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EXTENSIONS OF NONEXPANSIVE MAPPINGS IN THE HILBERT BALL WITH
THE HYPERBOLIC METRIC. PART II.

Tadeusz KUCZUMOW and Adam STACHURA

Abstract: If in a real Hilbert space HR we take an open unit ball BR
with the hyperbolip metric 9)1, then every pl-nonexpansive mapping T from
a subset XcBR into BR has a ‘ol—nonexpansive extension on the whole BR.
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Let HR be a real Hilbert space and let BR be an open unit ball in HR'
Then HR (BR) can be identified with the subset of a complex Hilbert space H
(an open unit ball B in H). Thus the hyperbolic metric © in B ({91) may be
restricted to BR' There are three reasons, why we are interested in (BR,QI):

(i) there is an obvious connection of (BR’ pl) with Klein’s model of
the hyperbolic geometry;

(ii) the distance ©, is visibly a projective invariant L);

(iii) (BR, ?1) has metric properties different from properties of
@8, 1) .

As a direct consequence of Theorem 1 in [5] we get that every mapping
u 'Ma’ where U is a unitary operator in HR and Ma is the Mobius transformati-
on with aaBR (L3)), is an isometry in BR"‘I)' Now we show something more.

Theorem 1. Every isometry from BR onto BR has the form T=U°Ma, where
Ma is the Mobius transformation and U is a unitary linear mapping in HR‘

Proof: Let -a be equal to T'l(U). Then U1=T0M_a has the following pro-
perties:

(i) U1(0)=0,

(ii) (le,Uly)=(x,y) for all x,y € By (it follows from the equality
&(U;x,U;y)= 8(x,y)),
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(iii) Uy (8x)=tU;x for x €Bp\ 40} and t e (-1/lxll,1/ixk) because
WUy (o=t xkZ= 00y (bOR? + it il - 24U (80,U)x0==0.

Therefore the mapping

0 if x=0
Ux ={ x
Zﬂxwl(m) if x40

is well defined and unitary.

Corollary 1. If T is an isometry from BR onto BR and has no fixed
point in BR’ then its fixed set in BR closure consists of either one point
or two points.

Comllary 2. If T is an isometry from BR onto BR which has two fixed
points in BR and no fixed points in BR’ then the iterates T1 of T converge to
a fixed paint of T. The convergence is uniform on the ball of radius r<1.

The above corollaries are consequences of Theorem 1, Theorem 4 from [5)
and Theorem 3 from [12].

Now we consider a problem of extensions of nonexpansive mappings in BR'
The key role in our considerations will be played by the following

Theorem 2. If X;,...,X, 1',
' gol(xl,x ) & el(xl,xJ) (1,3 1,2,...,m), then in BR there exists a point p’
such that yl(xl,p )691(x1,p) (i=1,2,...,m).

,x“'l,xn;,p are points of By such that

Proof: For every w z 0 the set

P = {qeBy: gbl(xi',q) & @@, (x;,p) for i=1,2,... ,m¥
is bounded, closed and nonempty if s is sufficiently large. Moreover, m % A
implies P(“‘ ¢ P, . Hence there exists the smallest nonnegative number e for
which the set Py is nonempty ([31). If o¢c &1 the proof is finished.

Suppose that e > 1 and let p” be an element of Pog - Without loss of ge-
nerality we may assume that p=p’=0,

®1(x{,0) > @ (x;,0) for i=1,2,...,k
and

sol(xl',D) 4@, (x;,0) for izk+l,...,m.

To our surprise this simple assumption allews us to apply the method due
to Schoenberg ([111).
The element 0 must lie in the {°, -convex hull (equal to the usual convex
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k
hull) of the set {xl,...,xl;} ([3)). Hence we have 0= = p.ix,', where
i=1 11
K

("1""’f*k‘7'0 and Zl y.i=1. But then we have
i=
S'(xl',fo)ZS(xi,xj) (i,3=1,2,...,k)
which imply
. e\2 2 .2
(1-<xi,xj))25(1-uxiu2><1-uxi2> .
(l—(xi,xj)) (1-bx;l )(l-klel )

and finally (xi',xj')r(xA,x.) for i,j=1,...,k. Therefore we get

k k k
) 2 . ) 2
0= l\ii=l g xq U= Z *"1 ‘uj(xl,x.) > f:s;j=1 #iﬁ‘j(xixj)-"iﬁ G‘-ixill .

This contradiction completes the proof.

As a simple consequence of the above theorem we obtain the following two

equivalent theorems.

Theorem 3. Let {B(x ,r“)} wel’ {B(x“,r )% wsl be two families of
closed balls in (BR' q:l) If Pl(xp ’Xa) é(ol(x ”‘?«) for all @, A €1
and the intersection M B(x“ y w) is nonempty, then so is the intersec-

wel
tion M B(x , ,r. ).

wel “®’

Theorem 4. Let T:X<=p BR be a Ql—nonexpanswe mapping of a subset X of
BR into BR There exists a pl—nonexpanswe mapping T BR--NBR such that its
restriction to X is identical with T.

As we know for every nonexpansive mapping T:B—%B with a fixed point we

can construct nonexpansive mappings

Sp4=(1-)I+tT,
8,=(1-DI @ T,

where 0 <t <1 and p=(1-t)x ® ty denotes the unique point of geodesic segment
[x,y] satisfying
@, 0,p)=t @, (x,y) and @, (y,p)=(1-1) @, (x,y).

These mappings have the same fixed point set as the mapping T and their ite-
rations tend weakly to fixed points of T ([10]).

Now we show that in general we cannot replace the weak convergence by
the strong one. The example given below is a modification of the Genel-Lin-

denstrauss example ([21).
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Example 1. Let HR be 12 with the orthogonal basis {ek}. First we defi-
ne inductively sequences {xik and {Txii which satisfy
X +TX,
_i-1 Ti-1
X ® 2
for i=2,3,... . We start the construction of the sequence {xi§ by picking
X = % - Let " and P, satisfy conditions

Nan1>10,
I
©17 30D

1 m_3_
7 (cos@) "> g="

The points Xy i=1,...,n1 and Tx.l, i=1,...,n1-1 will be chosen in the plane

Pl=lin(0,el,e2) according to the following rules:

l\xin =UTh, i=1,2,..0,0000
- 2 i=
(x;,Tx;)= llxi“ cos(2 ¢)), i=1,2,...,n;-1

X, +Tx.
i Tx

= 1
Xi+1" 3 N 1-1,2,...,n1-1.

It is clear that for every 141, jsnl-l we have
pl(Txiij)= pl(xixj).

In this place we must modify the Genel-Lindenstrauss example. We define
the point Txn in the following way. Let Yy be the next point after X (in
1 1

the plane Pl) chosen according to the above rules. It means that
- _ 2
Uy, M = “xnlll and (xnl,vl)- lxnlll cos(2 ¢).
We set
Tx_ =z,+ bx_ I sin( g )e,,
where 1 1 " 9%
¥Y1%n
2
Then we have

1

llTxn k= lb_(n I and @M, Tx) < @ (x %)
1 1 1 1
for i=1,2,...,n;-1, ‘since

cos((n;-1) @) cos(@;)cos((n -i-1) &)
and
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6‘(T’(n ’T’(i)= . 2
1 [1- llxnlll lix;licos( g )cos(n,-i-1) ql)]

a- nxnluz)u- IxU?

6(x_ ,x;)
UM

> =
2
[1- uxnlﬂ ixp cos((n)-1) ¢;))
for i=1,2,...,n1—1.
As usual we put

x_ +T
n, "' %n

L S |
n1+1 2 :
The point xn1+1 belongs to P2=lin(Xn1+1,e3) (and so will all points X i=

=n1+2,...,n2,which we will construct next) and

lIx (Y

n

b=z

N
S
|\

+1 1

1
Since the angle between halfplanes

{A +@(Tx -x, ):A6eR, u>0%
1

X
ntl n

and

Q,= {?txnl+l+ ues: AR, w>0}
is acute , the orthogonal projections of TXrl and X, on F’2 show that there
exists the angle i{2>0 such that for every u&Q, with Hulk= “xnlﬂl and

(u,xnlﬂ) >lixn1+1l\2 cos( y,) we have
(u,Tx_ ) < @, (x x_ ).
¢1 n £1 n1+1’ n

Similarly, applying the orthogonal projection of

+

u'e {t{;ﬁzz(u,xnlﬂ) z hul ﬁxnldu cos %‘, —iz = —glull 6%‘

&=
@\

2

on lin(x Txnl—xnl) we get

n1+1’

Sbl(u',Txnl) <§°1(u',xn1).

Z,+X
1 ny
Taking W= —5 we obtain
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sbl(.'Awl,Txi) <§1(ﬁw1,xi)
for 0 CIAw1h<1, A>0, i=1,2,...,n1-1, since the angle between Wy and Txi
is less than the angle between w and xi.
:A>0,20% with | ul<l we have
gbl(u,Txi) <$°1(u’xi)

Hence for every u ¢ { 3N1+ mes:

(i=1,2,...,n1—1) and therefore the number
g,=nin {sbl(u',xi) - ?l(u',Txu):u'g Ry, 1&i%n;-13
where

Rp= $u=dw +ues: wz 0, i—sblullé%, (uw)zBull B, cos -g-vri,

is positive. Now it is clear that we can find n, and P, which satisfy

NNy >10,
PR /]
P2° 3, -D 72

1,3
no-n, 1.3
3 2™, 38 _5
gleosg) ™ > "5 1g

(—)
-1
tanh 1-
° ( [1— 7 cos(2g, )]2) @

By this way we can repeat the procedure used for constructing X;5 i=1,...,n1
by starting with X0 41 and rotating always in the plane l"2 by a fixed angle
1

29 .
2

We must check whether T has been nonexpansive on its domain of definiti-
on until now, i.e. whether

?I(Txi’TXj)!'Pl(xi’xj)

for 14i, j.4-n2. For n1+1 &j, j<n2 we have it by the same reason as in the

first case. Applying the orthogonal projection of Txn and X, on P2 we ob-
. 1 1

tain

;Dl(Txn ,Txi) <$°1("n ’xi)
for M2 &4 <n, . By the choice of Y, and pp we also have
gol(Txnl,Txn1+l) < 91(xn1’xn1+1)'

For lii!-nl—l and n;+1 éj<n2 we get
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<
g’l(Txi,ij) 4 @l(Txi,xj)'r .Pl(xj’ij) < gbl(Txi,xj)+32
£ @ (x;x3)" €+ &= @y (X5,%3)-
All other cases were considered earlier.

Now it is clear how to continue the inductive definition of §x ’xand {Txi
The sequence {x {is sol-bounded by tanh -1 7 and also pl-bounded from below

by tanh 1 . The sequence does not converge strongly, however, {x. i tends we-
akly to 0
Next we use the extension property of (BR, pl) and we obtain a nonexpan-

sive mapping T: BR—-b BR It is easy to see that S1 1/2(x ) and 52 1/2(x )
tend weakly to 0 only. Since we have a nonexpansive retraction of B on BR the
analogous example can be constructed in (B, gbl). In this example T is not ho-

lomorphic. N
Now we consider BR (nZ2) furnished with the followmg metric which is

also called hyperbolic ([11):
$°n(("1"'"xn)’(yl’”"yn))= TZt):én?l(xk’yk)

for (xl,...,xn).(yl,...,yn)eBa.

For n=2 and HR=R2 we have the example which shows that the Theorem 3 is

false in this case.

Example 2. If a =(0,0,0,0), a, =(,0,0,0), ag= (0,0, @,0), b1 ap, b2'32’

. =[1_(1_“2>1/2, L«.A—(l—(l-}z)l/z)z] ,O,DJ
3 (,u w

r= %— tanh'l‘w and 0<@<1, then @z(ai,aj)= fz(bi,bj) for i,3j=1,2,3,

3 3
m B(ai,r)#ﬂ, but M B(bi,r)=ﬂ. >
i=1 i=1

The case Hp=R and BR=(-1,1)n is different from the above one.

Lemma 1. Let x,...,X; be real numbers from (-1, eR. If Tyy...,f are
positive numbers and gbl(xi,xj)ériﬂ‘j for i,j=1,2,...,m, then

f\ B(x;,r;) 4.
i=1
Proof: Let us notice that for any pair (i,j), 1$i<j4n we have
B(al,r )nB(a.,r. )+ﬂ Now it is sufficient to apply the Helly s Theorem
(6)).
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Theorem 5. If HR=R and BR=(-1,1)c HR then every nonexpansive mapping

T:X -&B; has a nonexpansive extenstion on the whole BR.

Proof:" It is sufficient to prove, by the Helly's Thearem, that for e-

very points XpoeossXng1s¥poeees¥ne @ Bg and positive numbers TioeeesTiy

n+l
with fn(yi,yj) Aen(xi,xj) (i,3=1,2,...,n+1) and Ql B(xi,ri)qnﬂ we also
n+l
have qB(yi’ri)*ﬁ'
i=

But then for every k=1,2,...,n we obtain gbl(yki,ykj)&riwj (1£i,j £
&n+1) where yi=(y1i,...,yni) and we apply the Lemma 1.
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