved in [1] that if X (or X* , resp.) is separ

able then A (or An, resp.) can be written as a countable union 

of Lipschitz fragments B of codimension n (of dimension n, resp.), 

each of them having the following properties: 
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(I) B= -Cw+F(w):weMr, McW, F:M—>Z 

where W,Z,M,F are as in Definition 2. 

(II) There exist subspaces V, Y of X* such that 

X* =V © Y, \I = 2L , Y = WX . 

(III) For any x€ B there exist t e Tx and a topological 

complement P of V in X* such that 

iltxll<m, llorx«<q, (tx+Px) AXL(tx,r)cTx 

where or :X*—*>P is a projection in the direction 

of V and m,q,r are positive constants independent 

on x 6 B. 

(Our constants m, r correspond to constants m+-j, 

£ from [11, 3.9.) 
i. 

(IV) t -t e V for any x,yeB. 
* y 

Now it is sufficient to prove that B is in fact CFC-fragment. 

Let BcR and c:S—-»M be arbitrary. If card S £ 2 then 

%(F o c,S)=0 by Definition 1. So let card S>3 and s < s,< ... 

...<s k + 1 , s.eS (j = 0,l,. . . ,k + l). Denote 

Let y* be an arbitrary functional from a unit sphere in Y. 

Put 

t%t.+ - 3t .(y*). 
3 3 P J 

The fact tteTx. follows from (III). 

Now for any i , je{0 ,1,...,k+l} , the monotonicity of T and 

properties (II),(III) imply: 

0^<x.-x.,t.-t+> = 

= <w.-wj+F(w.)-F(w.),ti-tj+ £(y*- sr.(y*))- f-y*> = 

= <wi-w. ,ti-t.+ £(y*- *T.(y*))>- ^<F(w.)-F(w.),y*>. 

Hence 

(1) <F(w.)-F(wj),y*>^<wi-w^, f(ti-tj)+y*- ^(y*)> . 

By the same way it is possible to obtain 

(2) - <F(wi)-F(wj),y*>^<w.-wj, 5L(t.-tj)-y*+ *-.(>*)> 

using 0^<xi>x., tt-t.>. 
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w.-w. 
For simplicity let us denote Q(j,i)= _

J
 if i=_=-j- The inequa-

S
j"

S
i 

lities (1),(2) give for any j e4l,2,...,k}: 

<F(w_--):_(^) - y H ' , . , . . ) * 
S j + Г s j 

s r s j - i 
= ^ < Q ( j + l , j ) - Q ( j , j - l ) , y * - < n ' j ( y * ) - f -t .>+<Q( j + l , j ) , f - t j + 1 > -

- < Q ( j , j - l ) , f - t j _ 1 > - = ) l Q ( j + l , j ) - Q ( j , j - l ) | V ( l + q + §-*} + 

+ < Q ( j + l , J ) , f ' t . + 1 > - < Q ( 3 , j - l ) , f - t j . i > -

It is easy to see that z*6 Z* iff there exists y* e Y such 

that y* = z* on Z. 

Since y* was an arbitrary functional with Hy*l. = l then 

F C w ^ ^ - F C w ^ ) F ( w . ) - F ( w 1 _ 1 ) 

S J + I - S J 
s j - s j - i 

í ( l + q + a f ) l t Q ( j + l , j ) - Q ( j , j - l ) l l + < Q ( J + I , j ) , f - t j + 1 > -

- < Q ( j , J - D , f ' t _ _ x > . 

Taking the sum over _=l,2,...,k we get 

F ( w . + 1 ) - F ( w . ) F(w.) -F(Wj__) 

SJ + Г S 3 s r s J- i 
^ ( i + q + ? a ) . J Q ( ; 

J f c + 1 

J f e - 1 

ţ~л ..чvj + l . j ) - Q ( j , j - l ) í + . Ç 2 < Q ( j , j - l ) , f - t ^ > -

Z <Q(J + 1,3) , f -t ,> = (l+q+ ffl) .__ , llQ(j + l , j ) - Q ( j , j - l ) l l -

- . Z 2 < Q ( J + i . J ) - Q ( J . J - i ) . f • t_>+<Q(k+i ,k ) , f - t k + 1 > + 

+ < Q ( k , k - l ) , f - t k > -<Q(2,1) , f .tj_> -<Q(1,0) , f .t_> _. 

^ ( l + q + - f - ) ^ HQ(J + l , J ) - Q ( j , j - l ) t t + -f- Lip(c) ^ 

*_a+q+ 2fa).oi:(c,s)+ ^ f l L i P ( c ) . 

Then by Definition 1 we have 

^C(Fo c,S)^a . 3C(c,S)+b.Lip(c) 

where a = l+q+ —~* and b= —p*. The theorem is proved. 

Remark. Problem 1.1 from tl], whether it is possible to 

write " d"-convex fragments" instead of "CFC-fragments" in Theorem, 
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i s s t i l l open. 

R e f e r e n c e 
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