Commentationes Mathematicae Universitatis Carolinae

Tadeusz Kuczumow; Adam Stachura

Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 3, 403--410

Persistent URL: http://dml.cz/dmlcz/106656

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

EXtensions of nonexpansive mappings in the hilbert ball with THE HYPERBOLIC METRIC. PART II.

Tadeusz KUCZUMOW and Adam STACHURA

Abstract: If in a real Hilbert space H_{R} we take an open unit ball B_{R} with the hyperbolic metric ρ_{1}, then every ρ_{1}-nonexpansive mapping T from a subset $X \in B_{R}$ into B_{R} has a ρ_{1}-nonexpansive extension on the whole B_{R}.

Key words: Hyperbolic metric, nonexpansive mappings, fixed points.
Classification: $47 \mathrm{H} 10,32 \mathrm{H} 15$

Let H_{R} be a real Hilbert space and let B_{R} be an open unit ball in H_{R}. Then $H_{R}\left(B_{R}\right)$ can be identified with the subset of a complex Hilbert space H (an open unit ball B in H). Thus the hyperbolic metric ρ_{1} in B ([9]) may be restricted to B_{R}. There are three reasons, why we are interested in (B_{R}, Y_{1}):
(i) there is an obvious connection of (B_{R}, ρ_{1}) with Klein's model of the hyperbolic geometry;
(ii) the distance ρ_{1} is visibly a projective invariant ([7]);
(iii) ($\mathrm{B}_{\mathbf{R}}, \rho_{1}$) has metric properties different from properties of (B, ρ_{1}).

As a direct consequence of Theorem 1 in [5] we get that every mapping $U \bullet M_{a}$, where U is a unitary operator in H_{R} and M_{a} is the Möbius transformation with $a \in B_{R}([3])$, is an isometry in $\left.B_{R}, \rho_{1}\right)$. Now we show something more.

Theorem 1. Every isometry from B_{R} onto B_{R} has the form $T=U \circ M_{a}$, where M_{a} is the Möbius transformation and U is a unitary linear mapping in H_{R}.

Proof: Let -a be equal to $T^{-1}(0)$. Then $U_{1}=T \bullet M_{-a}$ has the following properties:
(i) $U_{1}(0)=0$,
(ii) $\left(U_{1} x, U_{1} y\right)=(x, y)$ for all $x, y \in B_{R}$ (it follows from the equality $\left.\sigma\left(U_{1} x, U_{1} y\right)=\sigma(x, y)\right)$,
(iii) $U_{1}(t x)=t U_{1} x$ for $x \in B_{R} \backslash\{0\}$ and $t \in(-1 /\|x\|, 1 /\|x\|)$ because
$W U_{1}(t x)-t U_{1} x\left\|^{2}=\right\| U_{1}(t x)\left\|^{2}+\right\| t U_{1} x \|^{2}-2 t\left(U_{1}(t x), U_{1} x\right)==0$.
Therefore the mapping
$U x= \begin{cases}0 & \text { if } x=0 \\ 2\|x\|_{1}\left(\frac{x}{2\|x\|}\right) & \text { if } x \neq 0\end{cases}$
is well defined and unitary.
Corollary 1. If T is an isometry from B_{R} onto B_{R} and has no fixed point in B_{R}, then its fixed set in B_{R} closure consists of either one point or two points.

Corollary 2. If T is an isometry from B_{R} onto B_{R} which has two fixed points in \vec{B}_{R} and no fixed points in B_{R}, then the iterates T^{i} of T converge to a fixed paint of T . The convergence is uniform on the ball of radius $\mathrm{r}<1$.

The above corollaries are consequences of Theorem 1, Theorem 4 from [5] and Theorem 3 from [12].

Now we consider a problem of extensions of nonexpansive mappings in $\mathrm{B}_{\mathbf{R}}$. The key role in our considerations will be played by the following

Theorem 2. If $x_{1}, \ldots, x_{m}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}, x_{m}^{\prime}, p$ are points of B_{R} such that $\rho_{1}\left(x_{1}^{\prime}, x_{j}^{\prime}\right) \leqslant \rho_{1}\left(x_{i}, x_{j}\right)(i, j=1,2, \ldots, m)$, then in B_{R} there exists a point $p^{\text {. }}$ such that $\rho_{1}\left(x_{i}^{\prime}, p^{\prime}\right) \leqslant \rho_{1}\left(x_{1}, p\right)(i=1,2, \ldots, m)$.

Proof: For every $\mu \geq 0$ the set

$$
P_{\mu}=\left\{q \in B_{R}: \varsigma_{1}\left(x_{i}^{\prime}, q\right) \leq \mu \rho_{1}\left(x_{i}, p\right) \text { for } i=1,2, \ldots, m\right\}
$$

is bounded, closed and nonempty if μ is sufficiently large. Moreover, $\mu \leq \boldsymbol{\lambda}$ implies $P_{\mu} \subset P_{\lambda}$. Hence there exists the smallest nonnegative number \propto for which the set P_{α} is nonempty ([31). If $\propto \leqslant 1$ the proof is finisined.

Suppose that $\alpha>1$ and let p^{\prime} be an element of $P_{\boldsymbol{\alpha}}$. Without loss of generality we may assume that $p=p^{\prime}=0$,
$\rho_{1}\left(x_{i}^{\prime}, 0\right)>\rho_{1}\left(x_{i}, 0\right)$ for $i=1,2, \ldots, k$
and
$\rho_{1}\left(x_{1}, 0\right) \leqslant \rho_{1}\left(x_{i}, 0\right)$ for $i=k+1, \ldots, m$.
To our surprise this simple assumption allows us to apply the method due to Schoenberg ([11]).

The element 0 must lie in the ρ_{1}-convex hull (equal to the usual convex
hull) of the set $\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}$ ([3]). Hence we have $0=\sum_{i=1}^{k} \mu_{i} x_{i}^{\prime}$, where $\mu_{1}, \ldots, \mu_{k} \geq 0$ and $\sum_{i=1}^{k} \mu_{i}=1$. But then we have

$$
\boldsymbol{\sigma}\left(x_{1}^{\prime}, x_{j}^{\prime}\right) \geq \boldsymbol{\sigma}\left(x_{i}, x_{j}\right) \quad(i, j=1,2, \ldots, k)
$$

which imply

$$
\frac{\left(1-\left(x_{i}^{\prime}, x_{j}^{\prime}\right)\right)^{2}}{\left(1-\left(x_{i}, x_{j}\right)\right)^{2}} \leqslant \frac{\left(1-\left\|x_{i}^{\prime}\right\|^{2}\right)\left(1-\left\|x_{j}^{\prime}\right\|^{2}\right)}{\left(1-\left\|x_{i}\right\|^{2}\right)\left(1-\left\|x_{j}\right\|^{2}\right)}<1
$$

and finally $\left(x_{i}^{\prime}, x_{j}^{\prime}\right)>\left(x_{i}, x_{j}\right)$ for $i, j=1, \ldots, k$. Therefore we get

$$
0=\left\|\sum_{i=1}^{k} \mu_{1} x_{1}^{\prime}\right\|^{2}=\sum_{i, j=1}^{k} \mu_{i} \mu_{j}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)>\sum_{i, j=1}^{k} \mu_{i} \mu_{j}\left(x_{i} x_{j}\right)=\left\|\sum_{i=1}^{k} \mu_{i} x_{i}\right\|^{2} .
$$

This contradiction completes the proof.
As a simple consequence of the above theorem we obtain the following two equivalent theorems.

Theorem 3. Let $\left\{B\left(x_{\mu}, \Gamma_{\mu}\right)\right\}_{, ~}, I_{1},\left\{B\left(x_{\mu}^{\prime}, \Gamma_{\mu}\right)\right\}_{\mu \in I}$ be two families of closed balls in $\left(B_{R}, \rho_{1}\right)$. If $\rho_{1}\left(x_{\mu}^{\prime}, x_{\lambda}^{\prime}\right) \leq \rho_{1}\left(x_{\mu}, x_{\lambda}\right)$ for all $\mu, \lambda \in I$ and the intersection $\bigcap_{\mu \in I} B\left(x_{\mu}, r_{\mu}\right)$ is nonempty, then so is the intersec$\operatorname{tion} \bigcap_{\mu \in I} B\left(x_{\mu}^{\prime}, r_{\mu}\right)$.

Theorem 4. Let $T: X \rightarrow B_{R}$ be a $\boldsymbol{\rho}_{1}$-nonexpansive mapping of a subset X of B_{R} into B_{R}. There exists a \mathcal{S}_{1}-nonexpansive mapping $\tilde{T}: B_{R} \rightarrow B_{R}$ such that its restriction to X is identical with T.

As we know for every nonexpansive mapping $T: B \rightarrow B$ with a fixed point we can construct nonexpansive mappings

$$
\begin{aligned}
& S_{1 t}=(1-t) I+t T, \\
& S_{2 t}=(1-t) I \oplus t T,
\end{aligned}
$$

where $0<t<1$ and $p=(1-t) \times \oplus t y$ denotes the unique point of geodesic segment $[x, y]$ satisfying

$$
\rho_{1}(x, p)=t \rho_{1}(x, y) \text { and } \rho_{1}\left(y^{\prime}, p\right)=(1-t) \rho_{1}(x, y)
$$

These mappings have the same fixed point set as the mapping T and their iterations tend weakly to fixed points of T ([10]).

Now we show that in general we cannot replace the weak convergence by the strong one. The example given below is a modification of the Genel-Lindenstrauss example ([2]).

Example 1. Let H_{R} be 1_{2} with the orthogonal basis $\left\{e_{k}\right\}$. First we define inductively sequences $\left\{x_{i}\right\}$ and $\left\{T x_{i}\right\}$ which satisfy

$$
x_{i}=\frac{x_{i-1}+T x_{i-1}}{2}
$$

for $i=2,3, \ldots$. We start the construction of the sequence $\left\{x_{i}\right\}$ by picking $x_{1}=\frac{1}{2} e_{1}$. Let n_{1} and φ_{1} satisfy conditions

$$
\mathrm{N} \Rightarrow \Pi_{1}>10
$$

$$
\begin{aligned}
& \rho_{1}=\frac{\pi}{3\left(n_{1}-1\right)} \\
& \frac{1}{2}\left(\cos \rho_{1}\right)^{n_{1}}>\frac{3}{8}=\frac{\frac{1}{4}+\frac{1}{2}}{2}
\end{aligned}
$$

The points $x_{i}, i=1, \ldots, n_{1}$ and $T x_{i}, i=1, \ldots, n_{1}-1$ will be chosen in the plane $P_{1}=\operatorname{lin}\left(0, e_{1}, e_{2}\right)$ according to the following rules:

$$
\begin{aligned}
& \left\|_{x_{i}}\right\|=\left\|T x_{i}\right\|, i=1,2, \ldots, n_{1}-1 \\
& \left(x_{i}, T x_{i}\right)=\left\|x_{i}\right\|^{2} \cos \left(2 \varphi_{1}\right), i=1,2, \ldots, n_{1}-1 \\
& x_{i+1}=\frac{x_{i}+T x_{i}}{2}, i=1,2, \ldots, n_{1}-1 .
\end{aligned}
$$

It is clear that for every $1 \leqslant i, j \leqslant n_{1}-1$ we have
$\rho_{1}\left(T x_{i} T x_{j}\right)=\rho_{1}\left(x_{i} x_{j}\right)$.
In this place we must modify the Genel-Lindenstrauss example. We define the point $T x_{n_{1}}$ in the following way. Let y_{1} be the next point after $x_{n_{1}}$ (in the plane P_{1}) chosen according to the above rules. It means that

$$
\left\|y_{1}\right\|=\left\|x_{n_{1}}\right\| \text { and }\left(x_{n_{1}}, y_{1}\right)=\left\|x_{n_{1}}\right\|^{2} \cos \left(2 \varphi_{1}\right)
$$

We set
where $T x_{n_{1}}=z_{1}+\left\|x_{n_{1}}\right\| \sin \left(\varphi_{1}\right) e_{3}$,

$$
z_{1}=\frac{y_{1}+x_{n_{1}}}{2}
$$

Then we have

$$
\left\|T x_{n_{1}}\right\|=\left\|_{x_{n_{1}}}\right\| \text { and } \rho_{1}\left(T x_{n_{1}}, T x_{1}\right)<\rho_{1}\left(x_{n_{1}}, x_{i}\right)
$$

for $i=1,2, \ldots, n_{1}-1$, since
$\cos \left(\left(n_{1}-i\right) \varphi_{1}\right) \cos \left(\varphi_{1}\right) \cos \left(\left(n_{1}-i-1\right) \varphi_{1}\right)$
and

$$
\begin{aligned}
\sigma\left(T x_{n_{1}}, T x_{i}\right) & =\frac{\left(1-\left\|T x_{n_{1}}\right\|^{2}\right)\left(1-\left\|T x_{i}\right\|^{2}\right)}{\left.\left[1-\left\|x_{n_{1}}\right\|\left\|x_{i}\right\| \cos \left(\varphi_{1}\right) \cos \left(n_{1}-i-1\right) \varphi_{1}\right)\right]^{2}}> \\
& >\frac{\left(1-\left\|x_{n_{1}}\right\|^{2}\right)\left(1-\left\|x_{i}\right\|^{2}\right)}{\left[1-\left\|x_{n_{1}}\right\|\left\|x_{1}\right\| \cos \left(\left(n_{1}-1\right) \varphi_{1}\right)\right]^{2}}=\sigma\left(x_{n_{1}}, x_{i}\right)
\end{aligned}
$$

for $i=1,2, \ldots, n_{1}-1$.
As usual we put
$x_{n_{1}+1}=\frac{x_{n_{1}}+T x_{n_{1}}}{2}$.
The point $x_{n_{1}+1}$ belongs to $P_{2}=\operatorname{lin}\left(x_{n_{1}+1}, e_{3}\right)$ (and so will all points x_{i}, $i=$ $=n_{1}+2, \ldots, n_{2}$, which we will construct next) and

$$
\left\|x_{n_{1}+1}\right\| \geq\left\|_{z_{1}}\right\| \geq \frac{1}{2} \frac{3}{4}=\frac{3}{8} .
$$

Since the angle between halfplanes

$$
\left\{\lambda x_{n_{1}+1}+\mu\left(T x_{n_{1}}-x_{n_{1}}\right): \lambda \in R, \mu>0\right\}
$$

and

$$
Q_{2}=\left\{\lambda x_{n_{1}+1}+\mu e_{3}: \lambda \in R, \mu>0\right\}
$$

is acute, the orthogonal projections of $T X_{n_{1}}$ and $x_{n_{1}}$ on P_{2} show that there exists the angle $\Psi_{2}>0$ such that for every $u \in Q_{2}$ with $\|u\|=\left\|x_{n_{1}+1}\right\|$ and $\left(u, x_{n_{1}+1}\right)>\left\|x_{n_{1}+1}\right\|^{2} \cos \left(\Psi_{2}\right)$ we have

$$
\rho_{1}\left(u, T x_{n_{1}}\right)<\rho_{1}\left(x_{n_{1}+1}, x_{n_{1}}\right) .
$$

Similarly, applying the orthogonal projection of

$$
u^{\prime} \in\left\{u \in \vec{Q}_{2}:\left(u, x_{n_{1}+1}\right) \geq\|u\|\left\|x_{n_{1}+1}\right\| \cos \frac{\pi}{3}, \frac{5}{16}=\frac{\frac{1}{4}+\frac{3}{8}}{2} \leq\|u\| \leq \frac{1}{2}\right\}
$$

on $\operatorname{lin}\left(x_{n_{1}+1}, T x_{n_{1}}-x_{n_{1}}\right)$ we get

$$
\rho_{1}\left(u^{\prime}, T x_{n_{1}}\right)<\rho_{1}\left(u^{\prime}, x_{n_{1}}\right) .
$$

Taking $w_{1}=\frac{z_{1}+x_{n}}{2}$ we obtain

$$
\rho_{1}\left(\lambda_{w_{1}}, T x_{i}\right)<\rho_{1}\left(\lambda w_{1}, x_{i}\right)
$$

for $0<\left\|\lambda w_{1}\right\|<1, \lambda>0, i=1,2, \ldots, n_{1}-1$, since the angle between w_{1} and \dot{T}_{i} is less than the angle between w_{1} and x_{i}. Hence for every $u \in\left\{\lambda w_{1}+\mu e_{3}\right.$: $: \lambda>0, \mu \geq 0 \xi$ with $\| u \backslash<1$ we have

$$
\rho_{1}\left(u, T x_{i}\right)<\rho_{1}\left(u, x_{i}\right)
$$

($i=1,2, \ldots, n_{1}-1$) and therefore the number

$$
\varepsilon_{2}=\min \left\{\rho_{1}\left(u^{\prime}, x_{i}\right)-\rho_{1}\left(u^{\prime}, T x_{u}\right): u^{\prime} \in R_{2}, 1 \leqslant i \leqslant n_{1}-1\right\}
$$

where

$$
R_{2}=\left\{u=\lambda_{w_{1}}+\mu e_{3}: \mu \geq 0, \frac{5}{16} \leq\|u\| \leq \frac{1}{2},\left(u, w_{1}\right) \geq\|u\|\left\|w_{1}\right\| \cos \frac{2}{5} \pi\right\},
$$

is positive. Now it is clear that we can find n_{2} and $\boldsymbol{\varphi}_{2}$ which satisfy

$$
\begin{aligned}
& n_{2}^{-n_{1}}>10, \\
& \varphi_{2}=\frac{\pi}{3\left(n_{2}-n_{1}-1\right)}<\frac{\varphi_{2}}{2}, \\
& \frac{3}{8}\left(\cos \varphi_{2}\right)^{n_{2}-n_{1}}>\frac{\frac{1}{4}+\frac{3}{8}}{2}=\frac{5}{16}, \\
& \tanh ^{-1}\left(1-\frac{\left(\frac{3}{4}\right)^{2}}{\left[1-\frac{1}{4} \cos \left(2 \varphi_{2}\right)\right]^{2}}\right)<\varepsilon_{2} .
\end{aligned}
$$

By this way we can repeat the procedure used for constructing $x_{i}, i=1, \ldots, n_{1}$ by starting with $x_{n_{1}+1}$ and rotating always in the plane P_{2} by a fixed angle ${ }^{2} \boldsymbol{q}_{2}$.

We must check whether T has been nonexpansive on its domain of definition until now, i.e. whether

$$
\rho_{1}\left(T x_{i}, T x_{j}\right) \leqslant \rho_{1}\left(x_{i}, x_{j}\right)
$$

for $1 \leqslant i, j \leqslant n_{2}$. For $n_{1}+1 \leqslant i, j<n_{2}$ we have it by the same reason as in the first case. Applying the orthogonal projection of $\mathrm{Tx}_{n_{1}}$ and $\mathrm{x}_{\mathrm{n}_{1}}$ on P_{2} we obtain

$$
\rho_{1}\left(T x_{n_{1}}, T x_{i}\right)<\rho_{1}\left(x_{n_{1}}, x_{i}\right)
$$

for $n+2 \leqslant 1<\pi_{2}$. By the choice of $\boldsymbol{\psi}_{2}$ and φ_{2} we also have

$$
\rho_{1}\left(T x_{n_{1}}, T x_{n_{1}+1}\right)<\rho_{1}\left(x_{n_{1}}, x_{n_{1}+1}\right)
$$

For $1 \leqslant i \leqslant n_{1}-1$ and $n_{1}+1 \leqslant j<n_{2}$ we get

$$
\begin{aligned}
& \rho_{1}\left(T x_{i}, T x_{j}\right) \leqslant \rho_{1}\left(T x_{i}, x_{j}\right)+\rho_{1}\left(x_{j}, T x_{j}\right)<\rho_{1}\left(T x_{i}, x_{j}\right)+\varepsilon_{2} \leq \\
& \leqslant \rho_{1}\left(x_{i}, x_{j}\right)-\varepsilon_{2}+\epsilon_{2}=\rho_{1}\left(x_{i}, x_{j}\right) .
\end{aligned}
$$

All other cases were considered earlier.
Now it is clear how to continue the inductive definition of $\left\{x_{i}\right\}$ and $\left\{T x_{i}\right\}$ The sequence $\left\{x_{i}\right\}$ is ρ_{1}-bounded by $\tanh ^{-1} \frac{1}{2}$ and also ρ_{1}-bounded from below by $\tanh ^{-1} \frac{1}{4}$. The sequence does not converge strongly, however, $\left\{x_{i}\right\}$ tends weakly to 0 .

Next we use the extension property of ($\mathrm{B}_{\mathrm{R}}, \rho_{1}$) and we obtain a nonexpansive mapping $T: B_{R} \rightarrow B_{R}$. It is easy to see that $S_{1,1 / 2}^{i}\left(x_{1}\right)$ and $S_{2,1 / 2}^{i}\left(x_{1}\right)$ tend weakly to 0 only. Since we have a nonexpansive retraction of B on B_{R} the analogous example can be constructed in (B, ρ_{1}). In this example T is not holomorphic.

Now we consider $B_{R}^{n}(n \geq 2)$ furnished with the following metric which is also called hyperbolic ([1]):

$$
\rho_{n}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max _{1 \leqslant k \leqslant n} \rho_{1}\left(x_{k}, y_{k}\right)
$$

for $\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right) \in B_{R}^{n}$.
For $n=2$ and $H_{R}=R^{2}$ we have the example which shows that the Theorem 3 is false in this case.

Example 2. If $a_{1}=(0,0,0,0), a_{2}=(\mu, 0,0,0), a_{3}=(0,0, \mu, 0), b_{1}=a_{1}, b_{2}=a_{2}$,

$$
b_{3}=\left[\frac{1-\left(1-\mu^{2}\right)^{1 / 2}}{\mu}, \frac{\left[\mu^{4}-\left(1-\left(1-\mu^{2}\right)^{1 / 2}\right)^{2}\right]^{1 / 2}}{\mu}, 0,0\right)
$$

$r=\frac{1}{2} \tanh ^{-1} \mu$ and $0<\mu<1$, then $\rho_{2}\left(a_{i}, a_{j}\right)=\rho_{2}\left(b_{i}, b_{j}\right)$ for $i, j=1,2,3$,

$$
\bigcap_{i=1}^{3} B\left(a_{i}, r\right) \neq \emptyset, \text { but } \bigcap_{i=1}^{3} B\left(b_{i}, r\right)=\emptyset .
$$

The case $H_{R}=R$ and $B_{R}^{n}=(-1,1)^{n}$ is different from the above one.
Lemma 1. Let x_{1}, \ldots, x_{m} be real numbers from $(-1,1) \in R$. If r_{1}, \ldots, r_{m} are positive numbers and $\rho_{1}\left(x_{i}, x_{j}\right) \leqslant r_{i}+r_{j}$ for $i, j=1,2, \ldots, m$, then

$$
\bigcap_{i=1}^{m} B\left(x_{i}, r_{i}\right) \neq \emptyset .
$$

Proof: Let us notice that for any pair (i, j), $1 \leqslant i<j \leqslant n$ we have $B\left(a_{i}, r_{i}\right) \cap B\left(a_{j}, r_{j}\right) \neq \emptyset$. Now it is sufficient to apply the Helly's Theorem ([6]).

Theorem 5. If $H_{R}=\mathbf{R}$ and $B_{R}=(-1,1) \subset H_{R}$ then every nonexpansive mapping $T: X \rightarrow B_{R}^{n}$ has a nonexpansive extenstion on the whole B_{R}^{n}.

Proof: It is sufficient to prove, by the Helly's Theorem, that for every points $x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1} \in B_{R}^{n}$ and positive numbers r_{1}, \ldots, r_{n+1}
 have $\bigcap_{i=1}^{n+1} B\left(y_{i}, r_{i}\right) \neq \varnothing$.

But then for every $k=1,2, \ldots, n$ we obtain $\rho_{1}\left(y_{k i}, y_{k j}\right) \leqslant r_{i}+r_{j}(1 \leqslant i, j \leqslant$ $\leqslant n+1)$ where $y_{i}=\left(y_{1 i}, \ldots, y_{n i}\right)$ and we apply the Lemma 1 .

References

[1] T. FRANZONI and E. VESENTINI: Holomorphic maps and invariant distances, North-Holland, Amsterdam, 1980.
[2] A. GENEL and J. LINDENSTRAUSS: An example concerning fixed points, Israel J. Math. 22(1975), 81-85.
[2] K. GOEBEL, T.SEKOWSKI and A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4(1980), 1011-1021.
[4] K. GOEBEL and W.A. KIRK: Iteration processes for nonexpansive mappings, Contemporary Mathematics 21(1983), 115-123.
[5] T.L. HAYDEN and T.J. SUFFRIDGE: Biholomorphic maps in Hilbert space have a fixed point, Pacif. J. Math. 38(1971), 419-422.
[6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten, Jber. Deutsch. Math. Verein 32(1923), 175-176.
[7] S. KOBAYASHI: Invariant distances for projective structures, Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161.
[8] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math., in print.
[9] T. KUCZUMOW and A. STACHURA: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I, Comment. Math. Univ. Carolinae 29(1988), 399-402.
[10] S. REICH: Averaged mappings in the Hilbert ball, J. Math. Anal. Appl. 109(1985), 199-206.
[11] I.J. SCHOENBERG: On a theorem of Kirszbraun and Valentine, Amer. Math. Monthly 60(1953), 620-622.
[12] T.J. SUFFRIDGE: Common fixed points of commuting holomorphic mappings, The Michigan Math. J. 21(1975), 309-314.

Instytut Matematyki UMCS,P1.Marii Curie-SkXodowskiej 1, 20-031 Lublin,Poland
(Oblatum 8.2. 1988)

