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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

EXTENSIONS OF NONEXPANSIVE MAPPINGS IN THE HILBERT BALL WITH 

THE HYPERBOLIC METRIC. PART II. 

Tadeusz KUCZUMOW and Ada* STACHURA 

Abstract: If in a real Hilbert space HR we take an open unit ball B R 

with the hyperbolic metric £>,, then every *1-nonexpansive mapping T from 

a subset XCB R into BR has a f>,-nonexpansive extension on the whole BR. 

Key words: Hyperbolic metric, nonexpansive mappings, fixed points. 

Classification: 47H10, 32H15 

Let HR be a real Hilbert space and let BR be an open unit ball in HR. 

Then HR (BR) can be identified with the subset of a complex Hilbert space H 

(an open unit ball B in H). Thus the hyperbolic metric p , in B (£9]) may be 

restricted to BR. There are three reasons, why we are interested in (BR»tjO: 

(i) there is an obvious connection of (BR,p,) with Klein's model of 

the hyperbolic geometry; 

(ii) the distance p, is visibly a projective invariant (L7J); 

(iii) (BR,p1) has metric properties different from properties of 

(B-p-h 
As a direct consequence of Theorem 1 in £5] we get that every mapping 

U«M , where U is a unitary operator in HR and M is the Mbbius transformati

on with a«B R (£3]), is an isometry in B R , p , ) . Now we show something more. 

Trjeoren 1. Every isometry from BR onto BR has the form T=U«M , where 

M is the Mbbius transformation and U is a unitary linear mapping in HR. 

Proof: Let -a be equal to T (0). Then U1=T«M has the following pro

perties : 

(i) U-W--0, 

(ii) (U1x,U1y)=(x,y) for all x,y c BR (it follows from the equality 

^(U1x,U1y)=6(x,y)), 
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( i i i ) Ux(tx)=tUxx for x€BR\€0J and t 6(-l/Hx|l,l/lx|) because 

UU1(tx)-tU]x|2= HU1(tx)H2 + Ht^xl2 - 2t(Ux (tx),U1x)==0. 

Therefore the mapping 

rO if x=0 

4 
ťгixiiu-j 

v
2|lx 

is well defined and unitary. 

Corollary 1. If T is an isometry from B
R
 onto B

R
 and has no fixed 

point in B
R
, then its fixed set in B

R
 closure consists of either one point 

or two points. 

Corollary 2. If T is an isometry from B
R
 onto B

R
 which has two fixed 

points in B
R
 and no fixed points in B

R
, then the iterates T

1
 of T converge to 

a fixed paint of T. The convergence is uniform on the ball of radius r<l. 

The above corollaries are consequences of Theorem 1, Theorem 4 from 15] 

and Theorem 3 from 1121. 

Now we consider a problem of extensions of nonexpansive mappings in B
R
. 

The key role in our considerations will be played by the following 

Theoren 2. If x
1
,...,x ,x,',...,x',x',p are points of B

R
 such that 

5»
1
(x

1
,x^) -fc {^(Xi*^) (i,j=1»2,...,m), then in B

R
 there exists a point p' 

such that {>
1
(x

i
,p) Aj>

1
(x

1
,p) (i=l,2,.. .,m). 

Proof: For every p , 2 0 the set 

P^= {q«B
R
: j>

1
(x

i
,q)6^tp

1
(x

i
,p) for i=l,2,...,mi 

is bounded, closed and nonempty if <u, is sufficiently large. Moreover, {A, & !K 

implies P ^ c P ^ . Hence there exists the smallest nonnegative number ec for 

which the set P^ is nonempty (£31). If oc £ 1 the proof is finished. 

Suppose that eC> 1 and let p' be an element of P^ . Without loss of ge

nerality we may assume that p=p'=0, 

^-^(xpO) >f>1(xi,0) for i=l,2,...,k 

and 

^ ( X p O ) 4p1(xj[,0) for i=k+l,...,m. 

To our surprise this simple assumption allows us to apply the method due 

to Schoenberg (1111). 

The element 0 must lie in the j&j-convex hull (equal to the usual convex 
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k 
h u l l ) of the set {xp...^^ J (£33) . Hence we have 0= SI f^x:, where 

k i=1 

^ , . . . , ^ £ 0 and -£ ^ = 1 . But then we have 

$*(x-\xj) 2r6r(x.,x^) ( i , j = l , 2 , . . . , k ) 

which imply 

(i-(x:,x:))2 (i-iix:ii2)(i-kx:a2) 
x J -C ± J < ]_ 

(l-(x.,x.))2""(l-llxiU
2)(l-llxjil

2) 

and finally ( x : , x : ) ^ ( x . , x . ) for i,j=l,...,k. Therefore we get 

k 9 k k k 

0= i:s ^x-'ip- 2: *** (ui(x.,x:)> s. t^i^cx x )=as: (u.x.a2. 
i=l x x i,j=l J J i,j=l J - J i=1 i i 

This cont rad ic t ion completes the proof. 

As a simple consequence of the above theorem we obtain the following two 

equivalent theorems. 

Theorem 3. Let {B(x<(A , r M ) } 

closed balls in (B, 

Let {B(x< u u , r< u f c ) } -, { B ( x ^ ( y , r f l y ) i -- be two families of 

R, p L ) . If PjOc^.x^) -S-fj/x^.x^) for all <u, A 6 I 

and the intersection O B(x^ ,r„ ) is nonempty, then so is the in te rsec-

tion C\ B(x^ , r ) . ^* x 

^.cl ^ ** 

Theorem 4. Let T:X~»BR be a p,-nonexpansive mapping of a subset X of 

BR into BR. There exists a <p,-nonexpansive mapping T:B R—•B R such that its 

restriction to X is identical with T. 

As we know fo r every nonexpansive mapping T:B—*• B with a fixed point we 

can construct nonexpansive mappings 

Slt=(l-t)I+tT, 
S2t=(l-t)I©tT, 

where 0 < t < l and p=(l-t)x 0 ty denotes the unique point of geodesic segment 

Lx,yl satisfying 

px(x,p)=t px(x,y) and p1(y,p)=(l-t) p1(x,y). 

These mappings have the same fixed point set as the mapping T and t h e i r ite

rations tend weakly to fixed points of T ([10]). 

Now we show that in general we cannot replace the weak convergence by 

the strong one. The example given below is a modification of the Genel-Lin-

denstrauss example ([21). 
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Ex.ai.ple 1. Let H
R
 be 1„ with the orthogonal basis {e

k
^. First we defi

ne inductively sequences {x.\ and {Tx.J which satisfy 

x . v& *i " 2 

for i=2,3,. . . . We start the construction of the sequence ixA by picking 
1 x-= o" e,. Let n 1 and <p+ satisfy conditions 

Nan 1 >10, 

? 1 = 3(n,-4) » 

n i + i 
I C c o a ^ ) 1 ^ ! . - ^ . 

The points x., i=l,...,n
1
 and Tx., i=l,...,n.,-l will be chosen in the plane 

P.=lin(0,e
1
,e2) according to the following rules: 

llxJ = UTx.ll, 1=1 ,2, . . . ,^-! 

(x i ,Tx i )= ilx±il2 0 0 5 ( 2 ^ ) , i = l , 2 , . . . , ^ - 1 

x 
x.+Tx. 

i + Г 2 , 1=1,2, . . . ,^- ! . 

It is clear that fo r every 1-fri, j£n,-l we have 

f.1(Tx.Txj)=pl(x.x.). 

In this place we must modify the Genel-Lindenstrauss example. We define 
the point Tx in the following way. Let y, be the next point a f te r x (in n1 l nx 

the plane P,) chosen according to the above rules. It means that 

Ц
У l
i = Ux

n
 tt and (x

n ) У l
)= lx

n
 ||

2
 cos(2

У l
). 

We set 

. 1\'zi*l\iain(-<fiiBj' 
where 1 1 

v x

n i z
r~l— • 

Then we have 

V \ l '- l\* and fl^\'lx^ * ?1<\'*J 

for i=l,2,...,n
1
~l, since 

cos((n
1
-i) <f^) cos(^

1
)cos((n

1
-i-l) <f^) 

and 
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Ü - t t T x n Ц 2 ) ( l - ЦTx.Ц2) 

* ( T x n ,Tx.)= -= 
V * [ 1 - ttxn 11 ЦxjllcosC ? 1 ) c o s ( n г i - l ) ^ ) ] 2 

(1- ttx^XЫlx.Ц2) 
1 7 Ж « V X І } 

[ l - l l x n | ttx^|cos((nrl)y1)]Z n l 

for i = l , 2 , . . . , n 1 - l . 

As usual we put 

x.-. + T x „ 
n i n i 

V1" 2 

The point x , belongs to P 2 =l in(X ,,e-,) (and so w i l l a l l po ints x . , i= 

= n , + 2 , . . . , n 2 , w h i c h we w i l l construct next) and 

» v l B , i - , B ' H - t -
Since the angle between halfplanes 

and 
^ V + f 4 ( T X п Г X п i ) : A й R ' н > 0 { 

Q 2 = Í Л x n + 1 + ( 4 , e 3 : Л f e R , Í * > 0 І 

i s acute , the orthogonal p r o j e c t i o n s of TX and x on P9 show t h a t there 
n l n l l 

e x i s t s the angle t f ? > 0 s u c h that f o r every u€Q 2 w i th ttul= II xR , 1 and 
o --

( u ' x n + 1 ) ' ' " " n +1^ c o s ( , f 2 ) w e h a v e 

4 , l ( u»T xn1
) <Pl (V , X n i>" 

Similarly, applying the orthogonal projection of 

I + i 
u-Stu*Q2:(u,xn + 1) 2 Hull llxn +1U cos* |- - l^-l«JJuU * | J 

on linCx^.Tx^-x^) we get 

JYu''Txn1
)<?'l(u''xn1

)-

z l + x
n i 

Taking w1= — K we obtain 
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^(AwpTxp < j» 1 (Aw 1 , x i ) 

for 0 ̂ IXw,ll<l, 7i > 0, i=l,2,...,n,-l, since the angle between w, and tx. 

is less than the angle between w, and x.. Hence for every u e {AwA + ̂ e-.: 

: A > 0 , ^ 0 } with I u!<l we have 

fl»1(u,Txi) <f1(u,xi) 

(i=l,2,...,n,-l) and therefore the number 

e^min { ^ ( u ' ^ ) - p^u'jx^.u'e R-,, 1-ii-s^-l} 

where 

R2= iu-sAt̂ +jLte-,: <IZ 0, | ^ . 4 | u i u | , (u-w-^fclul ilwjil cos f it} , 

is positive. Now i t is clear that we can find n2 and y 2 which satisfy 

n2-n, >10, 

ft T ? 

92= «n2-.n1 .l><*T" ' 

(~)2 

tanh"1 fl r$ 7y \ < «-,. 
^ [ l - I c o s ( 2 9 2 ) l 2 > ^ 

By this way we can repeat the procedure used for constructing x., i=l,...,n, 

by starting with x , and rotating always in the plane P? by a fixed angle 

2c,-. 1+ 

We must check whether T has been nonexpansive on its domain of definiti

on until now, i.e. whether 

PiCTx.Jx .^p^x^x. ) 

for lAi, j^n2. For n,+l-t»i, j < n 2 we have it by the same reason as in the 

first case. Applying the orthogonal projection of Tx and x on P9 we ob-
n l n l l 

tain 

f 1 ( T x n i > T x 1 ) < f l ( x n i , x 1 ) 

for n+2 6 i < n 2 . By the choice of ijr? ant* y? we a l s o n a v e 

Pl (Txn1'TV l )< fl (Xn
1

,V l )* 
For l -» i£n j - l and n1+14j<n2 we get 
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S>l(Txi'Txj) !-Pi(T'<i.xj)+fl(xj>Txj)<«0l(Txi,Xj)+£2 ~ 

All other cases were considered earlier. 
Now it is clear how to continue the inductive definition of ix.^and fTxl 

1 1 1 1 
The sequence {xA is f>,-bounded by tanh -k and also ^,-bounded from below 

by tanh" j . The sequence does not converge s trongly, however, {x.\ tends we
akly to 0. 

Next we use the extension proper ty of (BR, j O and we obtain a nonexpan-

sive mapping T:B R—*B R. It is easy to see that S* 1/2(
x
1)

 and so l/2^xP 
tend weakly to 0 only. Since we have a nonexpansive retraction of B on BR the 
analogous example can be constructed in (B, {&,). In this example T is not ho-
lomorphic. 

Now we consider BR (n22) furnished with the following metric which is 
also called hyperbolic (Ul): 

Pn((x1,...,xn)/y1,...,yn))=5x4n^1(vyk
) 

for (x1,...,xn).(y1,...,yn)€BR. 

For n=2 and HD=R
2 we have the example which shows that the Theorem 3 is 

K 
fa l se i n t h i s case. 

Exa^Jle 2. I f a ] L=(0,0,0,0), a2=(<4-,0,0,0), a3= (0,0, ^ , 0 ) , b ^ , b2=a2, 

by{^l/Z, ^ W ^ ,0,0) . 

r= -| tanh'V and 0-<ffr<l, then ? 2
( ai , aj^ = f2^Di,bj^ for i*^1'2*3* 

3 3 
r\ B(a.,r)*0, but O B(b.,r)=0. 
i=l x i=l x 

The case HR=R and BR=(-l,l)
n is different from the above one. 

Lamia 1. Let-x,,..., xm be real numbers from (-1,1) cR. If ri,...,rM are 1 m ' l 7 7 m 
positive numbers and (*|(x. ,x.).4r.+r. f°r i,j=l>2,...,m, then 
m 

r\ B(x.,r.)*0. 
i=l l l 

Proof: Let us notice that for any pair (i,j), l -» i<cj .&n we have 
B(a.,r.)nB(a.,r.)+fl. Now it is sufficient to apply the Helly's Theorem 
([6]). 
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Theorem 5. If H^=R and BR=(-l,l)c HR then every nonexpansive mapping 

T:X —-w B« has a nonexpansive extenstion on the whole Bp. 

Proof: It is sufficient to prove, by the Helly's Theorem, that for e-

very points x,,... ,*n+vyv... ,yn+1 * B R and positive numbers r1»"--rrH.1 

n+1 
with f n ^ p Y j ) * P n ^ x i , x j ^ ^» J=-»2» • • • »n+-) a™- ^ B(xi,ri)4«0 we also 

n+1 
have r \ B(yi,ri)

sH3-
i=l 

But then for every k=l,2,...,n we obtain ^(v.. ,y..)-s&r.+r. (l-si,3 £ 

6n+1) where y^Cy-*»•• • >yn<^
 ar»d we apply the Lemma 1. 
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