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A NOTE ON COUNTABLY DETERMINED AND DISTINGUISHABLE SETS 

Zdenek FROLfK 

Abstract: We shall develop a theory of absolutely countably 
determined spaces (often called Lindelbf ^-spaces, here we call 
them absolute Hausdorff s e t s ) which is parallel to the theory of 
^-analytic spaces (often called K - a n a l y t i c ) . In particular, the 
first separation theorem for them is proved. 
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0. Introduction. 

sequences ranging in OJ , and let SI be to0* with the product to

pology where c*> is discrete. The space 51 is known to be homeomor-

phic with the space of irrational numbers. If M is a set-valued 

function from co < C J , then 

tf M= IKfWM 6 r i n | n e c j \ { 0 l h 6 ' e . £ " x 

is the Suslin set determined by M. Any set of the form 

Vi(M M$ I n|n & co\iO}l I V e S'i, 

with X ' c S l , is called a Hausdorff set determined by M. If %, 

is a collection of sets then the set of all tf M with M ranging 

in 7H, is called the collection of Suslin- 771 sets, and it is deno

ted by ^(?7l). Similarly we define the collection #e(?)i) of Haus

dorff- 7)1 sets. In what follows we develop a theory of 

3f£(closed(X)) sets with X to be completely regular spaces, which 

is parallel to the theory of y ( c l o s e d ( X ) ) sets, the latter be

ing assumed to be known to the reader. On the other hand, if one 

does not insist to understand the assertions involving Suslin 
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sets then the paper is s e l f - c o n t a i n e d . For the theory of absolu

te Suslin sets (which we call ca -analytic spaces, and which are 

often called analytic or K-analytic) we refer to i-Fro,J and 

CJ-RJ. The main result is Theorem 3.2 which is the first sepa

ration principle for absolutely Hausdorff sets (often called Lin-

delbf ^.-spaces or countably determined spaces). 

1. Hausdorff and Suslin sets. A set X is said to be deter

mined by a collection of sets 7/2 in Y if for each X G X , and each 

y e Y \ X there exists an M in 771 with u N , y £ M. If 72 is a col

lection of sets then by a Hausdorff set w.r.t. 71 , or a Haus

dorff- 7| set, we shall mean a set which is determined by a coun

table sub-collection of % . Denote by #£(72, ) the collection of 

all Hausdorff-72 sets. It is obvious that 

mn)-x>w(n)) Dn& o n^ 
for each TV > 

Denote by ^f'('71) the collection of all Suslin- 71 sets, i.e. 

the collection of all sets which are obtained by the Suslin ope

ration from sets in '71 . Here we are interested just in the case 

when 71=closed(X) for some topological space X. Recall that the 

Suslin sets in a space X, i.e. the elements of ^ (closed(X)), 

are just the projections along the space X of the irrational 

numbers (conceived as the product space co ̂  ) of closed subsets 

of X x X. 

For the Hausdorff sets in a topological space X, i.e. for 

the members of #£(closed(X)), we have the following analogous 

characterizations. Note that A. Archangelskij calls the Hausdorff 

sets in X the countably determined sets in X. 

1.1. Lemma. For any space X, a subset Y of X is a Hausdorff set 

in X iff there exist a separable metric space P (which may be 

assumed a subspace of SI ) and a closed set C of PxX such that 

C projects onto Y. 

Proof. If C is a closed subset of Px. X which projects onto 

sets 

Y, and if iU } is an open basis for P then the collection of all 

cl(jrl(Un* X)r. Cl 

determines Y in X, where ?r is the projection Px X —*- X and c£ 
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stands for the closure operator in X. On the other hand, if Y is 

determined by a sequence •{ F \ of closed sets in X, we define 

F. . =AiF. |kcn+l{, and for 6" & SL we put 
o* ' ' n n 

^ = П Í F c | s c 6-1 t> s 

Now if 

then 

:'=^|Fff c Yj 

C = (fU(J{ Z s . x Fs|s € o>ni|n e a>\fo}J)n ( S ' s X ) 

is a closed set in 5l'x X which projects onto Y; here Sis is the 

basic open set {& \s c & } with s e u*<co . 

Example. If X is a separable metrizable space, or more ge

nerally, if X is separated and has a countable closed network, t 

then each subset of X is a Hausdorff set in X. 

All the following properties are obvious. 

1.2. Permanence properties. The Hausdorff sets in any space 

are closed under the Hausdorff operation (since Vt o #t =&€). If 

X C _ ^ Y C - ~ V Z , and if Y c #e(z), X e 3€(Y) then X e ^ ( Z ) . The prei-

mages of Hausdorff sets under the continuous maps are Hausdorff. 

Finally, if X is Hausdorff in Y for each n e co , then TT{X„4 
' n n n 

is Hausdorff in TT-fY J. 

1.3. Existence of non-Hausdorff sets. It is obvious that 

the union of a discrete family of Suslin sets is Suslin. On the 

other hand, the discrete union of Hausdorff sets need not be 

Hausdorff. To show it we use the observation in Fundamental Lemma 

in f A-SV Let I be a separable metrizable space with at least c 

subsets. Let X=c x I have any topology such that each ^oc$xI is 

a closed subspace of Xj e.g. X may have the topology of the sum, 

and then the family -i-Loo f x l\ is discrete. For any injection f 

of c+ into exp I the set 

Y= UUoo} x fot |oG e c+? 

is not Hausdorff. If Y were Hausdorff, then there would exist a 

separable metric space P and a closed set C in Px X which would 

project onto Y. But then each fee would be the projection of a 

closed set in Px I; since Px I has at most c closed sets, this 

is a contradiction. 
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It should be noted that if P is a separable metric space and 

•(Ŷ l is a discrete family of P-Hausdorff sets in Y, i.e. if each 

YQC is the projection of a closed set in Px Y, then the union of 

iY\ is P-Hausdorff, hence Hausdorff. 
CC 

Example. The Baire space ae (at has the discrete topology) 

has a subset which is not Hausdorff iff se > c. For "if" observe 

that if &t £ c then there exists a bisection into the separable 

space (2 °) °. If ae > c then we can find c+ disjoint copies of 

*fc ^o 2 « in a€ and then the union of these copies contains a subset 

which is not Hausdorff. The same argument gives: if X=TTiX In e 

fc co 3, if each X has at least two points and if each subset of 

X is Hausdorff then the cardinal of X is ^ c. 

2. Absolute Hausdorff sets. For convenience we only consi

der completely regular separated spaces, i.e. the spaces admitting 

separated compactifications. 

2.1. Theorem. The following conditions on a space X are 

equivalent: 

(1) If X C _ > Y then X is a Hausdorff set in Y. 

(2) X is a Hausdorff set in some compact space. 

(3) There exists an usco-compact correspondence of a sepa

rable metric space (which may be assumed to be a subspace of 51) 

onto X. 

(4) There exists a sequence iTTl } of countable partitions 

of X such that each 771 i refines ffl , and for each x in X the 

sequence -[M ?, where x€M e 171 , converges to a compact set of X. 

(5) There exists a countable cover *$ of X (which may be 

assumed to consist of closed sets in X) such that for each xeX 

the filter generated by 4F | x e F e S':r converges to a compact set 

in X. 

Definition. A space X is said to be absolutely Hausdorff, 

or an AH-space, if X satisfies the equivalent conditions in the 

foregoing theorem. 

It should be noted that AH-spaces are often called count-

ably determined spaces (IT23,IVJ) or spaces with countable K-

network, or Lindelbf 21-spaces. 
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Notice that the conditions (l)-(4) in Theorem 2.1 corres

pond to the characterizations of co-analytic (often called K-

analytic spaces) which are the absolute Suslin sets. The equi

valence of Conditions (1),(2) and (3) is well-known, and follows 

from Lemma 1.1, and the fact that a correspondence into a comp

act space is usco-compact (i.e. upper semi-continuous and comp

act-valued) if and only if the graph is closed. Also, the verifi

cation of the necessity and sufficiency of the two remaining 

conditions is easy, and is left to the reader. Note that Conditi

on (5) says exactly that the space is a Lindelbf ^L-space. 

2.2. Permanence properties. The class of all AH-spaces is 

closed under countable products, and taking the images under the 

usco-compact correspondences. In an AH-space a subset X is Haus-

dorff iff X is an AH-space in the subspace topology. 

Proof. Easy. 

The strength of AH is illustrated by the following (it seems 

non-trivial) result from CFro?J and its easy corollary. 

2.3. Theorem. A space X is to-analytic (i.e. K-analytic) 

iff X is AH and uech-analytic. 

Recall that following D. Fremlin IFre] a space X is said to 

be dech-analytic iff some uech-complete space projects onto X a-

long a separable metric space. It is shown in [Fre3 that X is 

uech-analytic iff 

X e ^ f (open(K)u closed(K)) 

for some, and then any, compactification K of X. 

Corollary. The following conditions on a subset X of a com

pact space K are equivalent: 

(1) X is a Baire set in K. 

(2) X is a Borel set in K, and both X and K \ X are Haus-

forff sets in K. 

(3) Both X and K \ X are uech-analytic and Hausdorff in K. 

Proof. Clearly (1) -=>(2) ==>(3), and (3) - = M l ) follows 

from Theorem 2.3 and the first separation theorem for co-analy

tic spaces (proved in 1960) which says that any two disjoint co-

analytic subspaces of any space can be separated by a Baire set. 
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Remark. Let w be the weak topology of a Banach space X. 

It is well-known that <X,w> is universally measurable. On the 

other hand, <X,w> need not be uech-analytic; indeed, if <X,w> 

is AH but not c«>-analytic (see l.T,3for such an example), then 

<X,w> is not Cech-analytic by the preceding theorem. It may be 

interesting to describe those Banach spaces which are Cech-ana-

lytic in the weak topology. The Banach spaces with the Cech-

complete closed unit ball have been simply characterized by Ed

gar and Wheeler. 

3. The first separation principle. A set X in a space Y is 

called distinguishable [Fro?J if there exists a continuous map

ping f of Y into a separable metric space such that F~ [ffx]] =X. 

The collection Dstg(Y) of all distinguishable subsets of Y is 

complemented and closed under the Hausdorff operation, and if f: 

:Y —-> Z is continuous then 

f_1[Dstg(Z)]c Dstg(Y). 

Countable products of distinguishable sets are distinguishable. 

3.1. Proposition. If X is distinguishable in Y, then both 

X and Y\ X are Hausdorff. 

A set X in Y is called bi-Hausdorff if both X and Y\ X are 

Hausdorff. Thus distinguishable sets are bi-Hausdorff. Now we 

are going to prove the first separation principle for AH-spaces. 

As a consequence we obtain the converse to 3.1 for AH-spaces X 

in 3.5 below. 

Remark. The spaces X such that each subset of X is distin

guishable, are quite interesting. A number of results about them 

is announced in C A-5]. 

3.2. Theorem. If A is an AH-subspace of X, C is a Hausdorff 

set in X, and A n C=0 then there exists a distinguishable set B 

in X such that A c B c X \ C . 

The proofs of Theorem 3.2 as well as of the next one are 

given in 3.4. 

3.3. Theorem. If X is a normal countably compact space then 

any two disjoint Hausdorff sets in X can be separated by a dis-
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tinguishable set (like in 3.2). 

Example. If X is a countably compact space which is not 

normal then there are two closed disjoint sets F, and F? which 

cannot be separated by a distinguishable set. Indeed, it is ea

sy to see that if two pseudocompact sets in a space are separat

ed by a distinguishable set, then they are 0-1 separated, i.e. 

there exists a continuous function f on the space which is 0 on 

F, and 1 on F~ (note that if F, and F~ are distinguished by a 

continuous g, then g[F,3 and gtF?^ a r e disjoint compact sets). 

3.4. Proofs of Theorems 3.2 and 3.3. Assume that A is de

termined in X by a countable collection $ of closed sets, and C 

is determined by a countable collection Q- of closed sets in X. 

We may assume that, both $ and (l* are closed under formation o*f 

finite intersections. Denote by D the set of all pairs <F,G>, 

F c ;T , G 6 Q-, such that there exists a continuous function fF r 

on X which is '0 on F and 1 on G. Let f be the diagonal product 

of all fFG, < F,G>cD, i.e. 

fx= U F G x | < F , G > 6 D { . 

We shall try to prove that fLAlnf[CJ=0. 

First assume that X is normal and countably compact, x&A, 

y c C. Let ^ x= -I F | x e F e .T? , a = -{G|y£G €,£:?- Since An C = 0,we 

have that 

n?x nHGy = 0. 

Since X is countably compact and # and CL are centred, there 

exist an F in Ht and a G in Cfr with Fn G = 0. Now by normality 

<F,G>cD and hence fx^fy. 

Now without any assumption on X, assume that A is AH. By 

Theorem 2.1 we may assume that IF n A satisfies Condition (5) and 

F = c£(FnA). But then, if x e A , y e C , :? converges to a compact 

set K in A which is disjoint to the closed set O G . Hence the

re exists < F,G> £ D with F e T , G £ Q- . 

As a corollary to Theorems 3.2 and 3.3 (see Proposition 3.1) 

we obtain immediately: 

3.5. Theorem. In AH-spaces X the distinguishable and bi-

Hausdorff sets coincide. The same is true for normal countably 
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compact spaces X. 

Denote by zero(X) the collection of all zero-sets in X, i.e. 

the null sets of continuous functions on X. It is easy to show 

that 

Dstg(X)=#€(zero(X)) 

for any X. It follows that if closed(X) c 3C(zero(X)) (in particu

lar, if X is p e r f e c t ) , then self-evidently (remember that M «><?€= 

= ae> 
^€(zero(X))=^(closed(X)), 

and hence bi-Hausdorff sets are just the distinguishable sets. 

It follows now from Theorem 3.5 that under the assumptions 

on X in Theorem 3.5 a subset of X is in 3€(zero(X)) iff it is 

bi-Hausdorff in X. 

Clearly each distinguishable co-analytic subspace of any X 

is in tf(zero(X)). Hence, it follows from Theorem 3.5: 

3.6. Theorem. If X is co-analytic then a subset Y of X 

is in <if(zero(X)) if (and only if) Y is a Suslin set in X and 

X\Y is a Hausdorff set in X. 

In particular, a space X is in ^f(zero(K)) for some, and 

then any, compactification K of X, iff X is co-analytic and K\ Y 

is a Hausdorff set in some, and then any, compactification K of 

X. 

3.7. Theorem. If X is co-Luzin, then Y c X is a Baire set 

in X iff Y is a co-Luzin subspace and X\Y is Hausdorff in X iff 

Y is obtained by the disjoint Suslin operation from the closed 

sets of X, and X\Y is a Hausdorff set in X. 

Proof. Theorem 3.6 says that in the second and the third 

conditions the set Y is distinguishable. The rest then follows 

from the old results of the author. 

Problem: Assume that (P is a partition of an AH-space X 

such that the union of each sub-collection of J3 is a Hausdorff 

set. Is it true1 that the cardinal of *P is at most 2^? 

It should be recalled that each completely Suslin-additive 

partition of an co-analytic space is countable; this follows 

from the first separation theorem for co-analytic spaces (see 

LF-HJ). 
- 308 -



Concluding remark. In the theory of a>-analytic spaces the

re are further concepts like co>-Luzin, point- co -analytic and 

point- co -Luzin. In terms of characterizations by means of usco-

compact correspondences from 5- it means that the corresponden

ce is, in addition, disjoint, or single-valued, or disjoint and 

single-valued, r e s p e c t i v e l y . Clearly, the point-AH would be just 

a continuous image of a separable metric space, or equivalently, 

a space with a countable network . It should be noted that the 

old problem of Christensen, whether* or not every point-AH-space 

is a subspace of a point-o>-analytic space, is still open (Cal-

brix and Beslavic have given a"positive solution" in the class 

of 1 „ spaces). I have found nothing interesting in the routine 

development of the concepts analogous to co -Luzin and point-co-

Luzin. On the other hand, it seems to be of interest to develop 

some "non-separable" theories of ^t . For the theory analogous 

to analytic in the sense of LF-HJ it goes smoothly. The more ge

neral theories of "analytic" are not understood well as yet. 
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