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THE CLASS OF tf-SPACES IS INVARIANT OF 

CLOSED MAPPINGS WITH LINDELdF FIBRES 
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Abstract: In this paper, we give a new characterization of j-?-spaces and 
show the result listed in the title. 
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1. Introduction. &-spaces as an interesting generalization of metric 

spaces were introduced by OMeara in LO,, 0«1» and were studied by several 

authors (tF,l, £F21,£T3). In fF,] , L. Foged gave some characterizations of 

K-spaces and showed that the classes of «-spaces and of cs- 6*-spaces, in

troduced by Guthrie in CGI, coincide. But some open questions remain, such 

as the question, whether each closed s-image of metric spaces is an 1A-space, 

posed by Tanaka in £T1. 

Here, we shall give a new characterization of %* -spaces and show the 

result listed in the title; in particular, we answer the above question of 

Tanaka. Throughout this paper, we assume that all spaces are regular and all 

maps are continuous surjections, N denotes the set of all positive integers. 

Definition. A collection (P of subsets of a topological space X is a 

k-network for X if, given any compact subset C of X and any neighbourhood U 

of C, there is a finite subcollection # * of {p so that CfiU^'fiU. A col

lection & is a cs-network for X if, given any sequence S converging to 

x %X and any neighbourhood U of x, there is a P % & so that PfiU' and S is 

eventually in P. A regular space is an y;-space if it has a ^-locally fi

nite k-network, because of regularity, this collection can be chosen to con

sist of closi 

is Lindelof. 

sist of closed sets. Recall that a map f:X—> Y is an s-map if each f (y) 

- 351 -



2. Results. The following theorem gives a new characterization of 

y» -spaces. 

Theorem 1. The following conditions are equivalent: 

(a) X is an y%-space. 

(b) X has a €-discrete cs-network. 
(c) X has a €f-closure preserving, point-countable closed k-network. 

Proof. The fact that (a) and (b) are equivalent is well known (see 

LF.3). We only show (c) ••--•(b). First note that X is a 6*-space CSNJ. For each 

n*N, let 3* be a closure preserving, point-countable collection of closed 

subsets of X so that U3* is a k-network for X. Without loss of generality, 

let 3* be closed under finite intersections and 3*„ft3* ,, for each n. Cle-n n n+i 
arly, 3* is locally countable for each n. Thus there is an open cover, each 

element of which meets only countably many members of 3* only. Furthermore, 

there is a tf-discrete closed cover V = LJ i/ , each element of which 
m=l ' 

meets only countably many members of 3* , where each V is discrete. Thus 
n' n,m 

for each V * t f n m , we can denote k?n k ( V ) : k « N l the family of a l l the unions 

of f i n i t e subcollections of {P 6 3*n:PAV + 0$. For each h«N, l e t 
Fn,m,h ( V ) = U i P e 3 V P f i X s ( U t r n m ^ * V * ) l * T h e n e a c h Fn m h ( V ) i s c l e a r l y 
closed, ror each 1 « N, le t Fn . ,= U iP c 3 V - P * (X\ U 3** m h ) i , where 

n,rn,n,i x n,m,n 

*n\m,h=* P«*h = P f ^ V * * - Now let Pn,k,hfl(V)-Pn>k(V)n F ^ ^ V ) A 

n Fn, m,h > 1
 for each V s V n , m and let ^,,,k > h,rt,k,W(V) :nV n ji' 

It is clear that W*n m K n i is pairwise disjoint and closure-preserving, 

i.e., it is discrete since each element is closed. 

It remains to prove that tiT= {1ifn m . . , :n,m,k,h,le Ni is a cs-net-

work. Suppose that S is a sequence converging to x c X and U is an open set 

containing x. Then there is a finite subcollection T* of 3*n for some n «N 
o 

so that U &* fi U and S is eventually in U (P*. We also can assume x e 0 ̂ *. 
Oft 

But IT = t-> V is a cover, so there is a V * V 1 m with vcV„ for so-
no m=l V m ° no'mo ° 

me mn*N, in particular, ( (\7*)(\V* 0, thus Ufr*=P„ ., (V ) for some k e 
U O nn»Kn ° ° • N. Note that x is in X \ ( U t r n \ t v \) which is open, so there is a f i -

o' 0 

nite subcollection 3*' of 3 a
n for some h I N so that S is eventually in 
o 
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( J f and U 3 > ' s ( X \ ( U V n \-£Vo*))AU, in particular, 
o' o 

U3> ' i«F n h (VQ). Likewise, there is an 1 6N so that S i s eventually 
o' o' o 

i n F„ m K - ; i . e . , S is eventually in P„ . (V )AF„ m . (V J A 
W W Vko ° W n o ° 

ftpn * K I s p
n m u h I <V J a n d Pr, «, i, h i (V' ) & U. The proof is n«J^«»"«>--« n^»m«»k„,h„,l r t o n„»ro.k .h .1 o r 

O O O 0 O 0 O 0 0 O 0 0 O 0 
complete. 

Remark. If we say that a collection 3* is a weak cs-network for X if, 

given any sequence S converging to x and any neighborhood U of x, there is a 

finite subcollection <P* of P such that U ( P * £ U and S is eventually in 

U tP*, then a k-network is, of course, a weak cs-network and the above 

proof shows that the following conditions are equivalent: 

(a) X is an as -space. 

(b) X has a 6f-closure preserving, point-countable closed weak cs-net

work. 

(c) X has a ef-discrete cs-network. 

(d) X has a Cf-discrete k-network. 

Recall that a continuous map f :X — • Y is called compact-covering if for 

every compact subset B *-»Y there exists a compact A&X such that f(A)=B. 

Lemma 1. Every closed s-map is compact covering. 

Proof. First we note that the preimage of a compact subset (or Lindelbf 

subset) under a closed s-map f is a Lindelbf subset. Then by virtue of a the

orem of E. Michael stating that every closed mapping of a paracompact space X 

onto an arbitrary space Y is compact-covering, the lemma is proved. 

Lemma 2. Every closed s-image of an *f-space has a 6*-closure preser

ving, point-countable closed k-network. 

Proof. For each niN, let (P be a discrete collection of closed subsets 

of X so that U£P is a k-network for X and f:X — # Y is a closed s-map. Then n <» 
one easily verifies that «£f(B):Bc1*= KJ f \ is ff-closure-preserving and, 

n=l n 

since f is compact-covering by Lemma 1, that {f(B):B e ̂ 1 is a closed k-net

work for X. It remains to show that (P is point-countable. Let y«Y, for each 

x*f~" (y), n*N, there is an open neighborhood of x which meets only one ele

ment of P ; furthermore, there is an open subset U of X with U 3f »(y) so 
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that U meets only at most countably many elements of Cp_. Thus the point y 

belongs to countably many elements of 4f(B):B 6 # $ at most. 

Theorem 2. Every closed s-image of an &-space is an A*-space. 

Corollary. Every closed s-image of a metric space is an !A -space. 
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