Commentationes Mathematicae Universitatis Caroline

Ladislav Beran
Distributivity in finitely generated orthomodular lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 433--435

Persistent URL: http://dml.cz/dmlcz/106556

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DISTRIBUTIVITY IN FINITELY GENERATED ORTHOMODULAR LATTICES

Ladislav BERAN

Abstract: The purpose of this paper is to characterize the distributivity of a finitely generated orthomodular lattice F by the semiprimality of the ideal determined by the lower commutator formed from generators of F.

Key words: Commutativity relation, commutators, distributivity criterion, orthomodular lattice, semiprime ideal.

Classification: 06C15

1. Preliminaries. In [3] Rav introduced the concept of a semiprime ideal which is an ideal I of a lattice L satisfying

$$
x \wedge y \in I \& x \wedge z \in I \Rightarrow x \wedge(y \vee z) \in I
$$

for every $x, y, z \in L$. Here we use this notion as a principal tool for our investigation.

Let L be an orthomodular lattice and let $x_{1}, x_{2}, \ldots, x_{n} \in L$. Recall that the upper commutator of $x_{1}, x_{2}, \ldots, x_{n}$ is defined by
$\bar{c}=\operatorname{com}\left(x_{1} x_{2}, \ldots, x_{n}\right)=\lambda\left(x_{1}^{e_{1}} \vee x_{2}^{e_{2}} \vee \ldots \vee x_{n}{ }_{n}\right)$
where the superscripts $e_{1}, e_{2}, \ldots, e_{n}$ run over $\{-1,1\}$ and $x_{i}^{1}=x_{i}, x_{i}^{-1}=x_{i}^{\prime}$. Dually is defined the lower commutator
$\underline{c}=\operatorname{com}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=V\left(x_{1}^{e_{1}} \wedge x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)$
(cf. [2],[1]).
As usual, we write $a C b$ if and only if $a=(a \wedge b) \vee\left(a \wedge b^{\circ}\right)$.
Any undefined terminology in this paper will generally conform with [1].

2. Distributivity criterion

Lemma 1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be elements of an orthomodular lattice L and let $\left(\underline{\operatorname{com}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]$ be semiprime. Then
$x_{1} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right]=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}$
Proof: Let
$x=x_{1} \wedge \bar{c}, y=x_{1}^{\prime}, z=\left(x_{2} \wedge \ldots \wedge x_{n}\right) \vee \underline{c}$.
Since $\bar{C} C\left(x_{2} \wedge \ldots \wedge x_{n}\right)$ and $\bar{C} C \underline{c}$,
$x \wedge z=x_{1} \wedge \bar{c} \wedge\left[\left(x_{2} \wedge \ldots \wedge x_{n}\right) \vee \underline{c}\right]=x_{1} \wedge \bar{c} \wedge\left(x_{2} \wedge \ldots \wedge x_{n}\right) \leqq$ $\leqq\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}\right) \wedge\left(x_{1}^{\prime} \vee x_{2}^{\prime} \vee \ldots \vee x_{n}^{\prime}\right)=0$.
Now, $I=(\underline{c}]$ is semiprime and $x \wedge y=0 \in I$. Hence $x \wedge(y \vee z) \in I$. Since $\overline{C C} x_{1}^{\prime}$, $\bar{C} C\left(x_{2} \wedge \ldots \wedge x_{n}\right)$ and $\bar{C} C \mathrm{c}$, we have

$$
\begin{aligned}
x \wedge(y \vee z) & =x_{1} \wedge \bar{c} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right) \vee \underline{c}\right]= \\
& =x_{1} \wedge \bar{c} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right] .
\end{aligned}
$$

From $x \wedge(y \vee z) \in I$ we conclude that

$$
x_{1} \wedge \bar{c} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right] \leqslant \bar{C} \wedge \underline{c}=0
$$

Thus

$$
x_{1} \wedge \bar{\tau} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right]=0
$$

But

$$
\begin{aligned}
& x_{1} \wedge \bar{c} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right]= \\
= & x_{1} \wedge\left(x_{1}^{\prime} \vee x_{2}^{\prime} \vee \ldots \vee x_{n}^{\prime}\right) \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right] .
\end{aligned}
$$

Let
$s=x_{1} \wedge\left[x_{1}^{\prime} \vee\left(x_{2} \wedge \ldots \wedge x_{n}\right)\right], t=\left(x_{1}^{\prime} \vee x_{2}^{\prime} \vee \ldots \vee x_{n}^{\prime}\right)$.
Then $s \wedge t=0$ and $s \geqq t^{*}$, so that $s=t^{\prime}$, by or thomodularity of L.
Corollary 2. If ($\left.\operatorname{com}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]$ is semiprime in an orthomodular lattice, then

$$
x_{1} c\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)
$$

for any $e_{2}, \ldots, e_{n} \in\{-1,1\}$.
Proof: By symmetry it suffices to prove that $x_{1} C\left(x_{2} \wedge \ldots \wedge x_{n}\right)$. However, $a C b$ if and only if $a \wedge(a \vee b)=a \wedge b$, by[1; Theorem II.3.7]. Consequently, Lemma 1 gives the required result.

Proposition 3. Let $\left(\operatorname{com}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]$ be a semiprime ideal of an orthomodular lattice. Then
$\operatorname{com}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{com}\left(x_{2}, \ldots, x_{n}\right)=\ldots=\operatorname{com}\left(x_{n-1}, x_{n}\right)=1$.
Proof: By Corollary 2 we have $x_{1}^{\prime} C\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)$, so that

$$
\begin{aligned}
& \underline{\operatorname{com}\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \begin{array}{l}
\vee \vee\left[x_{1} \wedge\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)\right] \vee \vee\left[x_{1}^{\prime} \wedge\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)\right]= \\
=\left[x_{1} \wedge \vee\left(x_{2} \wedge \ldots \wedge x_{n}^{e_{n}}\right)\right] \vee\left[x_{1}^{\prime} \wedge \vee\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)\right]= \\
=\left(x_{1} \vee x_{1}^{\prime}\right) \wedge \vee\left(x_{2}^{e_{2}} \wedge \ldots \wedge x_{n}^{e_{n}}\right)=\underline{\operatorname{com}\left(x_{2}, \ldots, x_{n}\right) .} \\
\text { The remainder follows by induction. Especially, } \\
\quad \operatorname{com}\left(x_{n-1}, x_{n}\right)=\operatorname{com}\left(x_{n}\right)=x_{n} \vee x_{n}^{\prime}=1 .
\end{array}
\end{aligned}
$$

Corollary 4. Let $x_{1}, x_{2}, \ldots, x_{n}$ be elements of an orthomodular lattice such that $\left.\left(\underline{\operatorname{com}\left(x_{1}, x_{2}\right.}, \ldots, x_{n}\right)\right]$ is semiprime. Then $x_{i} C x_{j}$ for every $i, j \in\{1,2, \ldots$..., n\}.

Proof: From symmetry and from Proposition 3 we infer $\operatorname{com}\left(x_{i}, x_{j}\right)=1$ for every $1 \leqslant i \neq j \leqslant n$. However, $\operatorname{com}\left(x_{i}, x_{j}\right)=1$ is equivalent to $\overline{\operatorname{com}}\left(x_{i}, x_{j}\right)=$
 III, 2.11]).

Theorem 5. Let F be a finitely generated orthomodular lattice, $F=$ $=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then F is distributive if and only if $\left(\operatorname{com}\left(x_{1}, \ldots, x_{n}\right)\right]$ is semiprime.

Proof: 1. If F is distributive, then every ideal of F is semiprime.
2. Suppose, conversely, that ($\left.\operatorname{com}\left(x_{1}, \ldots, x_{n}\right)\right]$ is semiprime. By Corollary $4, x_{i} C x_{j}$ for every $1 \leqslant i, j \leqslant n$, and the proof is completed by applying [1; Theorem II.4.5].

References

[1] L. BERAN: Orthomodular Lattices (Algebraic Approach), D. Reidel Publishing Co.; Dordrecht-Boston, Mass. 1984.
[2] G. BRUNS, G. KALMBACH: Some remarks on free orthomodular lattices. Proc. Univ. of Houston, Lattice Theory Conf. Houston, 1973, 397-403.
[3] Y. RAV: Prime separations and semiprime ideals in lattices under minimal set-theoretical assumptions. Prepublications - Université de Paris-Sud 86T11(1986).

Department of Algebra, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 9.4. 1987)

