Commentationes Mathematicae Universitatis Caroline

Miroslav Katětov
 On the differential and residual entropy

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 2, 319--349

Persistent URL: http://dml.cz/dmlcz/106643

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

29,2 (1988)

on the differential and residual entropy

Miroslav katětov

Abstract

We introduce and examine the residual entropy and the regularized residual entropy defined for metric spaces equipped with a finite (respectively, σ-finite) measure and satisfying certain conditions. It is shown that the differential entropy is equivalent, in a specified sense, to the regularized residual entropy.

Key words: Differential entropy, residual entropy, regularized residual entropy, regularized Rényi dimension.

Classification: $94 \mathrm{Al7}$

Let $P=\langle Q, \rho, \mu\rangle$ be a metric space endowed with a probability measure μ with respect. to which ρ is measurable. We define the residual entropy $\mathrm{rE}(\mathrm{P})$ as the "remainder" of the epsilon entropy $H_{8}(P)$, i.e., as the limit (provided it exists) of $H_{8}(P)-R D(P)|\log \varepsilon|$, where $R D(P)$ is a certain modification of the Renyi dimension of P. Based on $r E(P)$, the regularized residual entropy $\operatorname{RE}(P)$ and the residual entropy density $\nabla(P)$ are introduced for $P=\langle Q, \rho, \mu\rangle$ with $\boldsymbol{\mu} \boldsymbol{\sigma}$-finite. It is shown that $R E(P)$ and $\nabla(P)$ do exist for a fairly wide class of spaces. Furthermore, properties of $r E, R E$ and ∇ are examined in some detail.

The concept of the differential entropy, originally defined for probability measures on R^{n} possessing a density, is examined in a general setting, namely for the case of a pair (μ, ν) of $\boldsymbol{\sigma}$-finite measures with μ absolutely continuous with respect to ν. It is proved that the differential entropy and the regularized residual entropy RE are, in a sense, equivalent. Namely, if ν satisfies a separability condition, then the differential entropy of (μ, ν) can be expressed, in a specified sense, by means of RE; on the other hand, RE can be expressed, for a fairly wide class of spaces, by means of the differential entropy.

The article is organized as follows: Section 1 contains preliminaries. In Section 2, 6 W-spaces are introduced, some concepts previously defined
for W-spaces are extended to σW-spaces, and some simple facts are proved. In Section 3, the residual entropy rE is introduced and examined, and partitionregular spaces, on which the behavior of rE is fairly reasonable, are considered. In Section 4, the regularized residual entropy RE is examined. In Section 5 we introduce and examine the residual entropy density. Section 6 contains the theorems on the mutual reducibility of the differential and residual entropy.

1

1.1. The terminology and notation is that of [6] with slight modifications (see 2.5). Nevertheless, some definitions and conventions will be restated.
1.2. The symbols $N, R, \bar{R}, R_{+}, \bar{R}_{+}$have their usual meaning. The letters m and n (possibly with subscripts) always denote natural numbers. We put $0 / 0=$ $=0$ and, for any $b \in \bar{R}, 0 . b=0$. - We write \log instead of $\log _{2}$, and we put $\log 0=$ $=-\infty, L(x)=x \log x$ for all $x \in R_{+}$. For $x \in R$, we sometimes write exp x instead of 2^{x}.
1.3. A mapping $\mathrm{f}: \boldsymbol{X} \rightarrow \overline{\mathrm{R}}$, where \boldsymbol{X} is a class, is called a function or a functional; as a rule, the word "functional" is preferred if \mathscr{X} is a proper class or consists of functions or spaces, etc.
1.4. If a set A is given, then, for any $X \subset A, i_{X}$ is the indicator of X, i.e. $i_{X}(x)=1$ if $x \in X, i_{X}(x)=0$ if $x \in A \backslash X$.
1.5. If $Q \neq$ is a set and Ω is a $\boldsymbol{\sigma}$-algebra of subsets of Q, then a σ-additive function $\mu: \Omega \rightarrow \vec{R}_{+}$satisfying $\mu(\varnothing)=0$ is called a measure on Q (in [3] such functions were called \bar{R}-measures, whereas "measure" meant a finite measure). A measure on Q is called finite or bounded if $\mu Q<\infty, \boldsymbol{\sigma}$-finite or $\boldsymbol{\sigma}$-bounded if there are $A_{n} \in \operatorname{dom} \mu$ such that $U\left(A_{n}: n \in N\left(=Q\right.\right.$ and $\mu A_{n}<\infty$ for all n. - The completion of a measure μ is denoted by $\bar{\mu}$ or $[\mu]$. If μ and ν are measures, then $\mu \leqslant \nu$ means that dom $\mu=\operatorname{dom} \nu$ and $\mu X \leqslant \nu X$ for all $X \in \operatorname{dom} \mu, \mu \in \nu$ means that dom $\mu \subset \operatorname{dom} \nu$ and $\nu X=\mu X$ whenever $X \in \operatorname{dom} \mu$.
1.6. Notation (cf. [6], 1.6). A) If $Q \neq \emptyset$ is a set, then $\mathcal{F}^{\prime}(Q), \mathcal{M}(Q)$ and $\mathcal{H}_{\mathrm{r} f}(Q)$ will denote, respectively, the set of all $\mathrm{f}: Q \rightarrow \bar{R}$, the set of all measures on Q and its subset consisting of $\boldsymbol{\sigma}$-finite measures. - B) If $\mu \in \mu(Q)$ and $f, g \in \mathcal{F}(Q)$, we write: $f=g(\bmod \mu)$ iff there is a set $Z \in$ dom μ such that $\mu Z=0$ and $f(x)=g(x)$ whenever $x \in Q \backslash Z$. - C) If $\mu \in \mu(Q)$ and $f \in$ © $\mathcal{F}(Q)$ is $\bar{\mu}$-measurable, we put $[f]_{\mu}=\{g \in \mathcal{F}(Q): g=f(\bmod \mu)\}$ and call $[f]_{\mu}$ a function $(\bmod \mu)$. We put $\mathcal{F}[\mu]=\left\{[f]_{\mu}: f \in \mathcal{F}(Q)\right.$ is $\bar{\mu}$-measurable $\}$. D) If $\mu \in \mathcal{M}(Q), F, G \in \mathcal{F}[\mu]$, then we put $F \& G$ (respectively, $F<G$) iff, for
some $f \in F, g \in G, f(x) \& g(x)$ (respectively, $f(x)<g(x)$) for all $x \in Q$ (thus, e.g., $-\infty<[f]_{\mu}<\infty$ means that some $g=f(\bmod \mu)$ is finite). - E) If $\mu \in \mathcal{H}(Q)$ and $F \in \mathcal{F}[\mu]$, then $\sup F$ denotes the least $b \in \bar{R}$ such that $F \leqslant b$, and similarly for $\inf F$. - F) If $\mu \in \mathcal{M}(Q), F=[f]_{\mu} \in 3[\mu]$, we put $\left.\int F d \mu=\int f d \mu,-G\right)$ If $\mu \in \mu(Q)$ and $f: Q \rightarrow T$ is a mapping, then $\mu \bullet f^{-1}$ denotes the measure $Y \mapsto \mu\left(f^{-1} Y\right)$.
1.7. We use the usual convention concerning expressions of the form $\xi \mapsto F(\xi)$. If a term $F(\xi)$ contains a variable ξ, then the expression $\xi \longmapsto F(\xi)$ denotes the mapping defined as follows. Let x be an element (from a given class explicitly described or clear from the context). If the term $F(x)$ denotes exactly one element y, we put $f(x)=y$; if not, then $f(x)$ is not defined. Thus, e.g., if $\mu \in \mathcal{M}(Q)$, then the expression $f \longmapsto \int f d \mu$, where $\mathrm{f} \in \mathcal{F}(Q)$, denotes the functional φ such that (1) dom $\varphi=\left\{\mathrm{f} \in \mathcal{F}(Q): \int \mathrm{f} d \mu\right.$. exists \}, (2) if $\mathrm{f} \in \operatorname{dom} \boldsymbol{\varphi}$, then $\boldsymbol{\varphi}(\mathrm{f})=\int \mathrm{f} d \mu$.
1.8. Let $\mu \in \mu(Q)$. If $F=[f]_{\mu} \in \mathcal{F}[\mu], F \geq 0$, then the function $x \mapsto \int_{X} f d \mu$, defined on dom $\bar{\mu}$, is a measure. Its restriction to dom μ will be denoted by $f . \mu$ or $F . \mu$. If $X \in \operatorname{dom} \bar{\mu}$, we put $X, \mu=i_{X}, \mu$. - Observe that if $\mu \in \mu_{f f}(Q)$ and $0 \leqslant F<\infty$, then $F . \mu \in \mathcal{M}_{6 f}(Q)$.
1.9. If Q is a set, $K \neq \emptyset$ is a countable set, $X_{k}, k \in K$, are subsets of $Q, \cup X_{k}=Q$ and $X_{i} \cap X_{j}=\emptyset$ if $i, j \in K$, $i \not{ }_{j} j$, then ($X_{k}: k \in K$) will be called a partition of the set Q (a μ-measurable partition if $Q \subset T, \mu$ is a measure on T and all X_{k} are in dom μ). - Observe that "partition" has a'different meaning in the expressions "partition of a 6W-space" (see 2.5) and " ε-partition" (see 2.10).
1.10. Conventions and notation. Let to be σ-additive function, possibly also assuming the value $-\infty$ or ∞, on a set $Q \neq \emptyset$ (this means that dom $\boldsymbol{\tau}$ is a σ-algebra \mathcal{A} of subsets of $Q, \tau(\emptyset)=0$ and $\tau(A)=\Sigma\left(\tau\left(A_{n}\right): n \in N\right)$ whenever $\left(A_{n}: n \in N\right)$ is a partition of $A \in \Omega$ and all A_{n} are in $\boldsymbol{\Omega}$). Then (1) a set $X \subset Q$ will be called τ-null if there is a set $Y \in \operatorname{dom} \tau$ such that $Y \supset X$ and $\tau Z=0$ whenever $Z \in d o m \tau_{n}, Z \in Y$, (2) if $X \in Q$ and, for some $Y \in$ dom τ, the symmetric difference $X \Delta Y$ is τ-null, we put $\boldsymbol{\tau}(X)=\tau(Y)$. The function $\boldsymbol{\tau}$, also denoted by $[\tau]$, is $\boldsymbol{\sigma}$-additive; it will be called the completion of $\mathfrak{\leftarrow}$.
1.11. A σ-additive function τ on Q is called bounded (or finite) if $\{\tau X: X \in \operatorname{dom} \tau\}$ is bounded; σ-bounded (or σ-finite) whenever there is a partition ($A_{n}: \cap \in N$) of Q such that, for any $n \in N, A_{n} \in \operatorname{dom} \tau$ and $\{\leftarrow X: X \in$ © dom $\left.\tau, X \in A_{n}\right\}$ is bounded.
1.12. Definition. There are various slightly differing definitions of absolute continuity (of measures, etc.). We choose a fairly broad one: let μ be a σ-finite measure on Q and let τ be a σ-bounded σ-additive function on Q. Then τ is said to be absolutely continuous with respect to μ if (1) every μ-null set is τ-null, (2) dom $\bar{\mu} \subset$ dom $\vec{\tau}$, and (3) there is a τ null set A such that if $X \in \operatorname{dom} \boldsymbol{Z}$, then $X=Y \cup Z$, where $Y \in \operatorname{dom} \overrightarrow{\boldsymbol{u}}, Z \in A$.
1.13. Fact and notation. If $\boldsymbol{\mu} \in \mathcal{M}_{\boldsymbol{G} f}(\mathbb{Q}), \mathrm{f} \in \boldsymbol{\mathcal { F }}^{(Q)}$ is $\overrightarrow{\boldsymbol{\mu}}$-measurable, $\mathrm{f}(\mathbb{Q}) \boldsymbol{c}$ $\subset R$ and $\int f d \mu$ exists, then $X \mapsto \int_{X} f d \mu$, defined on dom $\bar{\mu}$, is an absolutely continuous (with respect to $\boldsymbol{\mu}$) $\boldsymbol{\sigma}$-bounded $\boldsymbol{\sigma}$-additive function. Its restriction to dom μ will be denoted by $f . \mu$ or $F . \mu$ where $F=[f]_{\mu}$.
1.14. We shall need the Radon-Nikodym theorem in the following form.

Theoren. Let $\boldsymbol{\mu}$ be a $\boldsymbol{\sigma}$-finite measure on Q and let τ be a $\boldsymbol{\sigma}$-bounded $\boldsymbol{\sigma}$-additive function on Q. If $\boldsymbol{\tau}$ is absolutely continuous with respect to μ, then there exists exactly one function $(\bmod \mu) F$ such that $\mathcal{Z} X=\int_{X} F d \mu$ for all $X \in \operatorname{dom} \vec{\mu}$.
1.15. Notation. The function $(\bmod \mu)$ F from 1.14 will be denoted by $d \tau / d \mu$ or by $D[\tau, \mu]$.
1.16. Fact and notation. Let μ be a measure on Q. If $\emptyset \neq T \subset Q$, then the function $X \mapsto \inf (\mu Y: Y \in \operatorname{dom} \mu, Y \cap T=X)$ defined on $\{Y \cap T: Y \in \operatorname{dom} \mu\}$ is a measure on T. It will be denoted by $\mu P T$ provided there is no danger of confusion. - We put $\mu_{e}(\emptyset)=\emptyset$ and $\mu_{e}(T)=(\mu \uparrow T)(T)$ if $\emptyset \neq T \subset Q$. - Cf. [3], 7.4 and 7.5.
1.17. Fact. If μ is a measure on Q and $\emptyset \neq T \subset Q$, then $[\mu \Gamma T]=\vec{\mu} \Gamma T$. If, for $i=1,2, \mu_{i}$ is a measure on Q_{i} and $\emptyset \neq T_{i} \subset Q_{i}$, then $\nu=\mu P T, \vec{\nu}=\vec{\mu} P T$, where $T=T_{1} \times T_{2}, \nu=\nu_{1} \times \nu_{2}, \nu_{i}=\mu_{i} \upharpoonright T, \mu=\mu_{1} \times \mu_{2}$. Cf. [31, 7.6.
1.18. Notation. The Lebesgue measure on $R^{n}, n=1,2, \ldots$, will be denoted by λ_{n} or simply $\boldsymbol{\lambda}$. If $Q \subset R^{n}, Q \neq \emptyset$, we of ten write $\boldsymbol{\lambda}_{n}$ or $\boldsymbol{\lambda}$ instead of $\lambda_{n} \wedge Q$ provided there is no danger of confusion.
1.19. Conventions and notation. If $\langle Q, \rho\rangle$ is a semimetric space (i.e. ρ is a real-valued function on $Q \times Q$ satisfying $\rho(x, y)=\rho(y, x) \geq 0, \rho(x, x)=0)$ and $T \in Q$, then $\langle T, \rho\rangle$ will denote the set T endowed with the semimetric
$\rho P(T \times T)$. The symbol $R^{n}, n=1,2, \ldots$, will also denote the space $\left\langle R^{n}, \rho\right\rangle$, where ρ is the $\boldsymbol{\ell}_{\infty}$-metric, i.e., $\rho\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\max \left(\left|x_{i}-y_{i}\right|\right)$. The \boldsymbol{l}_{∞}-metric on a set $Q \subset R^{n}$ will be denoted by ρ (unless explicitly stated that ρ is used in a different sense). If $P_{i}=\left\langle Q_{i}, \rho_{i}\right\rangle$ are semimetric spaces, then $P_{1} \times P_{2}$ denotes the space $\left\langle Q_{1} \times Q_{2}, \rho\right\rangle$, where $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(\rho_{1}\left(x_{1}, y_{1}\right)\right.$, $\rho_{2}\left(x_{2}, y_{2}\right)$)
1.20. Notation. If S is a set endowed with a topology (in particular, if S is a metric space), then $\beta(S)$ will denote the collection of all Borel subsets of 5 .
1.21. Notation. If $\xi=\left(x_{k}: k \in K\right)$ is a non-void indexed set of nonnegative reals and $\Sigma x_{k}<\infty$, we put $H(\xi)=H\left(x_{k}: k \in K\right)=\Sigma\left(L x_{k}: k \in K\right)-L\left(\Sigma\left(x_{k}: k \in K\right)\right)$. If μ is a finite measure on a countable set Q and $\{x\} \in \operatorname{dom} \mu$ for all $x \in Q$, we put $H(\mu)=H(\mu\{q\}: q \in Q)$.
1.22. The following simple facts concerning the functional H will of ten be used.
1.22.1. If $x_{k} \geq 0, k=1, \ldots, n$, then $H\left(x_{1}, \ldots, x_{n}\right) \leq\left(\sum x_{k}\right) \cdot \log n$.
1.22.2. Let $x_{k j} \geq 0$ for $k \in K, j \in J_{k}$ (where K and J_{k} are non-void sets). Let $\Sigma\left(x_{k j}: k \in K, j \in J_{k}\right)<\infty$. Then $H\left(x_{k j}: k \in K, j \in J_{k}\right)=H\left(\sum\left(x_{k j}: j \in J_{k}\right): k \in K\right)+$ $+\sum\left(H\left(x_{k j}: j \in J_{k}\right): k \in K\right)$.
1.22.3. If $K \neq \emptyset, x_{k} \geq 0$ for $k \in K$ and $0<\sum x_{k}<\infty$, then $H\left(x_{k}: k \in K\right) \geq$ $\geq-L\left(\Sigma x_{k}\right)-\left(\Sigma x_{k}\right)$. $\log \sup \left(x_{k}: k \in K\right)$; in particular, if $\Sigma x_{k}=1$, then $H\left(x_{k}: k \in\right.$ $\in K) \geq-\log \sup \left(x_{k}: k \in K\right)$.
1.22.4. Let K be a non-void set. Let x_{k}, y_{k}, where $k \in K$, be non-negative reals. Let $\sum y_{k}=\sum x_{k}<\infty$. Let $j \in J c K$ and let $x_{j} \geq x_{k}$ for all $k \in K$. Let $y_{k}=$ $=x_{k}$ for $k \in K \backslash J, y_{j} \geq x_{j}, y_{k} \leqslant x_{k}$ for $k \in J, k \neq j$. Then $H\left(y_{k}: k \in K\right) \leqslant H\left(x_{k}: k \in K\right)$.

Recall that W-spaces (also called semimetric spaces endowed with a fini-. te measure) are defined as follows: $P=\langle Q, \rho, \mu\rangle$ is a W-space if $Q \neq \emptyset$ is a set, μ is a finite measure on Q and ρ is a $[\mu \times \mu]$-measurable semimetric on Q. - In the present article, we will also consider σW-spaces, obtained by replacing "finite" by " 6 -finite" in the above definition. The reason for introducing this broader class of spaces lies in the following facts: (1) the regularized residual entropy (see 4.2) can be defined in a very natural way for σW-spaces, (2) the theorem (see 6.9) on expressing the differential entropy (see 6.1) by means of the regularized residual entropy is valid in full extent only if σW-spaces are taken into consideration, (3) such natural objects as $\left\langle R^{n}, \rho, \lambda_{n}\right\rangle$ are σW-spaces, not W-spaces.
2.1. Definition. Let Q be a non-void set. Let μ be a σ-finite measure on Q and let ρ be a $[\mu \times \mu]$-measurable semimetric on Q. Then $P=\langle Q, \rho, \mu\rangle$ will be called 6 W -space or a semimetric space endowed with a $\boldsymbol{\sigma}$-finite measure. If, in addition, $\mu Q<\infty$, then P is called W-space (or a semimetric space endowed with a finite measure).
2.2. Notation and conventions. If $P=\langle Q, \rho, \mu\rangle$ is a σW-space, we put $w P=\mu Q$. If $W P=0$, we call P a null space. - The class of all σW-spaces and that of all W-spaces will be denoted, respectively, by 6 200 and 720 . A $6 W$-space $P=\langle Q, \rho, \mu\rangle$ will be called metric if ρ is a metric (cf. [4], 1.5). If, in addition, every Borel set is in dom $\vec{\mu}$, then P will be called weakly Borel.
2.3. Let $P=\langle Q, \varphi, \mu\rangle$ be a $6 W$-space. If $S=\langle Q, \rho, \nu\rangle$ and $\nu \leftarrow \mu$, then we call S a subspace of P (a pure subspace if $\nu=x . \mu$ where $X \in d o m ~ \sqrt{\mu}$) and write $S \leqslant P$. If $F=[f]_{\mu} \in \mathscr{T}[\mu]$ and $0 \leqslant F<\infty$, then $\langle Q, \rho, f . \mu\rangle$ is a σW space, which will be denoted by F.P or f.P. If $X \in \operatorname{dom} \bar{\mu}$, we put X.P=i X.P. Cf. [4], 1.6 and 1.7.
2.4. Fact. Let $P=\langle Q, \rho, \mu\rangle \in \sigma \operatorname{mQ}$. Then $S=\langle Q, \rho, \nu\rangle \leq P$ iff $S=f . P$ for some $\bar{\mu}$-measurable $f \in \mathcal{F}^{(}(Q)$ satisfying $0 \leqslant[f]_{\mu} \leqslant 1$.
2.5. If $K \neq \emptyset$ is a countable set, $P_{k}, k \in K$, and P are σW-spaces and $\Sigma\left(P_{k}: k \in K\right)=P$ (i.e., $P_{k}=\left\langle Q, \rho, \mu_{k}\right\rangle, P=\langle Q, \rho, \mu\rangle$ and $\mu=\Sigma \mu_{k}$), then we will say that ($P_{k}: K \in K$) is a partition of P (a pure partition if all P_{k} are pure subspaces of P). Cf., e.g., [6],1.12. - Remark. In [2] - [5], the term " ω-partition" was used for what is now called partition, whereas "partition" meant a finite partition.
2.6. Fact. If $P \in \sigma$ Mg, $\left(P_{k}: k \in K\right)$ is a partition of P and $S S P$, then there are $S_{k} \leqslant P_{k}$ such that $\sum\left(S_{k}: k \in K\right)=5$. - Cf. [6], 1.13.

Proof. Let $S=s . P, P_{k}=f_{k} \cdot P$ (see 1.14). Put $g_{k}=s f_{k}, S_{k}=g_{k} \cdot P \in P_{k}$. Clearly, $\Sigma S_{k}=S$.
2.7. Let $u=\left(U_{k}: k \in k\right)$ and $\quad V=\left(v_{j}: j \in J\right)$ be partitions of a W-space P. If there exists a disjoint collection ($J_{k}: k \in K$) such that $\cup J_{k}=J$ and, for each $k \in K, \mathcal{Z}\left(v_{j}: j \in J_{k}\right)=U_{k}$, then \boldsymbol{V} is said to refine \boldsymbol{U}.-Cf., e.g., [6], 1.14.
2.8. Fact. If \boldsymbol{U} and \boldsymbol{v} are partitions of a $\boldsymbol{\sigma} W$-space P , then there exists a partition of P refining both \boldsymbol{u} and \boldsymbol{V}.-Cf. [2], 1.36.

Proof. Let $\boldsymbol{u}=\left(U_{k}: k \in k\right), \boldsymbol{v}=\left(v_{j}: j \in J\right)$. By 1.14 , there are f_{k} and g_{j} such that $U_{k}=f_{k} \cdot P$, Put $h_{k j}=f_{k} g_{j}, \mathcal{J}=\left(h_{k j} \cdot P: k \in k, j \& J\right)$. Then \mathcal{J} is a partition of P refining both u and v.
2.9. Let $P=\langle Q, \rho, \mu\rangle \in \sigma$ VIg and let $\leqslant\rangle 0$. We put $\& * P=\langle Q, \& * \rho, \mu\rangle_{\lambda}$ where $(\varepsilon * \rho)(x, y)=0$ if $\rho(x, y) \in \varepsilon$, and $(\leqslant * \rho)(x, y)=1$ if $\rho(x, y)>\varepsilon$. Cf. [6], 1.17.
2.10. Let $P=\langle Q, \rho, \mu\rangle \in \sigma$ mg, $\varepsilon\rangle 0$. Then $\left(x_{k}: k \in K\right)$, where $K \nLeftarrow \downarrow$ is
countable, $X_{k} \in \operatorname{dom} \bar{\mu}$, will be called an ε-covering of P if diam $X_{k} \leqslant \varepsilon$ for all $k \in K$ and $\bar{\mu}\left(Q \backslash \cup X_{k}\right)=0$. If, in addition, $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$, then $\left(X_{k}: k \in\right.$ e K) will be called a disjoint ε-covering of P (an ε-partition if there is no danger of confusion with the partition in the sense of 1.9 or 2.5). - Cf. [4], 1.19.
2.11. If $P=\langle Q, \rho, \mu\rangle$ is a W-space, then the infimum of all $H\left(\vec{\mu} X_{k}: k \in K\right)$, where ($X_{k}: k \in K$) is an ε-partition of P, will be denoted by $H_{\varepsilon}(P)$; if there is no ε-partition of P, we put $H_{\varepsilon}(P)=\infty$. - Cf. [4], 1.19.

Remark. The functional $H_{s}(P)$, often called the epsilon entropy, has been examined in [7] (to be precise, the $H_{\varepsilon}(P)$ defined above coincides with the functional in [7] up to a multiplicative constant).
2.12. A functional $\boldsymbol{\varphi}:$ na才 $\rightarrow \bar{R}_{+}$satisfying the conditions stated in [6], 1.19 is called a Shannon functional (in the broad sense). - The conditions just mentioned include the fundamental equality $\varphi\langle Q, 1, \mu\rangle=H(\mu)$ for any finite $\langle Q, 1, \mu\rangle \in$ 220 . Due to this equality, Shannon functionals (b.s.) have been called extended Shannon semientropies (in the broad sense) in [21,13] and [5].
2.13. In this article, we consider, in fact, only one Shannon functional, namely C_{E}, also denoted by E; for its definition see, e.g., L41, 1.13. - The letter E will be sometimes used in a different sense, namely to denote the functional $\left(P_{1}, P_{2}\right) \mapsto d\left(P_{1}+P_{2}\right)$ defined on \mathcal{C}, the class of all $\left(P_{1}, P_{2}\right) \in$ - $N O \times 20$ such that $P_{1} \leqslant P, P_{2} \leqslant P$ for some $P \in M O$. Recall that if $P=$ $=\langle Q, \rho, \mu\rangle \in \Omega 2 \eta$, then $d(P)$ denotes the infimum of all $b \in \bar{R}_{+}$such that $[\mu \times \mu]\{(x, y) \in Q \times Q: \rho(x, y)>b\}=0$.
2.14. We restate two important properties of E. - A) If (S, T) is a partition of $P \in$ OQ , then $E(P) \leqslant E(S)+E(T)+H(W S, W T) E(S, T)$. If $S \leq P \in$ RRA, then $E(S) \notin E(P)$. - See [4], 2.3.
2.15. Proposition. If $P=\langle Q, \rho, \mu\rangle$ is a metric W-space, then either (1) $E(\varepsilon * P)=H_{\varepsilon}(P)$ for all $\varepsilon>0$, or (2) $E(\varepsilon * P)=H_{\varepsilon}(P)=\infty$ for all sufficiently small $\varepsilon>0$. - See [4], 2.18.
2.16. If μ is a σ-finite measure on Q and $\emptyset \neq T \subset Q$, then T is called thick in $\langle Q, \mu\rangle$ if there are $X_{n} \in \operatorname{dom} \mu, n \in N$, such that $\mu X_{n}<\infty, U X_{n}=$ $=Q$ and $(\mu+T)\left(X_{n} \cap T\right)=\mu X_{n}$ for all $n \in N$.
2.17. Fact. Let T be thick in $\langle Q, \mu\rangle$. If $X \in \operatorname{dom} \mu, \mu X\rangle 0$, then $\operatorname{Tn} X$ is thick in $\langle X, \nu\rangle$, where ν is the restriction of μ to $\{Y \in \operatorname{dom} \mu: Y \in X\}$.
2.18. Fact and notation. Let $P=\langle Q, \rho, \mu\rangle$ be a σW-space. Let $\emptyset \neq T c Q$.

Then $\langle T, \rho, \mu \upharpoonright T\rangle$ is a σW-space, which will be denoted by PrT.
This follows easily from 1.17.
2.19. Lemma. Let $P=\langle Q, \rho, \mu\rangle$ be a weakly Borel metric W-space. Let T be thick in $\langle Q, \mu\rangle$. Then, for any $\delta\rangle 0, H_{\delta}(P \Gamma T)=H_{\delta}(P)$.

Proof. We can assume $\mu Q>0$. Put $\nu=\mu \mathrm{T}$. Let $\delta>0$. Put $a=H_{\delta}(P), b=$ $=H_{\delta}(P \uparrow T)$. If ($X_{n}: \cap \in N$) is a δ-covering of P, then, clearly, ($X_{n} \cap T: \cap \in N$) is a δ-covering of PPT; hence $b \leqslant a$. Suppose $b<a$ and let $b<c<a$. Then there is a δ-partition ($Y_{n}: n \in N$) of PMT such that $H\left(\bar{\nu} Y_{n}: n \in N\right)<c$. Clearly, there are sets $U_{n} \in \operatorname{dom} \bar{\mu}$ such that $Y_{n}=U_{n} \cap T, \bar{\mu} U_{n}=\bar{\nu} Y_{n}$. Put $X_{n}=U_{n} \cap Y_{n}$. Since P is weakly Borel, $X_{n} \in \operatorname{dom} \bar{\mu}$. It is easy to see that $\bar{\mu} X_{n}=\bar{\nu} Y_{n},\left(X_{n}: n \in N\right)$ is a δ-covering of P and $H\left(\bar{\mu} X_{n}: n \in N\right)=H\left(\bar{\nu} Y_{n}: n \in N\right)<c$. This is a contradiction.
2.20. In [1],[9] and [10], the dimension and the upper (lower) dimension have been introduced for random variables with values in R^{n}. For W-spaces, dimensions of various kind have been introduced in [5] and [6]; they are, in fact, generalizations of concepts defined in [1],[9] and [10]. We are going to restate (see 2.21 and 2.24) some of the pertinent definitions and some simple facts. Then we introduce (2.26) the regularized Rényi dimension $\operatorname{RD}(P)$.
2.21. Let φ be a Shannon functional and let $P \in$ no . Then φ-uw (P) (respectively, $\varphi-\ell w(P)$) denotes the upper (lower) limit of $\varphi\left(\delta_{*} P\right) /$ $/\left|\log \delta^{\prime}\right|$ for $\delta \rightarrow 0$. We put $\varphi-u d(P)=\varphi-u w(P) / w P, \varphi-\boldsymbol{\ell} d(P)=\varphi-\ell w(P) / w P$. If $\varphi \boldsymbol{\varphi}-\mathrm{ud}(P)=\varphi-\boldsymbol{\ell d}(P)$, we put $\varphi-\operatorname{Rw}(P)=\varphi-u w(P), \varphi-\operatorname{Rd}(P)=\varphi-\operatorname{Rw}(P) / w P$. We call $\varphi-\operatorname{Rd}(P)$ and $\varphi-\operatorname{Rw}(P)$ the (exact) Rényi φ-dimension, and the φ-weight of P, respectively. If $\varphi=E$, the prefix " φ " is, as a rule, omitted. - See [5], 2.1.
2.22. Fact. If (S, T) is a partition of a W-space, then $\ell w(S)+\ell w(T) \leqslant$ $\leqslant \ell w(P) \leqslant \ell w(S)+u w(T) \leqslant u w(P) \leqslant u w(S)+u w(T)$. - See [5], 3.1.
2.23. Lemma. Let P be a W-space and let $b \in R_{+}$. If $u d(S) \leqslant b$ for all pure $S \leqslant P$, then $\operatorname{ud}(T) \leqslant b$ for all $T \leqslant P$.

Proof. Let $T=f . P$. Let $m \in N, m>1$. Put $V_{k}=\{x \in Q:(k-1) / m<f(x) \leq k / m\}$ for $k=0, \ldots, m, S_{k}=(k / m) \cdot V_{k} \cdot P, S=\Sigma\left(S_{k}: k=0, \ldots, m\right)$. Then $\operatorname{ud}\left(V_{k} \cdot P\right) \leqslant b$, hence $\operatorname{ud}\left(S_{k}\right) \leq$ $\leqslant b$ and therefore, by 2.2 , $u w(S) \leqslant b . w S$. Clearly, $T \leqslant S, w(S-T) \leqslant m^{-1}$.wP. Hence $u d(T) \leqslant u w(T) / w T \leqslant b \cdot w S /\left(w S-m^{-1} \cdot w P\right)$. Since $m=2,3, \ldots$, has been arbitrary, we have shown that $u d(T) \leqslant b$.
2.24. Let φ be a Shannon functional and let P be a W-space. Then φ - UW (P) (respectively, $\varphi-L W(P)$) denotes the infimum of all $b \in \bar{R}_{+}$for which there is a partition U of P such that if $\left(V_{k}: k \in K\right)$ refines U, then $\Sigma\left(\varphi-u w\left(V_{k}\right)\right.$:
$: k \bullet K) \leqslant b$ (respectively, $\boldsymbol{\Sigma}\left(\boldsymbol{\varphi}-\boldsymbol{\ell} w\left(V_{k}\right): k \in K\right) \leqslant b$). We put $\boldsymbol{\varphi}-U D(P)=\boldsymbol{\varphi}-$ $-U W(P) / W P, \varphi-L D(P)=\varphi-L W(P) / W P)$. - If $\boldsymbol{\varphi}=E$, then the prefix " φ " is, as a rule, omitted. - See [6], 3.1.
2.25. Proposition. Let φ be a Shannon functional and let $P=\langle Q, \rho, \mu\rangle$ be a W-space. Then (1) if ($P_{k}: K \in K$) is a partition of P, then $\varphi-U W(P)=$ $=\Sigma\left(\varphi-U W\left(P_{k}\right): k \in K\right), \varphi-L W(P)=\Sigma\left(\varphi-L W\left(P_{k}\right): k \in K\right)$, (2) the functions $X \mapsto$ $\mapsto \varphi-U W(X . P)$ and $X \longmapsto \varphi-L W(X . P)$ are measures. - See [6], 3.2.
2.26. Definition. Let φ be a Shannon functional. Let P be a W-space. If $\boldsymbol{\varphi}-U D(P)=\boldsymbol{\varphi}-L D(P)$, we put $\boldsymbol{\varphi}-R D(P)=\boldsymbol{\varphi}-U D(P), \boldsymbol{\varphi}-R W(P)=\boldsymbol{\varphi}-U W(P)$. We will call $\boldsymbol{\varphi}-\mathrm{RD}(\mathrm{P})$ (respectively, $\boldsymbol{\varphi}-\mathrm{RW}(\mathrm{P})$) the regularized (exact) Rényi $\boldsymbol{\varphi}$-dimension (respectively, the $\boldsymbol{\varphi}$-weight) of P. If $\boldsymbol{\varphi}-U D(P) \neq \varphi-L D(P)$, we will say that $\varphi-R D(P)$ does not exist. - If $\varphi=E$ (which is the case considered in this article), we omit the prefix " φ ".

Remark. The properties of RD will not be examined in this article. We state only some simple facts to be used in the sequel.
2.27. Fact. Let (S, T) be a partition of a W-space P. If both $R W(S)$ and $R W(T)$ exist, then $R W(P)=R W(S)+R W(T)$.

This is an immediate consequence of 2.25 .
2.28. Proposition. Let P be a W-space. If $R D(P)$ exists and is finite, then $R D(S)<\infty$ for all $S \leqslant P$.

Proof. By 2.25, $U W(T) \leqslant U W(P)<\infty$ for all $T \leqslant P$. For any $T \leqslant P$, put $\sigma^{\prime}(T)=$ $=U W(T)-L W(T)$. By 2.25, $\delta^{\prime}(S)+\delta^{\prime}(P-S)=\delta^{\prime}(P)=0$ for all $S \leqslant P$. This implies $\delta(S)=$ $=0$, which proves the proposition.
2.29. Lemma. Let $P=\langle Q, \rho, \mu\rangle$ be a W-space. Let $\operatorname{Rd}(P)=b<\infty$ and let $u d(T) \leqslant b$ for all pure $T \leqslant P$. Then $R D(S)=R d(S)=b$ for all non-null $S \& P$.

Proof. By 2.23 , ud(S) $\leqslant b$, hence $u w(S) \leqslant b . w S$ for all S $\leqslant P$. Suppose $u w\left(S_{0}\right)<b . W S_{o}$ for some $S_{o} \leqslant P$. Then, by 2.22 , uw $(P) \leqslant u w\left(S_{0}\right)+u w\left(P-S_{0}\right)<b . w P$, which contradicts $\operatorname{Rd}(P)=b$. Hence $\operatorname{Rd}(S)=b$ for all non-null $S \leqslant P$. Consequent$l y, R w(S)=b \cdot w S, R W(S)=b . w S$ for all $S \leqslant P$.
2.30. Proposition. Let $P=\left\langle R^{n}, \rho, \mu\right\rangle$ be a W-space and let μ be absolutely continuous with respect to the Lebesgue measure. Let $w P>0$. Then (1) $R D(P)=n$; (2) $R d(P)=n$ if $H\left(\vec{\mu} A_{z}: Z \in Z^{n}\right)<\infty$, where Z is the set of all integers, $A_{z}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: z_{i} \leqslant x_{i}<z_{i}+1\right.$ for $\left.i=1, \ldots, n\right\}$, (3) $\operatorname{Rd}(P)=\infty$ if $H\left(\vec{\mu}^{\prime} A_{z}: z \in Z^{n}\right)=\infty$.

Proof. For (2) and (3), see [5], 2.9. To prove (1), consider any partition of P of the form ($X_{n} . P: n \in N$) with X_{n} bounded.
3.1. Definition. Let φ be a Shannon functional (b.s.) and let P be a W-space. Assume that $\varphi-R D(P)$ exists and is finite. Then the limit (provided it exists) of $\varphi(\delta * P)-(\varphi-R W(P))|\log \delta|$ for $\delta \rightarrow 0$ will be denoted by $r^{\prime} \varphi(P)$. We put $\mathrm{r} \varphi(P)=r^{\prime} \varphi(P)+L(w P)$ and call r $\varphi(P)$ the residual φ-entropy of P; if $\varphi=E$, then the prefix " φ " in " φ-entropy" will be, as a rule, omitted.
3.2. Remarks. A) In this article, only the case $\varphi=E$ is examined. - B) Clearly, if $P \in \mathscr{O}$, $W P=1$, then $r^{\prime} \varphi(P)$ and $r \varphi(P)$ coincide (provided they exist). - C) The functional $r^{\prime} \varphi$ seems to be more natural than $\mathrm{r} \varphi$. On the other hand, (1) under certain fairly mild assumptions (see 3.9), $X \mapsto r E(X . P)$ is additive whereas $r^{\prime} E$ satisfies the equality $\left.r^{\prime} E(X \cup Y) . P\right)=r^{\prime} E(X . P)+$ $+r^{\prime} E(Y . P)+H(w(X . P), w(Y . P))$ and cannot be additive; (2) in many important cases, $r E\langle Q, \rho, X, \mu\rangle$ can be expressed in the form $\int_{X} F d \mu$, where F depends only on $\langle Q, \rho, \mu\rangle$ (see 5.1, 5.3 and 4.4). - D) It is possible to introduce another kind of residual entropy, say $\hat{\Gamma} \varphi(P)$, replacing $R D$ and $R W$ by Rd and Rw in 3.1. This notion, however, is less appropriate since, e.g., there are W-spaces of the form $P=\langle R, \varrho, f . \lambda\rangle$ such that $R D(P)=1, r E(P)=-\int f \log f d \boldsymbol{\lambda}$ whereas $\operatorname{Rd}(P)=\infty$ and therefore $\mathrm{rE}(P)$ does not exist.
3.3. If P is a W-space, $r E(P)$ need not exist, and even if $r E(S)$ exists for all $S \leqslant P$, the function $X \mapsto r E(X . P)$ can fail to be additive; for pertinent examples see 3.12 and 3.41. However, under some not too restrictive conditions, $\mathrm{X} \longmapsto \mathrm{rE}(\mathrm{X} . \mathrm{P}$) is additive (see 3.9) and, under certain additional assumptions, even 6 -additive (see 3.35).
3.4. Fact. Let $P=\langle Q, \rho, \mu\rangle \in$ 220 . Let $\left(S_{1}, S_{2}\right)=\left(X_{1} \cdot P, X_{2} \cdot P\right)$ be a pure partition of P. Then, for any $\delta>0, H_{\delta}(P)+L(w P) \leq H_{\delta}\left(S_{1}\right)+L\left(w S_{1}\right)+H_{\delta}\left(S_{2}\right)+$ $+L\left(w S_{2}\right)$.

Proof. We can assume that $H_{\delta}\left(S_{i}\right)<\infty$. Let $\boldsymbol{v}>0$. Choose \mathcal{N}^{2} partitions ($X_{i n}: n \in N$) of $S_{i}, i=1,2$, such that $H\left(\mu_{i n}: \cap \in N\right)<H_{\delta}\left(S_{i}\right)+\theta / 2$. Clearly, ($x_{i n}: i=1,2 ; n \in N$) is a δ-partition of P, hence $H_{\delta}(P) \leqslant H\left(\boldsymbol{\mu} X_{i n}: i=1,2 ; n \in N\right)+$ $+L(w P)=H\left(\mu X_{1 n}: n \in N\right)+L\left(w S_{1}\right)+H\left(\bar{\mu} X_{2 n}: n \in N\right)+L\left(w S_{2}\right)<H_{\delta}\left(S_{1}\right)+H_{\delta}\left(S_{2}\right)+L\left(w S_{1}\right)+$ $+L\left(W S_{2}\right)+\vartheta$. Since $\forall>0$ has been arbitrary, the assertion is proved.
3.5. Notation. If $P \in$ ng, $R D(P)$ exists and is finite, we put, for any $\delta>0, \boldsymbol{\psi}\left(\boldsymbol{\delta}^{\sim}, P\right)=E(\delta * P)-R W(P)\left|\log \delta^{\circ}\right|+L(w P)$.
3.6. Fact. Let (S, T) be a pure partition of $P \in V 20$ and let $R D(P)=R D(S)=$ $=R D(T)=t, 0<t<\infty$. Let $r E(P), r E(S)$ and $r E(T)$ exist. Assume that the sum
$r E(S)+r E(T)$ exists. Then $r E(P) \leqslant r E(S)+r E(T)$.
Proof. By 3.4, we have $\psi\left(\delta^{\sigma}, P\right) \measuredangle \psi(\delta, S)+\Psi(\delta, T)$ for all $\delta>0$. Since $\boldsymbol{\gamma}\left(\boldsymbol{\delta}^{\boldsymbol{r}}, \mathrm{P}\right), \boldsymbol{Y}(\boldsymbol{\delta}, S)$ and $\boldsymbol{\Psi}(\boldsymbol{\delta}, \mathrm{T})$ converge to $\mathrm{r} E(P), \mathrm{rE}(S)$ aand $\mathrm{rE}(\mathrm{T})$, respectively, we get $\mathrm{rE}(\mathrm{P})<\mathrm{rE}(\mathrm{S})+\mathrm{rE}(\mathrm{T})$.
3.7. Definition. A) If μ and ν are measures on $Q, \nu \subset \mu$, and, for any $X \in \operatorname{dom} \mu$, there is a set $Y \in$ dom ν such that the symmetric difference $X \Delta T$ is μ-null, we will say that μ is a faithful extension of ν. - B) A metric σW-space $P=\langle Q, \varphi, \mu\rangle$ will be called almost Borel if $\mathcal{B}\langle Q, \rho\rangle \subset d o m \bar{\mu}$ and $\bar{\mu}$ is a faithful extension of $\mu \Gamma \beta\langle Q, \rho\rangle$.
3.8. Lemma. Let $P=\langle Q, \rho, \mu\rangle$ be an almost Borel metric W-space and let $E(\epsilon * P)<\infty$ for all $\epsilon>0$. Let $(S, T)=(X, P, Y, P)$ be a pure partition of P. Then $\left.\left.E\left(\delta^{*} * S\right)+E\left(\delta^{*} * T\right)-E\left(\delta^{*} * P\right) \rightarrow H\right) w S, w ;\right)$ for $\delta \rightarrow 0$. If, in addition, $R D(P)$ exists and is finite, them $\psi\left(\delta^{\delta}, S\right)+\psi\left(\delta^{\delta}, T\right)-\psi\left(\delta^{\sigma}, P\right) \rightarrow 0$.

Proof. I. We can assume that X is Borel and $Y=Q \backslash X$. Let $v>0$. By wellknown theorems, there is a closed $X * \subset X$ such that $\bar{\mu}\left(X \backslash X^{*}\right)<\nu$. Since X^{*} is closed, there is an $\alpha>0$ such that $\mu\left(Y \backslash Y^{*}\right)<\boldsymbol{\vartheta}$, where $Y^{*}=$
z $\left\{y \in Y: \rho\left(y, X^{*}\right)>\propto\right\}$. - Let $0<\delta^{\sigma}<\propto$. By 2.15 and 2.11, there exists a δ-partition ($U_{n}: n \in N$) of P such that $H\left(\mu U_{n}: n \in N\right)<E(\delta * P)+v$. Put $K_{X}=$ $=\left\{n \in N: U_{n} \cap X * \emptyset\right\} K_{Y}=\left\{n \in N: U_{n} \cap Y * \neq \emptyset\right\}, M=N \backslash\left(K_{X} \cup K_{Y}\right)$. Then $U_{n} \cap X$, n $\in K_{X} \cup$ $\cup M$, form a δ-partition of S whereas $U_{n} \cap Y$, $n \in K_{Y} \cup M$, form a $\delta^{\boldsymbol{\delta}}$-partition of T. Clearly, $U_{n} c(X \backslash X *) \cup\left(Y \backslash Y^{*}\right)$ whenever $n \in N$, hence $\Sigma\left(\mu U_{n}: n \in M\right)<2 \vartheta$. For $n \in N$, put $a_{n}=\overline{\boldsymbol{\mu}} U_{n}, b_{n}=\vec{\mu}\left(U_{n} \cap X\right), c_{n}=\bar{\mu}\left(U_{n} \cap Y\right)$. Then we have $\Sigma\left(L b_{n}: n \in M\right)+$ $+\sum\left(L c_{n}: n \in M\right)=\sum\left(L a_{n}: n \in M\right)+\sum\left(H\left(b_{n}, c_{n}\right): n \in M\right) \leqslant \sum\left(L a_{n}: n \in M\right)+\sum\left(a_{n}: n \in M\right) \leqslant$ $\leftarrow \Sigma\left(L a_{n}: n \in M\right)+2 \theta$, hence $H\left(b_{n}: n \in N\right)+H\left(c_{n}: n \in N\right) \leq H\left(a_{n}: n \in N\right)-H(w S, w T)+2 \boldsymbol{v}$. Since $H\left(a_{n}: n \in N\right)<E\left(\delta^{\prime} * P\right)+\theta$, we get (*) $E\left(\delta^{*} * S\right)+E\left(\delta_{*} * T\right) \leqslant E\left(\delta_{*} * P\right)-$ $-H(w S, w T)+3 \boldsymbol{\vartheta}$. Thus, for any $\boldsymbol{v}>0$ there is an $\propto>0$ such that the inequality (*) is satisfied whenever $0<\delta^{\prime}<\propto$. On the other hand, by 3.4 and 2.15, $E\left(\delta^{*} * S\right)+E\left(\delta^{\circ} \times T\right) \geq E\left(\delta^{2} * P\right)-H(w S, w P)$. This proves the first assertion. - II. If $R D(P)$ exists and is finite, then, by $2.27, R W(P)=R W(T)$, which easily implies the second assertion.
3.9. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be an almost Borel metric W-space. Let $E(\ell * P)<\infty$ for all $\varepsilon>0$. Let (S, T) be a pure partition of P. If both $r E(S)$ and $r E(T)$ exist, then $r E(P)=r E(S)+r E(T)$, unless $r E(S)$ and $r E(T)$ are infinite and $r E(S)=-r E(T)$. If both $r E(P)$ and $r E(S)$ exist, then $r E(T)=r E(P)$ -$-\mathrm{rE}(\mathrm{S})$ unless $\mathrm{rE}(\mathrm{P})=\mathrm{rE}(\mathrm{S})= \pm \infty$.

Proof. To prove the first assertion, observe that the existence of $r E(S)$ and $r E(T)$ implies that $R D(S)$ and $R D(T)$ exist and are finite. Hence, by
2.27, $\mathrm{RW}(\mathrm{P})=\mathrm{RW}(\mathrm{S})+\mathrm{RW}(\mathrm{T})$. By 3.8, this implies $\boldsymbol{\psi}\left(\boldsymbol{\delta}^{\boldsymbol{\gamma}}, \mathrm{S}\right)+\boldsymbol{\psi}\left(\boldsymbol{\delta}^{\boldsymbol{r}}, \mathrm{T}\right)-\boldsymbol{\psi}\left(\boldsymbol{\delta}^{\sigma}, \mathrm{P}\right) \rightarrow$ $\rightarrow 0$, from which the assertion follows at once. The proof of the second assertion is similar.
3.10. We are going to present some examples showing that rE can behave rather irregularly (though being additive in the sense described in 3.9) even on fairly simple almost Borel metric W-spaces. The examples also show that the class of metric W-spaces P satisfying $R D(P)<\infty$ is too broad to allow a sufficiently rich theory of the residual entropy (or of the regularized residual entropy RE, see Section 4). Hence we have to choose a suitable subclass for which a reasonable theory of this kind can be developed. Probably the subclass we introduce (see 3.19 and 3.20) is too narrow, though.
3.11. In $3.12-3.14$ the following notation will be used. The set $\{0,1\}^{\omega}$ is denoted by Q. If $p=\left(p_{n}: n \in N\right), 1 / 2 \leqslant p_{n}<1$, then $S[p]=\langle Q, \mu[p]\rangle$ will denote the product of probability spaces $\left\langle\left\{0, l_{\}}, \nu_{n}\right\rangle\right.$, where $\nu_{n}\{0\}=p_{n}, \nu_{n}\{l\}=q_{n}=1-$ $-p_{n}$. Instead of $\mu[p]$ we often write merely μ. If, in addition, $a=\left(a_{n}: n \in\right.$ $\in N), a_{n}>0, a_{n} \geq a_{n+1}, a_{n} \rightarrow 0$ for $n \rightarrow \infty$, then $S[p, a]$ will denote the $W-$ space $\left\langle Q, \rho_{a}, \mu[p]\right\rangle$ where $\rho_{a}(x, y)=a_{m}$ if $x=\left(x_{n}\right), y=\left(y_{n}\right), x_{m} \neq y_{m}$ and $x_{i}=y_{i}$ for $i<m$. - If $n \in N, z \in\{0,1\}^{n}$, then $A(z)$ denotes the set $\left\{x=\left(x_{n}\right) \in Q: x_{i}=z_{i}\right.$ for $i<n\}$. The collection of all $A(z)$ will be denoted by $\boldsymbol{\mathcal { R }}$, and that of all $A(z), z \in\{0,1\}^{n}$, will be denoted by \mathcal{A}_{n}.
3.12. Example. For $n \in N$ let $p_{n}=1 / 2, a_{n}=2^{-n}$. Put $p=\left(p_{n}: n \in N\right), a=\left(a_{n}: n \in\right.$ $\in N), P=\langle Q, \rho, \mu\rangle=S\{p, a]$. We are going to show that $r E(S)$ exists for no nonnull $S \leqslant P$.

Let $S \leqslant P, S=f . P, w S>0$. Let $2^{-n+1}>\delta \geq 2^{-n}$. Then, clearly, $E(\delta * S)=$ $=E\left(a_{n} * S\right)=H\left(w(A . S): A \in \mathcal{A}_{n}\right)$. Hence, by 1.22 .1 , (1) $E(\delta * S) \leq n . w S$ and, by 1.22.3, (2) $E\left(\delta^{*} * S\right) \geq n . w S-L(w S)$. This proves that $R d(S)=1$. Consequently, $R D(T)=$ $=R d(T)=1$ for any non-null $T \leqslant P$: - If $S=f . P \Leftrightarrow P$, then $E(\delta * S)$ is constant on each interval $\left(2^{-n+1}, 2^{-n}\right]$ and therefore the oscillation of $\boldsymbol{\psi}\left(\delta^{\sim}, S\right)$ on $\left(2^{-n+1}, 2^{-n}\right]$ is equal to that of $w S\left|\log \delta^{\prime}\right|$, hence to $w S$. Since, by (1) and (2), $0<\boldsymbol{\Psi}(\boldsymbol{\sigma}, \mathrm{S}) \leqslant \mathrm{L}(w S)$, this proves that $\boldsymbol{\psi}\left(\boldsymbol{\delta}^{\prime}, 5\right)$ has no limit for $\boldsymbol{\delta} \rightarrow 0$.
3.13. Example. Let $c>0$. Let $p=S[p, b]$, where p is as in $3.12, b_{n}=$ $=\exp \left(-c^{-1} n\right)$. It is easy to show that, for any non-null $S \Leftrightarrow P,(1) \operatorname{RD}(S)=\operatorname{Rd}(S)=$ $=c$, (2) $\mathrm{rE}(5)=\infty$ if $c>1, \mathrm{rE}(S)=-\infty$ if $\mathrm{c}<1$.
3.14. Example. For $n \in N$, let $q_{n}=(n+2)^{1}, p_{n}=1-q_{n}, h(n)=H\left(p_{n}, q_{n}\right), s_{n}=$ $=\Sigma\left(h(m): m\langle n), a_{n}=\exp \left(-s_{n}\right)\right.$. Put $P=\langle Q, \rho, \mu\rangle=S[p, a]$. Then (1) $\operatorname{Rd}(P)=1$, (2) $\operatorname{Rd}(S) \leqslant 1$ for any non-null pure $S \leqslant P$, and therefore (3) $\operatorname{RD}(S)=\operatorname{Rd}(S)=1$ for any non-null $S \leqslant P$, (4) $\operatorname{rE}(A . P)=L(\mu A)-S_{n} \cdot \mu A$ for any $A \& \mathcal{A}_{n}$, hence
$\mathrm{rE}(\mathrm{P})=0$, (5) there is a disjoint countable collection $\boldsymbol{X} \subset \mathcal{A}$ such that $\mu(P \backslash \cup x)=0, E(r E(A . P): A \in X)<0$.

Since the example is merely illustrative, we omit the proof (which is rather long and not quite easy) of the facts just mentioned.
3.15. Before introducing partition-regular spaces (see 3.20) we consider (in 3.16 - 3.18) the case of metric W-spaces satisfying $R D(P)=0$, which turns out to be quite simple.
3.16. Proposition. If P is a W-space and $R D(P)=0$, then $r E(P)$ exists and is equal to $\lim E\left(\delta^{\circ} * P\right)+L(w P)$.

$$
\delta \rightarrow 0
$$

Proof. Clearly, $E(\boldsymbol{\delta} * P)$ is a non-decreasing function of $\boldsymbol{\delta}$ and $\boldsymbol{\psi}\left(\boldsymbol{\sigma}^{\prime}, P\right)=E\left(\sigma^{\circ} * P\right)+L(w P)$.
3.17. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be a non-null metric W-spaçe such that $\operatorname{RD}(P)=0$ and $\mu\{x\}=0$ for all $x \in Q$. Then $r E(P)=\infty$.

Proof. We can assume that $w P=1$. Suppose that $r E(P)<\infty$, hence $\sup E\left(\delta_{*} P\right)<a<\infty$. Then, for any $n=1,2, \ldots$, there is an n^{-1}-partition $\left(X_{n m}: m \in N\right)$ of P such that $H\left(\mu X_{n m}: m \in N\right)<a$. By 1.22.3, we have - $\log \left(\sup \mu X_{m}: m \leqslant N\right)<a$, and hence, for some $m=m(n), ~ \mu X_{n, m(n)}>2^{-a}$. Put $Y_{n}=X_{n, m(n)}$. If no $x \in Q$ is in infinitely many Y_{n}, then $\cap\left(U\left(Y_{k}: k>n\right): n \in N\right)=\emptyset$, whereas $\mu\left(U\left(Y_{k}: k>n\right)\right)>2^{-a}$ for all n. Hence there is a point $y \in Q$ and an infinite $K C N$ such that $y \in Y_{k}$ for all $k \in K$. For $n \in N$, put $Z_{n}=U\left(Y_{k}: k \in K, k>n\right)$. It is easy to see that $\mu Z_{n}>2^{-a}$ for all $n \subset N$ and diam $Z_{n} \leqslant 2 n^{-1}$, hence $\cap Z_{n}=$ $=\{y\}$. Since $\mu\{y z=0$, we have got a contradiction.
3.18. Theorem. Let $P=\langle Q, \varphi, \mu\rangle$ be a metric W-space and let $R D(P)=0$. Put $A=\{x \in Q: \mu\{x\}>0\}, B=Q \backslash A$. Then (1) for any subspace $S=f . P \leq P, r E(S)=$ $=H(f(a) \mu\{a\}: a \in A)$ if $w(B . S)=0$, and $r E(S)=\infty$ if $w(B . S)>0$, (2) the function $X \mapsto r E(X . P)$ is a measure defined on dom $\bar{\sim}$.

Proof. If $\leftrightarrow B>0$, then, by 3.12 and $3.16, E(\infty *(B . P)) \rightarrow \infty$, so that $E(\delta * P) \rightarrow \infty, r E(P)=\infty$. - Let $\mu B=0$. Then ($\{a\}: a \in A$) is an e-partition of P for any $\varepsilon>0$ and therefore $\sup E\left(\boldsymbol{d}^{\prime} * P\right) \leqslant H(\mu\{a\}: a \in A)$. On the other hand, if $K \in A$ is finite non-void, choose a positive $\delta^{\circ}<\inf \{\rho(x, y): x \in K, y \in$ © $K, x \neq y\}$. It is easy to see that $E\left(\boldsymbol{d}^{\circ} * P\right) \geq H(\mu\{x\}: x \in K)$. Since clearly $H(\boldsymbol{\mu}\{a \boldsymbol{\}}: a \in A)=\sup (H(\mathcal{C}\{\mathbf{Z}: a \in K): K \in A$ finite), this proves the assertion (1) for $S=P$. The general case of (1) and the assertion (2) are easy consequences.
3.19. Convention. Let t and t be positive reals, let $m \in N$ and let $f:(0, b) \rightarrow R_{+}$satisfy $f\left(\delta^{\prime}\right) \rightarrow 1$ for $\delta \rightarrow 0$. We will say that a semimetric space
$S=\langle Q, \rho\rangle$ satisfies $P R(t, m, b, f)$ if, for any $X \subset Q$ with diam $X=\delta<b$ and any $n>m$, there are $Y_{i} \in X, i=1, \ldots, k \leqslant n^{t} f\left(\delta^{r}\right)$, such that $\cup Y_{i}=X$ and diam $Y_{i} \leqslant \delta / n$, $i=1, \ldots, k$. We will say that a W-space $P=\langle Q, \rho, \leftrightarrow\rangle$ satisfies $\operatorname{PR}(t, m, b, f)$ if, for any $X \in \operatorname{dom} \bar{\mu}$ with diam $X=\delta<b$ and any $n>m$, there are $Y_{i} \in \operatorname{dom} \bar{\mu}, i=$ $=1, \ldots, k \leqslant n^{t_{f}}\left(0^{\circ}\right)$, such that $\bar{\mu}\left(X \backslash \cup Y_{i}\right)=0$ and $\operatorname{diam} Y_{i} \leqslant \delta / n, i=1, \ldots, k$.

3,20. Definition. Let $0<t<\infty$. A semimetric space S (respectively, a W-space P) will be called partition-regular of order t if, for some m, b and f, S satisfies $\operatorname{PR}(t, m, b, f)$ (respectively, P satisfies $P R(t, m, b, f)$ and $R d(T)=t$ for all non-null $T \leqslant P$).
3.21. Fact. Let $0<t<\infty$. Let $P=\langle Q, \rho, \mu\rangle$ be a weakly Borel metric W-space and let $\operatorname{Rd}(P)=t$. If, for some b, m and f, there is a $Q \subset Q$ such that $\bar{\mu}\left(Q \backslash Q^{\prime}\right)=0$ and $\left\langle Q^{\prime}, \rho\right\rangle$ satisfies $P R(t, m, b, f)$, then P also satisfies $T R(t, m, b, f)$ and is partition-regular of order t.

Proof. Choose a positive $\delta^{\sigma}<b$ such that $\log \left|f\left(\delta^{\sigma}\right)\right|<1$. Let $S=\langle Q, \rho, \mu\rangle<$ $\leqslant P$. Since $\operatorname{Rd}(P)<\infty$, we have $E(\varepsilon * P)<\infty$ for all $\varepsilon>0$ and therefore, by $2.14 B, E\left(\delta_{*} S\right)<\infty$. Consequently, there is a δ^{\prime}-partition ($X_{p}: p \in N$) of S such that $H\left(\mathcal{D} X_{p}: p \in N\right)=c<\infty$. Since $\left\langle Q^{\prime}, \rho\right\rangle$ satisfies $\operatorname{PR}(t, m, b, f)$, there exist, for any $p \in N$ and any $n>m$, sets $Y_{p i}, i=1, \ldots, k(p) \in n^{t} f(\delta)$, such that, with $K_{p}=\{1, \ldots, k(p)\}$, we have Q ' $X_{p}=\mathcal{U}\left(Y_{p i}: i \in K_{p}\right)$ and diam $Y_{p i} \leqslant \delta / n$. Clearly, we can assume that $Y_{p i}$ dom $\overline{\sim N}$ (since $Y_{p i}$ can be replaced by the sets $\left.Y_{p i} \cap Q^{\prime}\right)$. For any $p \in N$, put $Z_{p l}=Y_{p l}, Z_{p i}=Y_{p i} \backslash U\left(Y_{p j}: j<i\right)$ for $i=2, \ldots, k(p)$. Clearly, ($Z_{p i}: p \in N, i \in K_{p}$) is a (δ^{\prime} / n)-partition of S. By 1.22.2 and 1.22.1, we have $H\left(\bar{\nu} Z_{p i}: p \in N, i \in K_{p}\right) \leqslant c+\Sigma\left(\nabla X_{p} \cdot \log k(p): p \in N\right)$, hence $H\left(\bar{\nu} Z_{p i}: p \in N, i \in\right.$ - $\left.K_{p}\right) \leq c+w S .(t \log n+1)$. Consequently, $E((\delta / n) * S) \leq c+w S .(t \log n+1)$ and therefore $\overline{\lim }(E((\delta / n) * S) / w S .|\log (\delta / n)|) \leqslant t$. It is easy to see that this $n \rightarrow \infty$
inequality implies $\overline{\lim }_{\varepsilon \rightarrow 0}(E(\varepsilon * S) / w S .|\log \varepsilon|) \leqslant t$, hence $u d(S) \leqslant t$. Since $S \leqslant P$ has been arbitrary, this proves, by 2.29 , that $\operatorname{Rd}(T)=t$ for all non-null $T \& P$.
3.22.Facts. A) If a semimetric space (respectively, a W-space) is par-tition-regular of order t, then each of its subspaces (respectively, each of its non-null subspaces) is partition-regular of order t. - B) If, for $i=1,2$, S_{i} is a semimetric space partition-regular of order t, then $S_{1} \times S_{2}$ is parti-tion-regular of order $t_{1}^{\prime}+t_{2}$. - C) If, for $i=1,2, P_{i}$ is a W-space partition-regular of order t_{i} and $\operatorname{Rd}(T)=t_{1}+t_{2}$ for each non-null $T \& P_{1} \times P_{2}$, then $P_{1} \times P_{2}$ is partition-regular of order $t_{1}+t_{2}$.
3.23. Fact. The space $R^{n}, n=1,2, \ldots$, is partition-regular of order n.
3.24. Proposition. Let S be an m-dimensional C^{1}-submanifold of R^{n} equipped with the \boldsymbol{b}_{∞}-metric. Then every compact TCS is partition-regular of order m.

The proof is straightforward and can be omitted. Observe that S itself need not be partition-regular (however, cf. 4.22).
3.25. Lemma. Let P be a partition-regular W-space of order t. Then there is a function $f: R_{+} \rightarrow R_{+}$such that $f(\sigma) \rightarrow 1$ for $\delta \rightarrow 0$, a positive real b and an $m \in N$ such that if $S \leqslant P, 0<\delta<b, n \in N, n>m$, then $\gamma\left(\sigma^{\sigma} / n, S\right) \&$ $\leqslant \psi\left(\sigma^{\sigma}, S\right)+w S . \log f\left(\sigma^{\sigma}\right)$.

Proof. Let $P=\langle Q, \rho, \mu\rangle$ satisfy $P R(t, m, b, f)$. Let $S=\langle Q, \rho, \nu\rangle \leqslant P$ and let $0<\delta<b, n>m$. Let $\vartheta>0$. By 2.15, there is a δ-partition ($X_{k}: k \in N$) of S such that $H\left(\boldsymbol{\beth} X_{k}: k \in N\right)<E(\delta * S)+\boldsymbol{v}$. Since diam $X_{k} \leqslant \boldsymbol{\delta}^{\boldsymbol{\sigma}}$, there are $Y_{k j} \in$ $\epsilon \operatorname{dom} \bar{\nu}, j=1, \ldots, p(k), p(k) \leqslant n^{t_{f}}\left(\delta^{\circ}\right)$, such that diam $Y_{k j} \leqslant \delta^{\prime} i n, \quad \bar{\gamma}\left(x_{k}\right)$ $\left.\backslash \cup\left(Y_{k j}: j=1, \ldots, p(k)\right)\right)=0$. Clearly $\left(Y_{k j}: k \in N, j=1, \ldots, p(k)\right.$) is a (δ / n)-partition of S. By 1.22 .2 and 1.22.1, $H\left(\bar{\nu} Y_{k j}: k \in N, j=1, \ldots, p(k)\right) \leqslant H\left(\bar{\Sigma} X_{k}: k \in N\right)+$ $+\log \left(n^{t} f\left(\delta^{\prime}\right)\right) . \Sigma\left(\boldsymbol{\nabla} X_{k}: k \in N\right)<E\left(\delta^{\sim} * S\right)+\boldsymbol{v}+w S . t \log n+w S . \log f\left(\sigma^{\sim}\right)$. Hence $E((\delta / n) * S) \leqslant E(\delta * S)+w S . t \log n+w S . \log f(\delta)$, and therefore $\psi(\delta / n, S) \leqslant$ $\leqslant \boldsymbol{\psi}\left(\delta^{\prime}, S\right)+w S . \log f\left(\delta^{\prime \prime}\right)$.
3.26. Theorem. If a W-space P is partition-regular, then the residual entropy of P exists.

Proof. Put $t=R d(P)=R D(P)$. Let P satisfy $P R(t, b, m, f)$. Put $s=\overline{\lim } \boldsymbol{\psi}\left(\delta^{\prime}, P\right)$. Clearly, we can assume $s>-\infty$. Let $-\infty<u<s$ and choose $\varepsilon>0$ such that $u+2 \varepsilon<\mathrm{s}$. Choose $\mathrm{c}>0$ such that $2 \mathrm{c}<\min (b, 1)$, wP. $\left|\log \mathrm{f}\left(\delta^{\circ}\right)\right|<\varepsilon$ for $\delta^{\prime} \in(0, c)$. - We are going to show that $\boldsymbol{\Psi}\left(\delta^{\prime}, P\right) \geq u$ whenever $0<\delta^{\tau}<c$. Choose $\tau \in(0, \delta)$ such that $|\eta-\delta|<\tau$ implies $|\log \eta-\log \delta|<\varepsilon .(t . w P)^{-1}$. Since $\lim _{z \rightarrow 0} \boldsymbol{v}(z, P)>u+w P .(t+1) \varepsilon$, there is a positive ξ such that $\xi<\tau$, $\delta^{\prime}+\xi<c, \Psi(\xi, P)>u+2 \varepsilon$. Choose $p \in N$ such that $(p-1) \xi \leqslant \delta, p \xi>\delta$. Clearly, $p \xi<c$. By 3.25, we have $\boldsymbol{\psi}(p \xi, P) \geq \psi(\xi, P)-w P . \log f(p \xi)$. Clearly, $\boldsymbol{\psi}\left(\delta^{\prime}, P\right) \geq E((p \xi) * P)-w P . t|\log \delta|+L(w P)=\boldsymbol{\Psi}(p \xi, P)+w P . t(|\log \rho \xi|-$ $\left.-\left|\log \delta^{\prime}\right|\right) \geq \boldsymbol{\psi}(p f, P)-\varepsilon$. Hence, $\boldsymbol{\gamma}\left(\delta^{\prime}, P\right) \geq \boldsymbol{\psi}\left(\delta^{\prime}, P\right)-2 \varepsilon>u$ whenever $\delta^{\prime}(0, c)$. Since $u<s$ has been arbitrary, this proves that $\lim \Psi\left(\delta^{\sigma}, P\right)=s$.

Remark. The proof is similar to a part of the proof of Theorem 1 in [81.
3.27. The concept of residual entropy appears implicitly in [8], where the behavior of $\varepsilon \longmapsto H_{\varepsilon}(P)=E(* * P)$ is examined for the case $P=\left\langle R^{n}, \rho_{r}, \mu\right\rangle$, $\mu R^{n}=1, \rho_{r}(x, y)=\tau(x-y)$, τ being a norm on R^{n}. In $\{8]$, two theorems are
proved, which can be stated, in a modified form and using the terminology of the present article, as follows: (1) If $Q \subset R^{n}$ is a unit cube, $\boldsymbol{\mu}=\boldsymbol{Q} \cdot \boldsymbol{\lambda}$, then $H_{\varepsilon}(P)-n|\log \&|$ converges, for $\varepsilon \rightarrow 0$, to $-\log \boldsymbol{\lambda} S_{\boldsymbol{\gamma}}+\boldsymbol{\alpha}(\boldsymbol{\tau})$, where $S_{\boldsymbol{\gamma}}=\boldsymbol{f} \times \in$ $\left.\in R^{n}: \tau(x) \leqslant 1 / 2\right\}$, $\boldsymbol{\tau}(\tau)$ depends on $\tau, 0 \leqslant \boldsymbol{\tau}(\tau) \leqslant 1$, and $\boldsymbol{\tau}(\boldsymbol{\tau})=0$ if τ is the $\boldsymbol{\ell}_{\infty}$-norm. - (2) If $\boldsymbol{\mu}=1 . \boldsymbol{\lambda}, p$ is continuous and satisfies certain conditions (which we do not restate), then $H_{s}(P)-n|\log \varepsilon|$ converges to $-\int p \log p d \boldsymbol{\lambda}-\log \boldsymbol{\lambda} S_{\tau^{+}} \boldsymbol{a c}(\boldsymbol{\tau})$. - In the terminology of the present article, the theorems assert that, under the assumptions mentioned above, $\mathrm{rE}(\mathrm{P})$ exists, and provide a formula for its value.

Observe that, apart from the fact that we explicitly introduce the residual entropy rE, the difference of approach in the present article and in that by Posner and Rodemich lies, among other things, in the following fact. In [8], the class of metric spaces under consideration contains $R^{n}, n=1,2, \ldots$, equipped with any metric generated by a norm (and, in fact, all of their subspaces); certain assumptions, not quite weak, are made concerning the measure. In the present article, the class of metric spaces for which a reasonable theory of the entropy rE is available, consists of partition-regular ones, whereas the assumptions on the measure are fairly weak.
3.28. Fact. Let $P=\langle Q, \varrho, \mu\rangle \in 22 \cap$ be partition-regular. Then $r E(P)=\infty$ iff $E\left(\delta^{*} * P\right)=\infty$ for some $\delta>0$.

Proof. Let P satisfy $\operatorname{PR}(t, b, m, f)$. Choose a positive c such that $\left|\log \mathrm{f}\left(\delta^{\sigma}\right)\right|<1$ if $0 \leqslant \delta^{\circ}<\mathrm{c}$. Let $0<\delta<\min (t, \mathrm{c})$. Then, by 3.25, for any $n \in N$, $n>m$, we have $\Psi\left(\delta^{\prime} / n, P\right) \leq \Psi\left(\delta^{r}, P\right)+w P$, hence $r E(P) \leftarrow \psi\left(\delta^{\sim}, P\right)+w P$. Consequently, if $\Psi\left(\delta^{\prime}, P\right)<\infty$ for all $\delta>0$, then $\mathrm{rE}(P)<\infty$. - Clearly, if $E(\delta * P)=$ $=\infty$ for some $\delta>0$, then $\boldsymbol{\Psi}(\varepsilon, P)=\infty$ for all positive $\varepsilon \leq \delta$.
3.29. Fact. If $x_{n} \geq 0, \sum x_{n}<\infty, H\left(x_{n}: n \in N\right)<\infty$, then, for any $\varepsilon>$ >0, there exists a positive of such that $\sum\left(L y_{n}: n \in N\right)<\in$ whenever $0 \leqslant y_{n} \&$ $\leqslant x_{n}$ for $n \in N$ and $\sup \left(y_{n}: n \in N\right)<\delta$.
3.30. Fact. Let $P \in 20$, let $\delta>0$ and let $E(\delta * P)<\infty$. Then, for any $\varepsilon>0$, there is an $\boldsymbol{\eta}>0$ such that $E\left(\delta^{2} * S\right)<\varepsilon$ whenever $w S<\boldsymbol{\eta}$. This follows easily from 2.15 and 3.29.
3.31. Fact. Let $P=\langle Q, \varphi, \mu\rangle \in \boldsymbol{n g}$ be partition-regular. Then, for any $\varepsilon>0$, there is a $\vartheta>0$ such that, for any positive $\delta<\vartheta$ and any $S \leqslant P$, $\mathrm{rE}(\mathrm{S}) \leqslant \psi\left(\boldsymbol{\sigma}^{\boldsymbol{\prime}}, \mathrm{S}\right)+\varepsilon$.

This immediately follows from 3.25.
3.32. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be a partition-regular W-space. If $r E(P)<\infty$, then (1) $\mathrm{rE}(\mathrm{S})<\infty$ for all $S \& P$, (2) for any $\varepsilon>0$, there is
an $\eta>0$ such that $\mathrm{rE}(\mathrm{S})<\varepsilon$ whenever $S \leqslant P$, $\mathrm{wS}<\boldsymbol{\eta}$.
Proof. The first assertion immediately follows from 3.26 and 3.28. - Let $\boldsymbol{\varepsilon}>0$. Choose a $\boldsymbol{\vartheta}>0$ satisfying the condition stated in 3.31. Choose a positive $\delta<\vartheta$. By 3.30, there is an $\eta>0$ such that $\mathrm{E}\left(\delta_{*} \mathrm{~S}\right)<\varepsilon$ whenever $w S<\boldsymbol{\eta}$. Then, for any $S \leqslant P$ satisfying $w S<\boldsymbol{\eta}$, we have $r E(S) \leqslant \boldsymbol{\gamma}\left(\boldsymbol{\sigma}^{\boldsymbol{r}}, S\right)+$ $+\varepsilon, \boldsymbol{\psi}\left(\boldsymbol{\sigma}^{\circ}, S\right) \leqslant \mathrm{E}\left(\boldsymbol{\sigma}^{\sim} * S\right)+\mathrm{L}(w S), \mathrm{E}\left(\boldsymbol{\sigma}^{\boldsymbol{*} * S}\right)<\varepsilon$, hence $\mathrm{rE}(\mathrm{S}) \in 2 \varepsilon+\mathrm{L}(\boldsymbol{\eta})$. This proves the proposition.
3.33. Lemma. Let $P=\langle Q, \rho, \mu\rangle \in \boldsymbol{\theta} \cap$ be partition-regular. If $\mathrm{rE}(\mathrm{P})<\mathrm{a}<$ $<\infty$, then there is a positive ε such that $\mathrm{rE}(\mathrm{S})<\mathrm{a}$ whenever $\mathrm{S} \leqslant \mathrm{P}$ and $w(P-S)<\varepsilon$.

Proof. Let P satisfy $P R(t, b, m, f)$. Choose $\boldsymbol{v}>0$ such that $\mathrm{rE}(\mathrm{P})<a-4 \boldsymbol{\vartheta}$. Choose $\delta^{\prime}>0$ such that $\delta<b, \psi\left(\delta^{\prime}, P\right)<a-4 v$ and $w P . \log f(\delta)<v$. Choose $\varepsilon>0$ such that $\varepsilon t\left|\log \delta^{\prime}\right|<\boldsymbol{\vartheta},|L(w S)-L(w P)|<\boldsymbol{\vartheta}$ if $w(P-S) \ll$. - Let $S \leq P, W(P-S)<\varepsilon$. Clearly, $E\left(\delta^{*} * S\right) \leq E\left(\delta^{\prime} * P\right)$, and hence $\boldsymbol{\psi}(\boldsymbol{\sigma}, S) \leqslant$ $\leq E\left(\delta^{\circ} * P\right)-w S . t\left|\log \delta^{\sim}\right|+L(w S)=\psi\left(\boldsymbol{\sigma}^{\infty}, P\right)+w(P-S) . t\left|\log \delta^{\circ}\right|+L(w S)-L(w P) \leq$ $\leq \psi\left(\sigma^{\sigma}, P\right)+2 \boldsymbol{\vartheta}$. By 3.25, we have, for any $n>m, \psi(\delta / n, S) \leqslant \psi\left(\delta^{\sigma}, S\right)+w S$. . $\log f\left(\boldsymbol{\sigma}^{\sigma}\right)$, so that $\boldsymbol{\psi}(\boldsymbol{\delta} / n, S) \leqslant \boldsymbol{\psi}(\boldsymbol{\sigma}, P)+3 \boldsymbol{\vartheta}<a-\boldsymbol{\vartheta}$. Hence $\mathrm{rE}\left(S^{\prime}\right)=$ $\lim _{n \rightarrow \infty} \psi\left(\sigma^{\sim} / n, S\right) \leqslant a-\boldsymbol{v}<a$.
3.34. Lemma. Let $P=\langle Q, \rho, \mu\rangle$ be a partition-regular almost Borel metric W-space. Let $r E(P)<\infty$. If $S \leqslant P, S_{n} \leqslant S, n \in N$, and $w\left(S-S_{n}\right) \rightarrow 0$, then $r E\left(S_{n}\right) \rightarrow r E(S)$.

Proof. By 3.32, $\mathrm{rE}(\mathrm{S})<\infty$. If $\mathrm{rE}(\mathrm{S})=-\infty$, then the assertion immediately follows from 3.33. Let $\mathrm{rE}(\mathrm{P})=\mathrm{a} \in \mathrm{R}$. Let $\boldsymbol{\vartheta}>0$. By 3.32 and 3.33, there is an $\varepsilon>0$ such that (1) if $T \leqslant S, w(S-T)<\varepsilon$, then $r E(T)<a+v$, (2) if $U \leqslant S$, $W U<\varepsilon$, then $\mathrm{rE}(U)<\boldsymbol{v}$. Hence, for n sufficiently large, $\mathrm{rE}\left(\mathrm{S}_{\mathrm{n}}\right)<$ $<a+\vartheta, r E\left(S-S_{n}\right)<\vartheta$. Since, by $3.9, r E\left(S_{n}\right)+r E\left(S-S_{n}\right)=r E(S)=a$, we have $r E\left(S_{n}\right)>a-\boldsymbol{v}$. Since $\boldsymbol{v}>0$ has been arbitrary, the lemma is proved.
3.35. Theorem. Let $P=\langle Q, \rho, \mu\rangle$ be a partition-regular almost Borel metric space. If $r E(P)<\infty$, then the function $X \mapsto r E(x . P)$, defined on dom $\bar{\mu}$, is 6 -additive and bounded from above.

Proof. By 3.9 and 3.34 , the function $Y \mapsto r E(X . P)$ is σ-additive. By $3,32,3.33$ and 3.9 , it is bounded from above.
3.36. Definition. A metric σW-space P will be called totally bounded if, for any $\varepsilon>0$, there is a finite ε-covering of P.
3.37. Proposition. If a metric W-space is totally bownded, then $E\left(\delta_{*} P\right)<\infty$ for all $\delta>0$. If, in addition, P is partition-regular, then $r E(P)<\infty$.

Proof. The first assertion is obvious. The second assertion follows from 3.26 and 3.28.
3.38. Proposition. Let $P=\left\langle R^{n}, \rho, \lambda\right\rangle$ and let $X \in R^{n}, X \in \operatorname{dom} \lambda, \lambda x<$ $<\infty$. Let Ω consist of all sets of the form $\left\{x \in R^{n}: z_{i} \& x_{i}<z_{i}+1\right.$ for $i=1, \ldots$ $\ldots, n\}$ where $\left(z_{1}, \ldots, z_{n}\right) \in z^{n}, Z$ is the set of all integers. Then $r E(X . P)=0$ if $H(\lambda(A \cap X): A \in \Omega)<\infty, r E(X, P)=\infty$ if $H(\lambda(A \cap X): A \in \Omega)=\infty$.

Proof. I. Let X be a cube $[a, b]^{m}$, Put $S=X . P, c=b-a$. Let $m=1,2, \ldots$ and let $\delta=c / m$. If $Y \in R^{n}, Y \in \operatorname{dom} \lambda$, diam $Y \leqslant \boldsymbol{\sigma}^{\boldsymbol{\sigma}}$, then evidently $\lambda Y \leq \delta^{n}$. Hence, by 1.22 .3 , for any δ^{\prime}-partition ($Y_{k}: k \in K$) of S, we have $H\left(\lambda Y_{k}: k \in K\right) \geq$ $\geq-L\left(c^{n}\right)-c^{n} \log \delta^{n}$. On the other hand, clearly, there is a δ-partition ($U_{k}: k \in K$) of S such that $H\left(\lambda U_{k}: k \in K\right)=-c^{n} \log \delta^{n}-L\left(c^{n}\right)$. This proves that $E\left(\delta^{\prime} * S\right)=-c^{n} \log \delta^{n}-L\left(c^{n}\right)$ and therefore $\boldsymbol{v}^{\boldsymbol{f}}\left(\boldsymbol{\delta}^{n}, S\right)=0$ for $\delta^{\delta}=c / m, m=1,2, \ldots$. By 3.26, this implies $\mathrm{rE}(S)=0$. - II. Let X be bounded. Let Q be a cube containing X. Let \mathscr{H} be the collection of all $Y \in Q$ such that $Y \in \operatorname{dom} \boldsymbol{\lambda}, r E(Y . P)=$ $=0$. By 3.35, the function $Y \mapsto \mathrm{rE}(\mathrm{Y} . \mathrm{P})$ is σ-additive; hence $\mathcal{T} \mathcal{L}$ is a σ-algebra of subsets of Q. By $I, r E(Y . P)=0$ whenever Y is a cube contained in Q. Consequently, \mathscr{K} contains all $\boldsymbol{\lambda}$-measurable subsets of Q and therefore $\operatorname{rE}(X . P)=0$. - III. Let $X \in R^{n}$ be an arbitrary λ-measurable set satisfying $H(\lambda(A \cap X): A \subset \Omega)<\infty$. For $m=1,2, \ldots$, let Ω_{m} denote the collection of all cubes of the form $\left\{x \in R^{n}: 2^{m} x \in A\right\}$, where $A \subset \Omega$. Clearly, $H\left(\lambda(A \cap X): A \in \Omega_{m}\right)<$ $<\infty$. Hence, $E\left(\delta_{*} *(X, P)\right)<\infty$ whenever $\delta^{\prime}=2^{-m}$, $m \in N$, and therefore $E\left(\delta^{\prime} *(X, P)\right)<\infty$ for all $\delta^{\prime}>0$. By 3.26 and 3.28, this implies $\mathrm{rE}(X . P)<\infty$. Consequently, by 3.35, the function $Y \mapsto r E(Y . P)$, where $Y \in \operatorname{dom} \boldsymbol{\lambda}, Y \subset X$, is $\boldsymbol{\sigma}$-additive. Combined with II, this implies $\mathrm{rE}(X . P)=0$. - IV. Let $X \subset R^{n}, X \in$ $\epsilon \operatorname{dom} \lambda, H(\lambda(A \cap X): A \in \Omega)=\infty$. Put $S=X . P$, Suppose that $r E(S)<\infty$. Then, by 3.28, $E\left(\delta^{\circ} * S\right)<\infty$ for all $\delta^{\delta}>0$. Let $\delta^{\delta}=1 / 3$. By 2.15, there is a δ^{∞}-partition ($X_{k}: k \in K$) of S such that $H\left(\lambda X_{k}: k \in K\right)<\infty$. Clearly, for any $k \in K$, there are at most 2^{n} sets $A \in \Omega$ such that $X_{k} \cap A \not A \emptyset$. By 1.22.2 and 1.22.1, this implies that $H\left(\lambda\left(X_{k} \cap A\right): k \in K, A \in \Omega\right) \leqslant H\left(\lambda X_{k}: k \in K\right)+n, \lambda x<\infty$. Since $H(\boldsymbol{A}: A \in \Omega) \leqslant H\left(\lambda\left(X_{k} \cap A\right): k \in K, A \in \Omega\right)$, we have got a contradiction.

4
4.1. Fact. Let $P=\langle Q, \rho, \mu\rangle$ be a σW-space. Then there exists at most one $b \in \vec{R}$ such that the following condition holds: (*) for any neighborhood G of b in R, there exists a pure partition P of P consisting of W-spaces and
such that if ($S_{k}: k \in K$) is a pure partition refining \mathcal{P}, then all $r E\left(S_{k}\right)$ exist, the sum $\sum\left(r E\left(S_{k}\right): k \in K\right)$ exists and is in G.

Proof. Suppose that (*) is satisfied for $b=b_{1}$ and $b=b_{2}$ where $b_{1} \neq b_{2}$. Let G_{i} be a neighborhood of $b_{i}, i=1,2$, and let $G_{1} \cap G_{2}=\emptyset$. Then there are pure partitions \mathfrak{P}_{1} and \mathcal{P}_{2} consisting of W-spaces and such that $\sum\left(r E\left(S_{k}\right): k \in\right.$ $\in K) \in G_{i}$ whenever $\left(S_{k}: k \in K\right)$ is a pure partition refining \mathcal{P}_{i}. Let $\mathcal{P}_{i}=$ $=\left(X_{i k} \cdot P: k \in K_{i}\right), i=1,2$. Put $Y_{k j}=X_{l k} \cap X_{2 j}$ for $k \in K_{1}, j \in K_{2}$. Then $\sum\left(r E\left(Y_{k j} . P\right)\right.$: $\left.: k \in K_{1}, j \in K_{2}\right) \in G_{1}, \sum\left(r E\left(Y_{k j} \cdot P\right): k \in K_{1}, j \in K_{2}\right) \in G_{2}$, which is a contradiction.
4.2. Definition. Let $P=\langle Q, \rho, \mu\rangle$ be a σW-space. If there exists a $b \in$ $\epsilon \vec{R}$ such that the condition (*) from 4.1 holds, then this b will be denoted by $R E(P)$ and called the regularized residual entropy of P.
4.3. Proposition. Let P be a metric W-space. Assume that either (1) $R D(P)=0$, or (2) P is almost Borel partition-regular and $r E(P)<\infty$. Then $R E(S)=r E(S)$ for all $S \Leftrightarrow P$ and the function $X \mapsto R E(X . P)$ is σ-additive.

Proof. In the case (1), the assertion follows from 3.18. In the case (2), rE(S) exists for all S $\leqslant P$ by 3.26 , and $X \mapsto R E(X . P)$ is σ-additive by 3.35. Let $S \leqslant P$. It is easy to see that S is almost Borel partition-regular. By 3.35, $\mathrm{rE}(5)<\infty$. Hence $\mathrm{X} \mapsto \mathrm{rE}(\mathrm{X} . \mathrm{S})$ is $\boldsymbol{\sigma}$-additive and therefore $\mathrm{RE}(S)=$ $=r E(S)$.
4.4. Proposition. If $P=\left\langle R^{n}, \rho, \lambda\right\rangle$ and $X \in \operatorname{dom} \boldsymbol{\lambda}$, then $R E(X, P)=0$.

Proof. Put S=X.P. Consider the pure partition $\boldsymbol{\mathscr { P }}=([n, n+1] . S: n=0, \pm 1$, \ldots) of S. By 3.38, we get $\Sigma\left(r E\left(U_{k}\right): k \in K\right)=0$ for any pure partition ($U_{k}: k \in$ © K) refining \mathscr{P}.
4.5. Example. Choose $a_{n}>0$ such that $a_{n}<1, \Sigma\left(a_{n}: n \in N\right)<\infty$, $\sum a_{n}\left|\log a_{n}\right|=\infty$: Put $X=\left\{x \in R_{+}: n \leqslant x<n+a_{n}\right.$ for some $\left.n \in N\right\}, P=X .\left\langle R^{n}, \rho, \lambda\right\rangle$. By 3.38, $\mathrm{rE}(\mathrm{P})=\infty$ whereas, by $4.4, \operatorname{RE}(P)=0$.
4.6. Remark. By 4.3, there is a lot of spaces for which RE and rE coincide. On the other hand, 4.5 provides a very simple example of a W-space for which RE and rE are distinct and the behavior of RE is more reasonable than that of rE. These facts, and even more the connection (see Section 6) with the differential entropy (see 6.1) provide the motivation for introducing the regularized residual entropy.
4.7. Proposition. Let $P=\langle Q, \varsigma, \mu\rangle$ be a σW-space. If $\operatorname{RE}(P)$ exists and is finite, then all $R E(S), S \leqslant P$ pure, exist and are finite.

Proof. If $T \in \leqslant n 0$, then $\Phi(T)$ will denote the collection of all pure
partitions ($T_{k}: k \in K$) of T (where, to avoid proper classes, K is taken from a fixed collection of indexing sets). If $\mathcal{J}_{0} \in \Phi(T)$, then $\Phi\left(T, \boldsymbol{J}_{0}\right)$ will denote the collection of all $J \in \Phi(T)$ refining \mathcal{J}_{0}. - Let $S=X . P \leq P$. Let \mathcal{G} denote the collection of all $G \subset \bar{R}$ such that, for some $\mathscr{S} \in \Phi(S)$, $\Sigma\left(\operatorname{rE}\left(U_{k}: k \in K\right)\right.$ exists and is in G whenever $\left(U_{k}: k \in K\right) \in \Phi(S, \mathscr{P})$. Evidently, all $G \in \mathcal{G}$ are non-void. It is easy to see that if $G_{1}, G_{2} \in \mathcal{G}$, then $G_{1} \cap G_{2} \in$ $\in \mathcal{C}$. We are going to show that \mathcal{G} contains sets of arbitrarily small diameter. This will imply that $\cap(G: \bar{G} \in \mathcal{G}$) is a one-point set.

Put $a=R E(P)$. Let $\varepsilon>0$ and let A be a neighborhood of $a, \operatorname{diam} A<\varepsilon$. There is a $\mathcal{P} \in \Phi(P)$ such that if $\left(U_{k}: k \in K\right) \in \Phi(P, \mathcal{P})$, then $\sum\left(r E\left(U_{k}\right): k \in K\right) \in$ $\in A$. Put $\boldsymbol{\mathscr { O }}=\left(X . U_{k}: k \in K\right)$. If, for $i=1,2,\left(v_{k}^{(i)}: k \in K_{i}\right) \in \Phi(S, \boldsymbol{\mathscr { P }})$, then $V_{k}^{(i)}$, $k \in K_{i}$, and $(Q \backslash X) . U_{k}, k \in K$, form, for $i=1,2$, a pure partition of P refining P. Hence, $\quad \Sigma\left(r E\left(V_{k}^{(i)}\right): k \in K_{i}\right)+\Sigma r E\left((Q \backslash X) \cdot U_{k}: k \in K\right) \in A$ for $i=1,2$, and therefore $\left|\Sigma\left(r E\left(V_{k}^{(1)}\right): k \in K_{1}\right)-\Sigma\left(r E\left(V_{k}^{(2)}\right): k \in K_{2}\right)\right|<\varepsilon$. We have shown that $\sum\left(r E\left(V_{k}\right): k \in K\right)$ exists for any $\left(V_{k}: k \in K\right) \subseteq(S, \varphi)$ and that the set of these $\sum\left(r E\left(V_{k}\right): k \in K\right)$ is of diameter $\leqslant \varepsilon$. Thus, we have proved that $\cap(G: G \in G)$ contains exactly one point, say b. It is easy to prove that $\operatorname{RE}(S)=b$.
4.8. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be a σW-space. Let ($X_{n}, P: \cap \in N$) be a pure partition of P. Assume that, for any $n \in N, \operatorname{RE}\left(X_{n} \cdot P\right)$ exists. Then $\operatorname{RE}(P)=$ $=\Sigma\left(\operatorname{RE}\left(X_{n} \cdot P\right): n \in N\right)$, unless neither $\operatorname{RE}(P)$ ncr $\sum\left(R E\left(X_{n} \cdot P\right): n \in N\right)$ exists.

Proof. Put $a_{n}=\operatorname{RE}\left(X_{n} \cdot P\right)$. - Assume that $\sum\left(a_{n}: n \in N\right)$ exists and put $a=\sum a_{n}$. Let G be a neighborhood of a in \vec{R}. Clearly, there are neighborhoods G_{n} of a_{n}, $n \in N$, such that if $x_{n} \in G_{n}$, then $\sum x_{n} \in G$. For any $n \in N$, let ($Y_{n k}: k \in N$) be a pure partition of $X_{n} \cdot P$ such that if a pure partition ($Z_{j}: j \in N$) refines ($Y_{n k}$: $: k \in N)$, then $\Sigma\left(r E\left(Z_{j}\right): j \in N\right)$ exists and is in G. Then $U=\left(Y_{n k}: n \in N, k \in N\right)$ is a pure partition of P, and it is easy to prove that, for any pure partition ($T_{k}: k \in K$) refining U, we have $\sum\left(r E\left(T_{k}\right): k \in K\right) \in G$. This proves that $a=R E(P)$. - Assume that $\operatorname{RE}(P)$ exists and put $a=R E(P)$. We are going to show that $\sum\left(a_{n}: n \in N\right)$ exists and is equal to a. Let G be a neighborhood of a; for any $n \in N$, let G_{n} be a neighborhood of a_{n}. Then there are pure partitions $\mathcal{B}_{n}=$ $=\left(B_{n k} \cdot P: k \in N\right)$ of $X_{n} \cdot P, n \in N$, and $\mathcal{A}_{n}=\left(A_{k} \cdot P: k \in N\right)$ of P such that $\sum\left(r E\left(U_{n}\right)\right.$: $: n \in N$) $\in G_{n}$ for any ($U_{n}: n \in N$) refining $B_{n}, n \in N$, and $\sum\left(r E\left(V_{n}\right): n \in N\right) \in G$ for any ($V_{n}: n \in N$) refining Ω. Clearly, there is a pure partition ($Z_{k} \cdot P: k \in N$) of P refining \mathcal{A} and such that, for any $n \in N,\left(Z_{k} \cdot P: k \in N, Z_{k} \subset X_{n}\right)$ is a pure partition of $X_{n} \cdot P$ refining \mathcal{B}_{n}. Put $y_{n}=\sum\left(r E\left(Z_{k} \cdot P\right): k \in N, Z_{k} \subset X_{n}\right), y=\sum\left(r E\left(Z_{k} \cdot P\right) s\right.$ $: k \in N$). Then $y=\Sigma y_{n}, y \in G, y_{n} \in G_{n}$. Since the neighborhood G_{n} (of a_{n}) and G (of"a) have been arbitrary, this proves $\Sigma a_{n}=a$.
4.9. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be a σW-space. If $\operatorname{RE}(S)$ exists for each pure $S \in P$ (in particular, if $R E(P)$ exists and is finite), then the function $X \mapsto R E(X . P)$, defined on dom $\bar{\mu}$, is σ-additive and absolutely continuous with respect to μ.

This follows at once from 4.8 and 4.7.
4.10. Definition. A $6 W$-space $P=\langle Q, \varrho, \mu\rangle$ will be called (1) RE-regular if there are pure subspaces P_{n} such that $\Sigma\left(P_{n}: n \in N\right)=P$ and, for each $n \in N$, $R E(S)$ exists for all pure $S \leqslant P_{n}$, (2) strongly RE-regular if all $S \leqslant P$ are REregular and the following continuity condition is satisfied:
(*) if $S \leqslant P, S_{n} \leqslant S_{n+1} \leqslant S$ for all $n \in N$ and $w\left(S-S_{n}\right) \rightarrow 0$, then there are $X_{k} \in$ c dom $\bar{\mu}, k \in N$, such that $\cup X_{k}=Q, X_{i} \cap X_{j}=\emptyset$ for $i \neq j$, and, for any $k \in N$, $\operatorname{RE}\left(X_{k} . S\right)$ and all $\operatorname{RE}\left(X_{k} \cdot S_{n}\right)$ exist, $\operatorname{RE}\left(X_{k} \cdot S_{n}\right) \rightarrow \operatorname{RE}\left(X_{k} \cdot S\right)$.
4.11. Fact. Let $P \in \sigma$ m . If P is RE-regular, then so is each of its pure subspaces. If P is strongly RE-regular, then so is each of its subspaces.
4.12. Fact. Let $P \in \sigma$ 肠 and let $\left(P_{n}: n \in N\right.$) be a pure partition of P. If each P_{n} is RE-regular (strongly RE-regular), then so is P.

Proof. The assertion concerning RE-regularity is evident. - Let P_{n} be strongly RE-regular. Then, clearly, each subspace of P is RE-regular. Let $P_{n}=$ $=Y_{n} . P$; we can assume that $Y_{i} \cap Y_{j}=\varnothing$ for $i \neq j$. Let $S \leq P, S_{n} \leq S_{n+1} \leq S$ for all $m \in N, w\left(S-S_{m}\right) \rightarrow 0$. Then, for each $n, Y_{n} \cdot S_{m} \leqslant Y_{n} \cdot S_{m+1} \leqslant Y_{n} \cdot S, w\left(Y_{n} \cdot S-Y_{n} \cdot S_{m}\right) \rightarrow$ $\longrightarrow 0$ for $m \rightarrow \infty$, and therefore there are $X_{n k} \in \operatorname{dom} \bar{\mu}, k \in N$, such that $U\left(X_{n k}: k \in N\right)=Q, X_{n i} \cap X_{n j}=\emptyset$ for $i \neq j$, and $\operatorname{RE}\left(\left(X_{n k} \cap Y_{n}\right) \cdot S_{m}\right) \rightarrow \operatorname{RE}\left(\left(X_{n k} \cap Y_{n}\right), S\right)$ for $m \rightarrow \infty$. Put $Z_{n k}=X_{n k} \cap Y_{n}$. Clearly, $U\left(Z_{n k}:(n, k) \in N \times N\right)=Q, Z_{n k} \cap Z_{i j}=\varnothing$ for $(n, k) \neq(i, j)$. This proves that the continuity condition from 4.10 is satisfied.
4.11. Proposition. If $P=\langle Q, \varnothing, \mu\rangle$ is a strongly RE-regular $6 W$-space and $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{R}_{+}$is $\bar{\mu}$-measurable, then $\mathrm{f} . \mathrm{P}$ is strongly RE-regular.

Proof. By 2.3, f.P is a σW-space. For $n \in N$ put $X_{n}=\{x \in Q: n \leqslant f(x)<n+1\}$. Put $S=f . P$. Clearly, $X_{n} . S \leqslant n .\left(X_{m} \cdot P\right)$. By 4.11, $X_{m} . P$, hence also $n .\left(X_{n} . P\right)$ is strongly RE-regular. Therefore, by $4.11, X_{m} . S$ is strongly RE-regular. Since $S=\sum\left(Y_{n}: n \in N\right)$, where $Y_{0}=X_{0}, Y_{n+1}=X_{n+1} \backslash U\left(X_{k}: k \leqslant n\right)$, S is strongly RE-regular by 4.12 .
4.14. Proposition. Let $P=\langle Q, \varrho, \mu\rangle$ be a σW-space. If there are strongly RE-regular subspaces $P_{n} \leqslant P$ such that $\sum\left(P_{n}: n \in N\right)=P$, then P is strongly RE-regular.

Proof. Let $P_{n}=f_{n}$.P. Put $X_{n}=\left\{x \in Q: f_{n}(x)>0\right\}$. Put $g_{n}(x)=1 / f_{n}(x)$ if $x \in X_{n}$,
$g_{n}(x)=0$ if $x \in Q \backslash X_{n}$. Then $X_{n} \cdot P=g_{n} \cdot P_{n}$, hence, by 4.13, each $X_{n} \cdot P$ is strongly RE-regular. Put $Y_{0}=X_{0}, Y_{n+1}=X_{n+1} \cdot U\left(X_{k}: k \leqslant n\right)$. Then $P=\Sigma\left(Y_{n} \cdot P: n \in N\right), Y_{n} \cdot P=$ $=Y_{n} \cdot P$), hence $Y_{n} \cdot P$ are strongly RE-regular. By 4.12, this implies that P is strongly RE-regular.
4.15. Lemma. Let $P=\langle Q, \rho, \mu\rangle$ be a metric W-space. If $R D(P)<\infty$, then there is a pure partition ($P_{n}: n \in N$) of P such that all P_{n} are totally bounded.

Proof. Since $R D(P)<\infty$, there is a pure partition ($S_{n}: \Pi \in N$) of P such that the Rényi dimensions $\operatorname{Rd}\left(S_{n}\right)$ exist and are finite. Let $n \in N$. Since $\operatorname{Rd}\left(S_{n}\right)<$ $<\infty$, there exists, for any $k=1,2, \ldots$, a $\left(2^{-k}\right)$-partition $(X(n, k, j): j \in N$) of S_{n} such that $H(\bar{\mu} X(n, k, j): j \in N)<\infty$. For any n and k choose $m(n, k)$ such that $\frac{n}{\mu}(Y(n, k))>\mu Q-2^{-k}$, where $Y(n, k)=U(X(n, k, j): j \leqslant m(n, k))$. For $t \in N$ put $Z(n, t)=\cap(Y((n, k): k \geq t)$. It is easy to see that all $Y(n, k) . P$ are totally bounded and $\bar{\mu}(U(Y(n, k): n \in N, k \in N))=\mu Q$. From this, the assertion follows at once.
4.16. Proposition. Let $P=\langle Q, \varrho, \mu\rangle$ be a metric W-space. If P is almost Borel partition-regular or $R D(P)=0$, then P is strongly RE-regular.

Proof. By 4.14 and 4.15 , it is sufficient to prove the proposition under the assumption that P is totally bounded. - Under this assumption, the continuity condition from 4.10 is satisfied; this follows from 3.34 and 4.3 if P is partition-regular, and is an easy consequence of 3.28 if $\operatorname{RD}(P)=0$. Since, by 4.3 , RE(S) exists for all $S \leqslant P$, we have shown that P is strongly RE-regular.
4.17. Remarks. A) I do not know whether every RE-regular σW-space is strongly RE-regular. - B) If a σW-space is given, it can be quite difficult to decise whether it is strongly RE-regular. Therefore we introduce (see 4.18) a fairly wide class of σW-spaces contained in that of strongly RE-regular ones and defined in terms not involving the behavior of RE.
4.18. Definition. A metric σW-space P will be called piecewise parti-tion-regular if it has a partition ($P_{n}: n \in N$) such that all P_{n} are partitionregular W-spaces.
4.19. Theorem. Every piecewise partition-regular metric 6 W-space is strongly RE-regular.

This is an immediate consequence of 4.16 and 4.14.
4.20. Fact. Every subspace of a piecewise partition-regular $6 W$-space is piecewise partition-regular. If P is a σW-space, $P=\Sigma\left(P_{n}: n \in N\right)$ and all P_{n} are piecewise partition-regular, then so is P.
4.21. Fact. If $P=\langle Q, \varrho, \mu\rangle$ is a piecewise partition-regular σW-space and $f: Q \rightarrow R_{+}$is $\bar{\mu}$-measurable, then $f . P$ is piecewise partition-regular.

Proof. Put $X_{n}=\{x \in Q: n \leqslant f(x)<n+1\}$. Clearly, $X_{n} .(f . P) \leqslant(n+1) P$, $\Sigma\left(X_{n} \cdot(f . P)\right)=f . P$. By 4.20, this proves the assertion.
4.22. Proposition. Let $\langle Q, \rho\rangle$ be an m-dimensional C^{l}-submanifold of some R^{n} (endowed with the $\boldsymbol{\ell}_{\infty}$-metric). If $P=\langle Q, \rho, \mu\rangle$ is a σW-space and $R D(S)=m$ for all non-null pure $S \leqslant P$, then P is piecewise partition-regular.

This is an easy consequence of 3.24 and 4.20.
4.23. We conclude this section with some simple facts which will be used later and an example of a partition-regular space P for which $X \mapsto r E(X . P)$ is not additive.
4.24. Fact. Let $\langle Q, \mu\rangle$ be a σ-bounded measure space and let T be thick in $\langle Q, \mu\rangle$. If $\nu_{n}, n \in N$, are measures on T and $\Sigma \nu_{n}=\mu \Gamma T$, then there exist measures μ_{n} on Q such that $\Sigma \mu_{n}=\mu, \nu_{n}=\mu_{n} \Gamma T$ for all $n \in N$.

Proof. If $X \in \operatorname{dom} \mu$, put $\mu_{n} X=\nu_{n}(X \cap T)$. It is easy to see that $\sum \mu_{n}=\mu, \mu_{n} \upharpoonright T=\nu_{n}$.
4.25. Proposition. Let $P=\langle Q, \varrho, \mu\rangle$ be a- W-space and let T be thick in $\langle Q, \mu\rangle$. Let φ be one of the functionals Rd, RD, rE. Then $\varphi(P)=\varphi(P r T)$ unless neither $\varphi(P)$ nor $\varphi(P r T)$ exists.

Proof. I. If $\varphi=R d$, then the assertion follows from 2.18. - II. Let $\boldsymbol{\varphi}=$ $=R D$ and assume that $\varphi(P)$ exists. For any partition ($P_{n}: n \in N$) of P, ($P_{n} \upharpoonright T: n \in N$) is a partition of $P P T$; by I, $R d\left(P_{n} \wedge T\right)=R d\left(P_{n}\right)$ whereas $\operatorname{Rd}(P)$ exists. This proves $\operatorname{RD}(P \Gamma T)=R D(P)$. - III. Let $\varphi=R D$ and assume that $\varphi(P \mid T)$ exists. If $\left(S_{n}: \cap \in N\right)=\left(\left\langle T, \rho, \nu_{n}\right\rangle: n \in N\right)$ is a partition of $P r T$, then, by 4.24 , there is a partition ($P_{n}: n \in N$) of P such that $S_{n}=P_{n} P T$, hence, by I, $\operatorname{Rd}\left(P_{n}\right)=$ $=\operatorname{Rd}\left(S_{n}\right)$ provided $\operatorname{Rd}\left(S_{n}\right)$ exists. This proves that $R D(P)=R D(P r T)$. - IV. The assertion concerning rE is an immediate consequence of II, III and 2.18.
4.26. Proposition. Let $P=\langle Q, \varrho, \mu\rangle$ be a σW-space and let T be thick in $\langle Q, \mu\rangle$. Then (1) $\operatorname{RE}(P)=\operatorname{RE}(P \upharpoonright T)$ unless neither $\operatorname{RE}(P)$ nor $R E(P \Gamma T)$ exists, (2) P is RE-regular (respectively, strongly RE-regular) if and only if so is PRT.

Proof. The assertion (1) follows from 4.25 and 4.24. The assertion (2) is an easy consequence of (1) and 4.24.
4.27. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ and $S=\langle Q, \varphi, \nu\rangle$ be weakly Borel metric W-space. Assume that there is a measure η such that both $\bar{\mu}$ and $\bar{\nu}$ are faithful extensions of $\boldsymbol{\eta}$. Let φ be one of the functionals Rd, RD, rE.

Then (1) for any $\delta>0, H_{\delta}(P)=H_{\delta}(S),(2) \varphi(P)=\boldsymbol{\varphi}(S)$ unless neither $\varphi(P)$ nor $g(S)$ exists.

Proof. I. Clearly, it is sufficient to consider the case $\bar{\mu}=\mu, \bar{\nu}=$ $=\nu$. Furthermore, if we put $\eta^{\prime} X=\mu X$ whenever $X \in \operatorname{dom} \mu \cap \operatorname{dom} \nu$, then η^{\prime} is a measure, $\eta^{\prime} \supset \eta$ and both μ and ν are faithful extensions of $\eta^{\prime \prime}$. Hence we can assume that dom $\eta=(\operatorname{dom} \mu) \cap(\operatorname{dom} \nu)$. - II. If $\left(X_{n}: \cap \in N\right)$ is a δ-partition of P, then there are $Y_{n} \in \operatorname{dom} \eta$ such that $\mu\left(X_{n} \Delta Y_{n}\right)=0$, hence $\mu X_{n}=\eta Y_{n}$. Put $V_{n}=Y_{n} \cap \bar{X}_{n}$. Clearly, diam $V_{n} \in \delta^{\nu}, V_{n} \in \operatorname{dom} \eta$. It is easy to see that $\eta V_{n}=\mu X_{n}$ and $\eta\left(V_{i} \cap V_{j}\right)=0$ whenever $i \neq j$. Put $Z_{n}=V_{n} \backslash u\left(V_{k}\right.$: $: k \neq n$). Then ($Z_{n}: n \in N$) is a δ-partition of $S, \nu Z_{n}=\mu X_{n}$. This proves that $H_{\delta}(P) \geq H_{\delta}(S)$. The proof of $H_{\delta}(S) \geq H_{\delta}(P)$ is analogous. - III. The proof of (2) is analogous to that of 4.25 and can be omitted.
4.28. Proposition. Let $P=\langle Q, \varrho, \mu\rangle$ and $S=\langle Q, \varrho, \nu\rangle$ be weakly Borel metric W-spaces. Assume that there is a measure $\boldsymbol{\eta}$ such that both $\boldsymbol{\mu}$ and ν are faithful extensions of $\boldsymbol{\eta}$. Then (1) $\operatorname{RE}(P)=\operatorname{RE}(S)$ unless neither $\operatorname{RE}(P)$ nor RE(S) exists, (2) P is RE-regular (respectively, strongly RE-regular) if and only if so is S.

Proof. The first assertion follows easily from 4.27 and the fact (which is easy to prove) that every pure partition ($T_{n}: \cap \in N$) of P or of S is of the form ($x_{n} \cdot P: \cap \in N$) or, respectively, $\left(X_{n} \cdot S: \cap \in N\right)$ where $X_{n} \in \operatorname{dcm} \eta$. The assertion (2) is an easy consequence of (1).
4.29. Fact. Let $P=\langle Q, \rho, \mu\rangle \in m \cap$ and let $b \in R_{+}$. If $\mathrm{rE}(P)$ exists, then $r E(b . P)=b \cdot r E(P)+w P \cdot L(b)$. If $R E(P)$ exists, then $\operatorname{RE}(b . P)=b \cdot R E(P)+w P \cdot L(b)$.

Proof. For any $\delta^{\sigma}>0$, we have $\psi\left(\delta^{\sim}, b . P\right)=E\left(\delta_{*}(b . P)\right)-R W(b . P)|\log \delta|+$ $+L(b . w P)=b . E\left(\delta^{5} * P\right)-b . R W(P)\left|\log \delta^{\circ}\right|+b . L(w P)+w P . L(b)=b \psi\left(\delta^{\circ}, P\right)+w P . L(b)$. This proves the first assertion. The second assertion is an easy consequence of the first.
4.30. Example. Let $Q=\{0,1], P=\langle Q, \varrho, \lambda\rangle$. Let $S \subset Q$ and let both S and $T=Q \backslash S$ be thick in $\langle Q, \boldsymbol{\lambda}\rangle$. Define μ as follows: if $X \in Q, Y \cap S \in \operatorname{dom}(\lambda \mid S)$ and $X \cap T \in \operatorname{dom}(\lambda \vdash T)$, put $\mu X=((\lambda \vdash S)(X \cap S)+(\lambda \upharpoonright T)(X \cap T)) / 2$. Clearly, μ is a measure, $\mu \supset \lambda \mid Q, P^{\prime}=\langle Q, \varphi, \mu\rangle$ is a partition-regular weakly Borel metric W-space. Obviously, $H_{\delta}\left(P^{\prime}\right) \leqslant H_{\delta}(P)$ for all $\delta^{\prime}>0$; consequently, $\boldsymbol{\psi}\left(\delta^{\sigma}, P^{\prime}\right) \leqslant$ $\leqslant \boldsymbol{\psi}\left(\delta^{\sigma}, P\right)$ for all $\delta^{\gamma}>0$. Since, by 3.26, $\mathrm{rE}\left(\mathrm{P}^{\prime}\right)$ exists, and, by 3.38, $\mathrm{rE}(P)=$ $=0$, we get $\mathrm{rE}\left(\mathrm{P}^{\prime}\right) \leqslant 0$. On the other hand, since both S and T are thick in $\langle Q, \lambda\rangle$, we have, by 4.25 and $3.38, \operatorname{rE}(P \mid S)=0, \operatorname{rE}(P \mid T)=0$. Since $\mu P S=$ $=(\lambda \mid S) / 2, \mu+T=(\lambda \mid T) / 2$, we get, by $4.29, r E\left(P^{\prime}>S\right)=w(P \mid S) . L(1 / 2)=(1 / 2)=$ $=1 / 2$, and similarly $\mathrm{rE}\left(\mathrm{P}^{\prime} \mid T\right)=1 / 2$. Since, by $4.25, \mathrm{rE}\left(S . P^{\prime}\right)=\mathrm{rE}\left(P^{\prime} P S\right)$, $\mathrm{rE}\left(\mathrm{T} . \mathrm{P}^{\prime}\right)=\mathrm{rE}\left(\mathrm{P}^{\prime} P \mathrm{~T}\right)$, we get $\mathrm{rE}\left(S . P^{\prime}\right)+\mathrm{rE}\left(\mathrm{T} . \mathrm{P}^{\prime}\right)=1$ whereas $\mathrm{rE}\left(\mathrm{P}^{\prime}\right) \leq 0$.
5.1. Fact. Let $P=\langle Q, \rho, \mu\rangle$ be a $6 W$-space. Then there is at most one function $(\bmod \mu) F=\left[f \boldsymbol{f}_{\mu}\right.$ such that $(*) f$ is $\bar{\mu}$-measurable and the functions $X \mapsto R E(X . P)$ and $X \mapsto \int_{X} F d \mu$ coincide.

Proof. Suppose that both $F=[f]_{\mu}$ and $G=[g]_{\mu}$ satisfy (*) and F\&G. Clearly, either (1) $\vec{\mu}\{x \in Q: f(x)>g(x)\}>0$ or (2) $\vec{\mu}\{x \in Q: f(x)<g(x)\}>0$. It is sufficient to consider the case (1). Then there are reals r and s and $a n \in$ © dom $\bar{\mu}$ such that $0<\mu X<\infty$ and $f(x)>r>s>g(x)$ whenever $x \in X$. Clearly, both \int_{X} fd μ and \int_{X} gd μ exist, hence, \int_{X} fd $\mu=\operatorname{RE}(X . P)=\int_{X} \operatorname{gd} \mu$. This is a contradiction since \int_{X} fd $\mu \geq r . \mu X, \int_{X} g d \mu \leq s . \mu X$.
5.2. Definition. If $P=\langle Q, \varrho, \mu\rangle$ is a σW-space, then $F \in \mathcal{F}[\mu]$ satisfying the condition (*) from 5.1 will be called the residual entropy density or the RE-density of P and will be denoted by $\nabla(P)$ (or $\nabla^{\text {res }}(P)$ if there is a danger of confusion with the dimensional densities introduced in [6], 4.1 and 4.9). If no F satisfying (*) exists, we will say that $\nabla(P)$ does not exist.
5.3. Proposition. A $6 W$-space P is RE-regular if and only if $\nabla(P)$ exists.

Proof. I. Let $P=\langle Q, \rho, \mu\rangle$ be RE-regular. Then there are pure subspaces $P_{n}=A_{n} \cdot P, n \in N$, such that $\sum P_{n}=P$ and, for each $n \in N$, RE(S) exists for all pure $S \leqslant P_{n}$. We can assume that $\cup A_{n}=Q, A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. By 4.9, for any $n \in$ © N, the function $X \mapsto \operatorname{RE}\left(x . P_{n}\right)$, defined on dom $\bar{\mu}$, is σ-additive and absolutely continuous with respect to μ. Hence, by 1.14 , there are $\bar{\mu}$-measurable functions $f_{n}: Q \rightarrow R$ such that $R E\left(X . P_{n}\right)=\int_{X} f_{n} d \dot{\mu}$ for all $X \in \operatorname{dom} \overline{\mu_{\mu}}$. Since $X . P_{n}=\left(X \cap A_{n}\right) \cdot P$, we can assume that, for each $n, f_{n}(x)=0$ if $x \in Q \backslash A_{n}$. For any $x \in Q$, put $f(x)=\Sigma\left(f_{n}(x): n \in N\right)$. Clearly, for any $X \in \operatorname{dom} \bar{\mu}, \int_{X} f d \mu=$ $=\Sigma\left(R E\left(X . P_{n}\right): n \in N\right)$ provided either the sum or the integral exists. Since, by 4.8, $\operatorname{RE}(X . P)$ exists iff the sum $\Sigma\left(\operatorname{RE}\left(X . P_{n}\right): \cap \in N\right)$ exists, we have shown that $\nabla(P)=[f]_{\mu} .-I I$. Assume that $\nabla(P)$ exists; let $\nabla(P)=\lceil g]_{\mu}$. Put $K=\{k \in$ $\epsilon \bar{R}:|k| \in N \cup\{\infty\}\}$. If $k \in K \cap R$, put $B_{k}=\{x \in Q: k \leqslant g(x)<k+1\}$; if $k= \pm \infty$, put $B_{k}=\{x \in Q: g(x)=k\}$. It is easy to see that, for each $k \in K$, $R E(S)$ exists for all pure $S \leqslant B_{k} \cdot P$.
5.4. We use the following conventions (cf. [6], 4.2). - A) If $\mu \in \mathcal{M}(Q)$, $f \in \mathcal{F}(Q)$ and $g \in \mathcal{F}(Q)$ are $\vec{\mu}$-measurable, $F=[f]_{\mu}, G=[g]_{\mu}$, we put $f . G=$ $=F . G=[f g]_{\nu}$, where $\nu=f . \mu$. - B) Let $\mu \in \mathcal{M}(Q), \mu(n) \in \mu(Q), n \in N$. Let $\mu=\Sigma \mu(n)$. Assume that, for each $n \in N, \mu(n)=\gamma_{n} \cdot \mu$ for some $Y_{n} \in \operatorname{dom} \cdot \bar{\mu}$. If $F_{n} \in \mathcal{F}^{\sim}[\mu(n)], n \in N$, then $\sum F_{n}$ is defined as follows. Choose $X(n) \in$ dom $\vec{\mu}_{;}$ $n \in N$, such that $\cup X(n)=Q, X(i) \cap X(j)=\emptyset$ if $i \neq j$, and $\mu(n)=$ $=X(n) . \mu$ for all n. Choose f_{n} such that $F_{n}=\left[f_{n}\right]_{\mu(n)}$; for
$x \in X(n)$, put $f(x)=f_{n}(x)$. Put $\sum F_{n}=[f]_{\mu}$.
5.5. Fact. Let $P=\langle Q, \rho, \mu\rangle \in \sigma$ 20 ρ be RE-regular. Then (1) for any $X \in \operatorname{dom} \bar{\mu}, \nabla(X . P)=i_{x} . \nabla(P)$. (2) If ($P_{n}: \cap \in N$) is a pure partition of P, then $\nabla(P)=\boldsymbol{\Sigma}\left(\nabla\left(P_{n}\right): \cap \in N\right)$.
5.6. Fact. Let $P=\langle Q, \rho, \mu\rangle$ be an RE-regular $\boldsymbol{\sigma} W$-space and let $b \in R$ be positive. Then $\nabla(b . P)=\nabla(P)-\log b$.

Proof. Clearly, there are $X_{n} \in \operatorname{dom} \bar{\mu}, n \in N$, such that $U X_{n}=Q$ and all $\operatorname{RE}\left(X_{n} \cdot P\right)$ exist, hence $R E(S)$ exists whenever S is a pure subspace of some $X_{n} \cdot P$. Let $Y \in \operatorname{dom} \mu, Y \in X_{n}$ for some n. By the definition of the RE-density, $\operatorname{RE}(\mathrm{b} . \mathrm{Y} . \mathrm{P})=\int_{Y} \nabla(\mathrm{~b} . \mathrm{P}) \mathrm{d}(\mathrm{b} \mu), \operatorname{RE}(\mathrm{Y} . \mathrm{P})=\int_{Y} \nabla(\mathrm{P}) \mathrm{d} \mu$. By 4.29, RE(b.Y.P)= $=b . \operatorname{RE}(Y . P)+\mu Y . L(b)$. Hence $\int_{Y} \nabla(b . P) d(b \mu)=b \int_{Y} \nabla(P) d \mu=\int_{Y} L(b) d \mu$ and therefore $\int_{Y} \nabla(b . P) d \mu=\int_{Y}(\nabla(P)-\log b) d \mu$. Since $Y \subset X_{n}$ and $n \in N$ have been arbitrary, this proves the assertion.
5.7. Fact. Let $P=\langle Q, \rho, \mu\rangle$ be an RE-regular σW-space. Let $f: Q \rightarrow R_{+}$ be $\bar{\mu}$-measurable and let $f(Q)$ be countable. Then $\nabla(f . P)=(\operatorname{sgn} f) . \nabla(P)-$ $-(\operatorname{sgn} f) \cdot \log f, \operatorname{RE}(f . P)=\int(f . \nabla(P)+L \bullet f) d \mu$.

This follows easily from 5.5 and 5.6 .
5.8. Lemma. Let $P=\langle Q, \varrho, \mu\rangle$ be a strongly RE-regular W-space. Let $S=$ $=f . P \leqslant P, 0 \leqslant f(x) \leqslant 1$ for all $x \in Q$. Assume that $R E(S)$ exists and one of the following conditions is satisfied: (a) $\nabla(P)$ is bounded, (b) $\nabla(P)=\infty$, (c) $\nabla(P)=-\infty$. Then
(1) RE(S) $=\int(f . \nabla(P)+L \bullet f) d \mu$,
(2) $\nabla(S)=(\operatorname{sgn} f) . \nabla(P)-(\operatorname{sgn} f) \cdot \log f$.

Proof. Clearly, we can assume that $f(x)>0$ for all $x \in Q$. It is easy to see that there are $\bar{\mu}$-measurable functions $f_{n}, n \in N$, such that all $f_{n}(Q)$ are countable, $0 \leqslant f_{n} \leqslant f_{n+1} \leqslant f$ for all $n \in N$, and $\int\left(f-f_{n}\right) d \mu \rightarrow 0$ for $n \rightarrow \infty$. Put $S_{n}=f_{n} \cdot P$. Since $w\left(S-S_{n}\right) \rightarrow 0$, and P satisfies the continuity condition from 4.10, there is a partition $(X(k): k \in N)$ of Q such that all $X(k)$ are in dom μ and, for any $k, \operatorname{RE}\left(X(k) . S_{n}\right) \rightarrow \operatorname{RE}(X(k) .5)$ for $n \rightarrow \infty$. By 5.7, we have, for any $k \in N, n \in N, \operatorname{RE}\left(X(k) \cdot S_{n}\right)=\int_{X(k)}\left(f_{n} \cdot \nabla(P)+L \bullet f_{n}\right) d \mu$. - Consider the case (a). Since $\nabla(P)$ is bounded, it is easy to see that, for any k, $\int_{X(k)}\left(f_{n} \cdot \nabla(P)+L \bullet f_{n}\right) d \mu \rightarrow \int_{X(k)}(f . \nabla(P)+L \bullet f) d \mu$ for $n \rightarrow \infty$, hen$c e \operatorname{RE}(X(k) . S)=\int_{X(k)}(f . \nabla(P)+L \bullet f) d \mu$. Since $R E(S)$ exists, we have $\operatorname{RE}(S)=$ $=\boldsymbol{\Sigma}(\operatorname{RE}(X(k) . S): \mathrm{K} \in N)=\int(f . \nabla(P)+L \bullet f) d \mu$. - Consider the case (b). Then, for any $k \in N$, we have, for large $n, \int_{X(k)}(f . \nabla(P)+L \bullet f) d \mu=\infty, \operatorname{RE}(X(k)$. .$\left.S_{n}\right)=\infty$. This implies $\operatorname{RE}(X(k) . S)=\infty$. Since $R E(S)$ exists, we get $R E(S)=\infty$.

Clearly, $\int(f . \nabla(P)+L \circ f) d \mu=\infty=R E(S)$. In the case (c), the proof is analogous. - We have proved the formula (1). The formula (2) is an easy consequence.
5.9. Theorem. Let $P=\langle Q, \rho, \mu\rangle$ be a strongly RE-regular σW-space. Let $f: Q \rightarrow R_{+}$be $\bar{\mu}$-measurable. Then
(1) $\operatorname{RE}(f . P)=\int(f . \nabla(P)+L \bullet f) d \mu$, unless neither $\operatorname{RE}(f . P)$ nor the integral exists,
(2) $\nabla(f . P)=(\operatorname{sgn} f) . \nabla(P)-(\operatorname{sgn} f) . \log f$.

Proof. I. Consider the case of $0 \leqslant f(x) \leqslant 1$ for all $x \in Q$. Let $\nabla(P)=[g]_{\mu} c^{\circ}$ Put $K=\{k \in \vec{R}:|k| \in N \cup\{\infty\}\}$. If $k \in K,|k| \in N$, put $A_{k}=\{x \in Q: k \leqslant g(x)<k+1\}$; if $k= \pm \infty$, put $A_{k}=\{x \in Q: g(x)=k\}$. Choose a partition ($B_{n}: n \in N$) of Q such that all $B_{n} \cdot P$ are W-spaces. If $u=(k, n) \in N \times N$, put $V(u)=A_{k} \cap B_{n}$. By 5.8, for any $u \in N \times N, \quad \nabla(V(u) . P)=i_{V(u)} \cdot(\operatorname{sgn} f) . \nabla(P)-i_{V(u)} \cdot(\operatorname{sgn} f) \log f$. This implies; by 5.5 , the formula (2); the formula (1) is an immediate consequence. - II. Consider the general case. For $n \in N$, put $X(n)=\{x \in Q: n \leqslant f(x)<n+1\}$. By I and 5.5, we have $\nabla(X(n) . f . P)=i_{X(n)} \cdot(\operatorname{sgn} f) . \nabla(P)-i_{X(n)} \cdot(\operatorname{sgn} f) . \log f$. By 5.5 , this implies $\quad \nabla(f . P)=(\operatorname{sgn} f) . \nabla(P)-(\operatorname{sgn} f) . \log f$.
5.10. Corollary. Let μ be a measure on $R^{n}, n=1,2, \ldots$, absolutely continuous with respect to the Lebesgue measure $\boldsymbol{\lambda}$. If $\mathrm{f}=\mathrm{d} \boldsymbol{\mu} / \mathrm{d} \boldsymbol{\lambda}$ and, in arcordance with 1.19, ρ is the $\boldsymbol{\ell}_{\infty}$-metric on R^{n}, then

$$
R E\left\langle R^{n}, \varrho, \mu\right\rangle=-\int f \log f d \boldsymbol{\lambda}
$$

unless neither $R E\left\langle R^{n}, \rho, \mu\right\rangle$ nor the integral exists.

6

In the classical setting, which stems from C.E. Shannon [111, the differential entropy is defined for probability measures $\boldsymbol{\mu}$ on R^{n} possessing a density p and is equal to $-\int p \log p d \boldsymbol{\lambda}$. This concept can be easily extended to a considerably more general situation (see 6.1 below). We intend to show that the differential entropy and the regularized residual entropy are equivalent in a sense made precise in 6.9 and 6.10 below. Roughly speaking, under certain conditions, (1) if μ and ν are measures on Q, then there is a metric τ on Q such that, for any measurable $g: Q \rightarrow R_{+}$, the differential entropy of the pair $\langle g . \mu, \nu\rangle$ is equal to $R E\langle Q, \tau, g . \mu\rangle$, (2) if $\langle Q, \rho, \mu\rangle$ is a W-space, then, for any measurable $g: Q \rightarrow R_{+}, R E\langle Q, \rho, g . \mu\rangle$ is equal to the differential entropy $0 \div\langle\mathrm{g} . \mu, \mu\rangle$ where ν does not depend on g.
6.1. Definition. If μ and ν are $\boldsymbol{\sigma}$-bounded measures and μ is absolu-
tely continuous with respect to ν ，then the integral $\int L \circ D[\mu, \nu] d \nu$ ， provided it exists，will be denoted by $\mathrm{DE}\langle\mu, \nu\rangle$ and will be called the dif－ ferential entropy of μ with respect to ν（or of the pair $\langle\mu, \nu\rangle$ ）．

Remark．If μ is a probability measure on R^{n} ，possessing a density p with respect to $\boldsymbol{\lambda}$ ，then the differential entropy $D E\langle\mu, \lambda\rangle$ is equal to $-\int p \log p d \lambda$ ，i．e．to the differential entropy in the usual sense．

6．2．Definition．Let $\langle Q, \mu\rangle$ be a measure space．The space $\langle Q, \mu\rangle$ and the measure μ will be called strongly separable if there exists a countably gene－ rated σ－algebra $\mathcal{A} \subset$ dom μ satisfying the following conditions：（1）$Q \backslash\{x \in$ $\in Q:\{x\} \in \mathcal{A}\}$ is a μ－null set，（2）μ is a faithful extension of $\mu \upharpoonright \mathcal{R}$ ．

6．3．We are going to show that a strongly separable σ－bounded measure space $\langle Q, \mu\rangle$ can be equipped with a metric τ such that $\nabla\langle Q, \tau, \mu\rangle=0$ ．To this end，we shall need some lemmas．

6．4．Lemma．Let $M \subset R$ be bounded．Let ν be a finite measure on M such that $B(M) \subset$ dom $\nu, \nu M>0, \nu\{x\}=0$ if $x \in M$ ．Then there exist sets $T \subset M$ ， $S \subset R$ and a bijective mapping $f: T \rightarrow S$ such that（1）$T \in \operatorname{dom} \nu, \nu(M \backslash T)=0$ ， （2） $\bar{S}=[0, M]$ ，S is thick in $\langle\vec{S}, \lambda\rangle$ ，（3）$Y \in \mathcal{B}$（S）iff $f^{-1} Y \in \mathcal{B}$（ T ），（4）if $Y \in \mathscr{B}(S)$ ，then $\nu\left(f^{-1} Y\right)=(\lambda+S)(Y)$ ．

Proof．Let G be the largest open（in R ）set such that $\nu(G \cap M)=0$ ．Let （ $J_{k}: k \in K$ ）be the partition of G into open intervals．Put $T=M \backslash U\left(\bar{J}_{k}: k \in K\right)$ ． Clearly，$\nu(M \backslash T)=0$ ．Put $a=i n f T$ ．For $x \in T$ let $f(x)=\nu((a, x) \cap M)$ ．Put $S=$ $=\{f(x): x \in T\}$ ．－Suppose $f(x)=f(y)$ for some $x, y \in T, x \neq y$ ．Then $\nu((a, x) \cap$ $\cap M)=\nu((a, y) \cap M)$ ，hence $\nu((x, y) \cap M)=0$ and therefore $x, y \in V \backslash T$ ，which is a contradiction．We have shown that $f: T \rightarrow S$ is bijective．It is easy to prove that $\vec{S}=[0, . M]$ ．－Now we are going to show that（＊）if $J=(u, v) \subset \vec{S}$ ，then $\nu\left(f^{-1}(J)\right)=\lambda J$ ．Clearly，it is sufficient to prove $(*)$ for the case when $u, v \in S$ ．Let $u=f(b), v=f(c)$ ．Obviously，$\nu\left(f^{-1} J\right)=\nu((b, c) \cap T)=\nu((a, x) \cap T)-$ －$\nu((a, b) \cap T)=f(x)-f(b)=v-u=\boldsymbol{\lambda} J$ ．－Suppose that S is not thick in \vec{S} ．Then $\boldsymbol{\lambda}_{\mathrm{e}}(\mathrm{S})<\nu \mathrm{M}$ ，hence there is an open set Gc⿹丁口 such that GつS， $\boldsymbol{\lambda} G<\nu \mathrm{M}$ ．By （＊），we get $\nu\left(f^{-1} G\right)<\nu M$ ．Since $f^{-1} G=T$ ，this is a contradiction，which proves that S is thick in $\langle\bar{S}, \lambda\rangle$ ．－Clearly，$f: T \rightarrow S$ is continuous and the－ refore $Y \in ふ(S)$ implies $f^{-1} Y \in ふ(T)$ ．On the other hand，if UCT is open，then $f(U)$ is Borel in S ；this proves that $Y \in \mathcal{F}(S)$ whenever $f^{-1} Y \in \mathcal{J}(T)$ ．－To pro－ ve（4），it is sufficient to show that if $J \in \vec{S}$ is an open interval，then $\nu\left(f^{-1} J\right)=(\lambda \upharpoonright S)(J \cap S)$ ．By $(*)$ ，we have $\nu\left(f^{-1} J\right)=\lambda J$ ．Since S is thick， we have，by 2．17，$\lambda J=(\lambda \mid S)(J \cap S)$ ．

6．5．Lemma．Let $\langle Q, \mu\rangle$ be a strongly separable bounded measure space．

Assume that $\mu\{x\}=0$ for all $x \in Q$. Then there are sets $Q^{\prime} \subset Q, M \in R$ and a bijective mapping $\boldsymbol{\varphi}: Q^{\prime} \rightarrow M$ such that, with $\nu=\left(\mu \Gamma Q^{\prime}\right) \bullet \boldsymbol{\varphi}^{-1}$, we have (1) $Q^{\prime} \in \operatorname{dom} \mu, \mu\left(Q \backslash Q^{\prime}\right)=0$, (2) $\beta(M) \subset \operatorname{dom} \nu,(3) M$ is bounded, (4) ν is a faithful extension of $\nu \upharpoonright \beta(M)$.

Proof. Let \mathcal{N}_{c} dom $\boldsymbol{\mu}$ be a countably generated $\boldsymbol{\sigma}$-algebra satisfying (1) and (2) from 6.2. Let $X(n)$ be a sequence of sets generating Ω. Let $U \in \operatorname{dom} \boldsymbol{\mu}, \boldsymbol{\mu} U=0$, be such that $\{x\} \in \mathcal{A}$ whenever $x \in Q U U$. Put $Q^{\prime}=Q \backslash U$. For $n \in N$, put $g_{n}=i_{x(n)}$. For $x \in Q^{\prime}$ put $g(x)=\left(g_{n}(x): n \in N\right)$. It is easy to show that g is an injective mapping of Q^{\prime} into the topological space 2^{ω}. Let $\boldsymbol{\Omega}^{*}$ denote the σ-algebra consisting of all $A \cap Q^{\prime}$, where $A \in \mathcal{A}$. Clearly, for any $B \subset g\left(Q^{\prime}\right), g^{-1} B \in \mathcal{A}^{*}$ iff $B \in \mathcal{B}\left(g\left(Q^{\prime}\right)\right)$. Let $h: 2^{\omega} \rightarrow R$ be a homeomorphism; put $\boldsymbol{\varphi}=\mathrm{h} \circ \mathrm{g}, \mathrm{M}=\boldsymbol{\varphi}\left(Q^{\prime}\right)$. If $B \in \mathcal{B}(M)$, then $h^{-1} B \in \mathcal{B}\left(g\left(Q^{\prime}\right)\right)$, hence $\varphi^{-1} B \in \mathcal{A}^{*} C$ $c \operatorname{dom} \mu$ and therefore $B \in \operatorname{dom} \nu$. If $Y \in \operatorname{dom} \nu$, then $\varphi^{-1} Y \in \operatorname{dom}\left(\mu\left\ulcorner Q^{\prime}\right)\right.$, hence there is a set $V \in \Omega^{*}$ such that $\left(\varphi^{-1} Y\right) \Delta V$ is μ-null. Clearly, $Y \Delta \varphi(V)$ is ν-null and $\boldsymbol{\varphi}(V)$ is Borel in M. Thus, the condition (4) is satisfied. This proves the lemma since, evidently, M is bounded.
6.6. Proposition. Let $\langle Q, \mu\rangle$ be a strongly separable σ-bounded measure space. Assume that $\boldsymbol{\mu}\{x\}=0$ for all $x \in Q$. Then there exists a set $Q^{*} \subset Q$, a set $S c R$ and a bijective mapping $\Phi: Q^{*} \rightarrow S$ such that, with $\eta=\left(\mu \Gamma Q^{*}\right)$ -- Φ^{-1}, we have (1) $Q^{*} \in \operatorname{dom} \boldsymbol{\mu}, \boldsymbol{\mu}\left(Q \backslash Q^{*}\right)=0$, (2) S is thick in $\langle\bar{S}, \boldsymbol{\lambda}\rangle$, and if $\mu Q<\infty$, then \bar{S} is an interval of length μQ, (3) $\mathcal{B}(S) \subset$ dom $\boldsymbol{\eta}$, (4) $\eta B=(\lambda P S)(B)$ whenever $B \in \mathcal{B}(S)$, (5) $\boldsymbol{\eta}$ is a faithful extension of $\boldsymbol{\eta} \boldsymbol{\beta}(5)$.

Proof. I. Assume that $\mu Q<\infty$. Let Q^{\prime}, M, φ and ν be as in 6.5. Then, by 6.4, there are sets TCM, SCR and a bijective mapping $f: T \rightarrow S$ with properties described in 6.4. Put $Q^{*}=\varphi^{-1}(T)$. For $x \in Q^{*}$, put $\Phi(x)=f(\varphi(x))$. Put $\eta=\left(\mu\left\ulcorner Q^{*}\right) \bullet \Phi^{-1}\right.$. It is easy to see that the conditions (1) - (5) are satisfied. - II. Consider the general case. Let ($\left.Q_{n}: n \in N\right)$ be a μ-measurable partition of Q such that all μQ_{n} are finite. Choose disjoint closed intervals $J_{n} \in R$ such that $\boldsymbol{\lambda} J_{n}>\mu Q_{n}$. It follows easily from I that there are $Q_{n}^{*} \subset Q_{n}, S_{n} \subset J_{n}$ and $\Phi_{n}: Q_{n}^{*} \longrightarrow S_{n}$ such that, for each $n \in N, Q_{n}^{*}, S_{n}$ and Φ_{n} satisfy, with respect to $\mu \upharpoonright Q_{n}$, the conditions (1), (3) - (5) as well as the condition (2^{\prime}) S_{n} is thick in $\left\langle S_{n}, a\right\rangle$. Put $Q^{*}=U Q_{n}^{*}, S=U S_{n}, \boldsymbol{\Phi}(x)=\Phi_{n}(x)$ for $x \in Q_{n}^{*}$. It is easy to prove that Q^{*}, S, Φ satisfy (1) - (5).
6.7. Theorem. Let $\langle Q, \mu\rangle$ be a strongly separable σ-bounded measure space and let $\mu\{x\}=0$ for all $x \in Q$. Then there exists a metric r on Q such that $P=\langle Q, \boldsymbol{x}, \mu\rangle$ is a strongly RE-regular σW-space and $\nabla(P)=0$.

Proof. Let Q^{*}, S, Φ and η be as in 6.6. Choose an $a \in Q^{*}$. If $x, y \in Q^{*}$,
put $\tau(x, y)=\rho(\Phi x, \Phi y)$. If $x, y \in Q \backslash Q^{*}$, put $\tau(x, y)=1$ if $x \neq y, \tau(x, y)=0$ if $x=y$. If $x \in Q^{*}, y \in Q \backslash Q^{*}$, put $\tau(x, y)=\tau(y, x)=\rho(\Phi a, \Phi x)+1$. Clearly, τ is a metric on Q. By 4.4 and $4.26, P_{1}=\langle S, \rho, \lambda r S\rangle$ is strongly RE-regular, $\nabla\left(P_{1}\right)=0$. Hence, by $4.28, P_{2}=\langle S, \varrho, \eta\rangle$ is strongly RE-regular, $\nabla\left(P_{2}\right)=$ $=0$. Since $\Phi:\left\langle Q^{*}, \tau, \mu P Q^{*}\right\rangle \rightarrow\langle S, \varrho, \eta\rangle$ preserves both metric and measu$r e, P^{*}=\left\langle Q^{*}, \tau, \mu^{*} Q^{*}\right\rangle$ is strongly RE-regular and $\nabla\left(P^{*}\right)=0$. Since $\mu(Q\rangle$ $\left.\backslash Q^{*}\right)=0$, this proves the theorem.
6.8. Proposition. Let μ and ν be σ-finite measures on Q and let μ be absolutely continuous with respect to $\nu . \operatorname{Let}\langle Q, \rho, \nu\rangle$ be a strongly REregular ζW-space and let $\nabla\langle Q, \rho, \nu\rangle=0$. Let $P=\langle Q, \rho, \mu\rangle$. Then, for any $\bar{\mu}$-measurable $g: Q \rightarrow R_{+}$,

$$
\mathrm{DE}\langle\mathrm{~g} \cdot \mu, \nu\rangle=\operatorname{RE}(\mathrm{g} \cdot \mathrm{P}),
$$

unless neither $D E\langle g . \mu, \nu\rangle$ nor $R E(g . P)$ exists.
Proof. Let $[f]_{\nu}=D[\mu, \nu]$. Put $P^{\prime}=\langle Q, \rho, \nu\rangle$. If $\int L \bullet(g f) d \nu$ exists, then (1) evidently, $D E\langle g \cdot \mu, \nu\rangle=\int L \circ(g f) d \nu$, (2) due to $\nabla\left(P^{\prime}\right)=0$, we have, by 5.10, $\operatorname{RE}\left(\mathrm{gf} . \mathrm{P}^{\prime}\right)=\int L \circ(\mathrm{gf}) \mathrm{d} \nu$, hence $\operatorname{RE}(\mathrm{g} . \mathrm{P})=\int L \bullet(\mathrm{gf}) \mathrm{d} \nu$. If
$\int L \circ(g f) d \nu$ does not exist, then it is easy to see (using 5.10) that neither $D E\langle g . \mu, \nu\rangle$ nor $R E(g . P)$ exists.
6.9. Theorem. Let μ and ν be σ-finite measures on a set Q and let μ be absolutely continuous with respect to ν. Let ν be strongly separable and let $\nu\{x\}=0$ for all $x \in Q$. Then there exists a metric $\boldsymbol{\tau}$ on Q such that $P=\langle Q, \tau, \mu\rangle$ is a strongly RE-regular σW-space and, for any $\bar{\mu}$-measurable $g: Q \rightarrow R_{+}$,

$$
\mathrm{DE}(\mathrm{~g} \cdot \mu, \mu)=\operatorname{RE}(\mathrm{g} \cdot \mathrm{P}),
$$

unless neither $\operatorname{DE}(\mathrm{g} . \mu, \nu)$ nor $\operatorname{RE}(\mathrm{g} . \mathrm{P})$ exists.
This follows easily from 6.7 and 6.8 .
6.10. Theorem. Let $P=\langle Q, \rho, \mu\rangle$ be a strongly RE-regular σW-space and let $-\infty<\nabla(P)<\infty$. Put $\nu=2^{\nabla(P)}$. μ. Then, for any $\bar{\mu}$-measurable g: $: Q \rightarrow R_{+}$,

$$
\operatorname{RE}(g \cdot P)=D E\langle g \cdot \mu, \nu\rangle,
$$

unless neither $\operatorname{RE}(\mathrm{g} . \mathrm{P})$ nor $\mathrm{DE}\langle\mathrm{g} \cdot \mu, \mu\rangle$ exists.
Proof. Put $f=2^{\nabla(P)}, P^{\prime}=\langle Q, \varrho, \nu\rangle$. By 5.10 , we have $\nabla\left(P^{\prime}\right)=\nabla(P)-$ $-\log f=0$. Hence, again by 5.10 , if $\operatorname{RE}(g . P)$ exists, it is equal to $\operatorname{RE}\left((g / f) . P^{\prime}\right)=$ $=\int L \bullet(g / f) d \nu$. On the other hand, if $D E\langle g . \mu . \nu\rangle$ exists, then it is equal to $\int L \bullet D[g \cdot \mu, \nu] d \nu=\int L \cdot(g / f) d \nu$.

References

〔1〕 J．BALATONI，A．RÉNYI：On the notion of entropy（Hungarian），Publ．Math． Inst．Hungarian Acad．Sci．1（1956），5－40．－English translation： Selected papers of Alfred Rényi，vol．I，pp．558－584，Akadémiai Kiadó，Budapest， 1987.
［2］M．KATĚTOV：Extended Shannon entropies I，Czechoslovak Math．J．33（108） （1983），564－601．
［3］M．KATĚTOV：Extended Shannon entropies II，Czechoslovak Math．J． 35 （110） （1985），565－616．
［4］M．KATĚTOV：On extended Shannon entropies and the epsilon entropy，Comment． Math．Univ．Carolinae 27（1986），519－543．
［5］M．KATĚTOV：On the Rényi dimension，Comment．Math．Univ．Carolinae 27 （1986），741－753．
［6］M．KATĚTOV：On dimensions of semimetrized measure spaces，Comment．Math． Univ．Carolinae 28（1987），399－411．
$[7]$ E．C．POSNER，E．R．RODEMICH，H．RUMSEY，Jr．：Epsilon entropy of stochastic processes，Ann．Math．Statist．38（1967），1000－1020．
［8］E．C．POSNER，E．R．RODEMICH：Differential entropy and tiling，J．Statist． Phys．1（1969），57－69．
［9］A．RÉNYI：On the dimension and entropy of probability distributions，Acta Math．Acad．Sci．Hung．10（1959），193－215．
〔101 A．RÉNYI：Dimension，entropy and information，Trans．2nd Prague Conf．In－ formation Theory，pp．545－556，Prague， 1960.
［11］C．R．SHANNON：A mathematical theory of communication，Bell System Tech． J．27（1948），379－423，623－656．

Matematický ústav，Univerzita Karlova，Sokolovská 83， 18600 Praha 8， Czechoslovakia
（Oblatum 25．1．1988）

