## Commentationes Mathematicae Universitatis Carolinae

# Jaromír Duda <br> Identities for direct decomposability of congruences can be written in two variables 

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 4, 784
Persistent URL: http://dml.cz/dmlcz/106588

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

## IOENTIIIES FOR DIRECT OECOMPOSABILITY OF CONGRUENCES CAN BE WRITTEN IN TWO VARIABLES

Jarumir Duda (Kruftova 21, 61600 Brno, Czechoslovakia), received 2.10. 1987
A variety $V$ has directly decomposable congruences if every congruence relation on the product $A \times B$ of algebras $A, B \in V$ is uniquely determined by its protections unto $A$ and $B$.

Varieties with directly decumpusable cungruences form a Mal'cev class. the known identities contain at least three variables. We state that two variables are enough.

Theurem. For a variety $V$ the folluwing cunditions are equivalent:
(1) $V$ has directly decompusable congruences;
(2) there exist binary terms $r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{m}$ and (2+m)-ary terms $\sigma_{1}, \ldots, \sigma_{n}$ such that $V$ satisfies

```
\(x \neq d_{1}\left(y, y, r_{1}(x, y), \ldots, r_{m}(x, y)\right), l \measuredangle i \leqslant n\),
\(x=0_{1}\left(x, y, s_{1}(x, y), \ldots, s_{m}(x, y)\right)\),
\(y \times d_{1}\left(x, y, t_{1}(x, y), \ldots, t_{m}(x, y)\right)\),
\(d_{1}\left(y, x, s_{1}(x, y), \ldots, s_{m}(x, y)\right)=d_{1+1}\left(x, y, s_{1}(x, y), \ldots, s_{m}(x, y)\right), 1 \in i<n\),
\(d_{i}\left(y, x, t_{1}(x, y), \ldots, t_{m}(x, y)\right)=d_{i+1}\left(x, y, t_{1}(x, y), \ldots, t_{m}(x, y)\right), 1 \& i<n\),
\(y=d_{n}\left(y, x, s_{1}(x, y), \ldots, s_{m}(x, y)\right)\),
\(y=d_{n}\left(y, x, t_{1}(x, y), \ldots, t_{m}(x, y)\right)\).
```


## LANDESMAN-LAZER CONDITION FOR PERIODIC PROBLEMS WITH JUMPING NONLINEARITIES

P. Drábek (Katedra matematiky VŠSE, Nejedleho sady 14, 30614 Plzeñ, Czechosluvakia), received 13.10. 1987

Let us cunsider the periudic boundary value problem at resonance
(1) $x^{\prime \prime}(t)+m^{2} x(t)+g(t, x(t))=e(t), x(0)-x(2 \pi)=x^{\prime}(0)-x^{\prime}(2 \pi)=0$,
$m \geq$ is an integer, eal $1^{1}(0,2 \pi)$. We assume that $g$ is a Carathéodory's function satisfying the growth restriction

$$
|g(t, x)| \leqslant p(t)+c|x| ;
$$

for a.e. $t \in[0,2 \pi]$, oll $x \in R$ with $c>0$ and $p \in!^{1}(0,2 \pi)$. Mureover, assume that $g_{+}(t)=\lim _{x \rightarrow+\infty} \operatorname{lnf} g(t, x)$ and $g_{-}(t)=\lim _{x \rightarrow-\infty} \sup g(t, x)$. We impuse the following restriction on the growth of $g$. Let for a.e. $t \in[0,2 \pi]$,
$0<\lim _{x \rightarrow 4} x^{-i} g(t, x)<a-m^{2}$ and $0<\lim _{x} \sup _{-\infty} x^{-1} g(t, x)<b-m^{2}$
Mith strict inequality on the set of positive measure in $[0,2 \pi]$, where

$$
a^{-1 / 2}+b^{-1 / 2}=2(m+1)^{-1} .
$$

Theorem. Assume that $g$ satisfies all the assumptions stated above. Then the periodic problem (1) has at least one solution provided that

$$
\int_{0}^{2 \pi} e(t) v(t) d t<\int_{v>0} g_{+}(t) v(t) d t+\int_{v<0} g_{-}(t) v(t) d t
$$

for all va Span \{sin mt,cosmt\} m 0$\}$.
Ramark 1. Note that our assumptions laid on $g$ are satisfied also in the case when $g$ is "jumping" over eigenvalues different from $m^{2}$. In this direction

