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COMMENTATIONES MATHEMATICAE UNÎVERSITATÏS CAROLINAE 

28,4(1987) 

ON SATURATED ALMOST DISJOINT FAMILIES 

A. HA3NAL, I. JUHASZ and L. SOUKUP 

Abstract: An almost disjoint family A c txl^is called saturated if #-
very subset of X not covered by finitely many elements of A , contains some 
member of A . we show that in the model obtained by iteratively adding n>, 

dominating reals to V the following statement is true: On every infinite set 
there is a saturated almost disjoint family. The question whether this sta
tement is true in ZFC, cr even in L, remains open. k 

Key wrods: Almost disjoint family, saturated family. 

Classification: 03E05, 03E35 

Given a set X and a collection A of subsets of X we denote by 1^ the 

ideal on X generated by AvtX] , i . e . the members of 1^ are the sets that 

can be almost covered by finitely many elements of A . As is usual, we *oite 

I^-P(X)\I^. 

Definition. An almost disjoint family J 4 C £ X J ^ i s called saturated if A 

refines l£ , i.e. if for every set N <s l£ there is some A c i with AcH. 

The main result of this note may now be formulated as follows: 

TheoreM. If P is the partial order that adds iteratively &>., dominat-
P 

ing reals to V, then the following statement (#) holds in V * 

(#.) For every infinite set X there is a saturated almost disjoint fa

mily JfcelXJ^. 

The proof of this result is based on several lemmas to be given below, 

we shall use 0 to denote the standard notion of forcing that adds a dominat

ing real, i.e. a function r: Q ~ # & > such that r(n)>f(n) for ajll but finite

ly many n & o* whenever f #***<» n V, cf. 131. 

1. Let J U C X I ^ be almost disjoint and H«lJ| ,A,HaV. Then in 

VD, there is a set S^lHT^such that |SnA|--to for each A c « 4 ,i.e. AulS* 
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is almost disjoint. 

Proof. If there are only finitely many A « Jt with |Ar*H|=o> , say 

A ,...,A , then clearly every set S « I H \ ,0Q A,!
45*1 works, even in V. 

Otherwise let -{A :n*«*>f be distinct members of A such that |A n H | = 

= ca for all n « o> . Since the A s are almost disjoint, the sets 

Bn=AnaH \ L K A . : i < n $ 

are disjoint and infinite. Let us write 

for each n e ca. 

All this was done in V, but now we claim that the set 

S = < a n , r ( n ) : n * w * 6 [ H j C J 

defined in V is as required. Indeed, for each m £ c*> we clearly have 

|SnAm|^m < o> 1 m1 

since A n B =0 whenever n> m. If, on the other hand, A & A\ik :n e <^l then 

let us consider the function f . t ^ n v defined as follows: 

f
 д
(n)=max -Ci€<-^:a ** A î , 

that is well-defined because |AaB |< ca . But r dominates f«, hence we cle

arly have |AoS|< G > . -4 

LeMRa 2. (Cf. [61 or £7}, Lemma 5 . ) If W is an extension of V that con 

tains a new real then in W there is an almost disjoint family 33 C tc*!** 

which refines CaO^rt V-

Actually, we only need this result in the case where W=V . In order to 

make this note se l f -con ta ined we give a proof for this special case. First 

recall that D consists of pairs <p,f> where p is a strictly increasing map 

of a natural number into <u> and fcw<i) . <p,f>i<q,h> iff p.?q, f(n) £ 

Sh(n) for each natural number, n, and for each k«dom(p)\ dom(q) we have 

p(k)>h(k). The generic dominating function will be denoted by r. Next we 

fix a partition {A :n< coir of a> into <i>~many infinite pieces in V. 

We choose in V a bijection* g between f<.v3<a> and CJ . Then for each 

X A tcol^nV let us consider the set X** defined as follows: 

X* --Cmin(XnrMA ( X n n )):n< iol. 

we claim that 
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fc= {X* :X c tul^n V} is as required. 

A standard density argument shows that whenever X,A • Co>3 nV we have 

XAr,,A-i-0. Thus X* is an infinite subset of X. To show that fo is almost dis 
joint it is sufficient to observe that X n n ^ Y n n implies |X*r*Y*|6n for 

each X,Y e £c*>3a>nV. This completes the proof of the special case. 

Let us denote by D? the notion of forcing that adds, iteratively, two do 

minating reals to V. 

(Formally, D2=D*D, where 6 names in V the poset in V that adds a dominating 

r e a l . ) Lemmas 1 and 2 then easily imply the next result. 

D2 
Lemma 3. Let Ac, CXI*** be almost disjoint, then in V there exists a 

family S c t X ] " such that 

( i ) A u33 is almost disjoint, -

( i i ) 3J refines Vnlj^ . 

Proof. First, by Lemma 1, we choose in V for each HeVnlt a set 

S ^ C H T ^ for which AulSH\ is almost disjoint and put ¥ = { S H . H e Vr> l£{ . 

Let ^ be a maximal almost disjoint subcollection of *f . Then, for each 
D D2 

S 6 *€ we may apply Lemma 2 (with V instead of V, V instead of W and S in-

°2 <̂ > 
stead of c o ) to obtain in V an almost disjoint collection J5(S)c fS3 

refining VDn LSl^ . We claim that 

ft = U-C^(S):S6<el 

is as required. That ( i ) holds is obvious from the choice of ¥ and *if . 

Tb show ( i i ) , consider any HfeVrjI^. By the maximality of *€ there is 

some S €.*£ with |SnSH| = a_> , but then we have a set B s . B ( S ) with 

BcSr.SHcH, 

which was to be shown. 

We are now ready to give the proof of our main result. 

Proof of the theoren. We may clearly consider P=P^ as given by the fi

nite support iteration 

<?m >. <*, *<^,Q<£ : oo <o>1>, where V *.»- Q^ =D2 

for each oc< c*>.. 
p 

To prove that ( # ) holds in V it will clearly suffice to show it for 
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for X€V. Now, given such an X, we define almost disjoint families 

JLc tXl^with ̂ . C V by induction on «c % M^ as follows. 

We set A =0 and for every limit CK we put A^~ OiA* :/3sot? .Stan

dard tricks (cf. e.g. £53 p.281) concerning the choices made in the succes-

sor steps will insure that J^€ V * 

Now, if oc =&+1 and Jla has already been defined then we can apply 
P Fk*D 

Lemma 3 to get a collection fye. V*=V 2 such that A^u JS^c txl^is 

almost disjoint and 3lU refines V^AlJ| .We then put Jl^ = A j U #- * 
J* 

Since Lemma 3 involves choices (e.g. of the family tfctf), the tricks 

we referred to above consist in making these choices "uniform" by fixing a 

large enough cardinal IC and a well-ordering «< of V(K ) before we start our 

induction so that all the relevant sets we have to choose from, or rather na

med for them, already occur in V ( K ) , and then every choice we have to make 

will be the -»<-least one. 

If someone is not convinced by this argument, there is another way to 

get around this difficulty that makes use of the fact that each f^ is CCC. 

This makes sure that when <A^:(Secc} has been defined for a limit oc 6 o, 

with J-yi* V p and ̂ ((i )<&*, for each # 6 * . then there is a ̂ (oc)€<o, 

such that i,Jl& : fi% eft > m V , and in this case we may define 

Having completed the induction, we set A - UiA, : ec co>{ and claim 
that A Is as required, i.e. it refines 1\ • 

Thus let Hml+« and note first that there is a KftCH.}^ with Kcljas 

well. Indeed, if 

#e=<lA*4i|Ar»Hhfr>} 

is finite then K may be chosen as any element of tH\Uy€3**. Otherwise, let 

iA :n € &>?be distinct members of 36, clearly then 

K=UlAnAH:n€ o>? 

is as required. p 
Next, since P is CXX^ there is some e c e ^ i with K«V . Obviously, we 

? « * • 
have then K#V f l l * as well . But then, by our construction, there is some 

oc 
AcJ t j c A w i t h AcKcH, and our proof i s complete. 
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In C23 the following problem was raised: For what cardinals tc is there 

an almost disjoint family .AcCicl that refines t*2 l ? 

Since, trivially, Ci-cl c l j , we immediately get that every saturated 
family has this property, and in our V a saturated family exists for each 
IC . In C43 it was shown that an almost disjoint A C C K I ^ refining 

t%2 1 exists for JC=2** in ZFC and for every K < a) in L. In £l3 it 
1 

was shown that an almost disjoint A c £*.)**refining {Xe K:tip(X)S orf ex
ists for «=(2* l>)" ,"n, n €a>, in ZFC Several similar problems are also dis
cussed in til. On the other hand it is still unknown whether a saturated 
4.c t *3 w exists in ZFC. 

To conclude, we note that our notion of forcing P is CCC with \P\*2M, 
P hence V has the same cardinal arithmetic as V, moreover P is "mild" and thus 

will not effect large cardinals. Thus the problem of producing a model in 
which there is no saturated almost disjoint family on some set X looks very 
hard. 
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