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COMMENTATIONES MATHEMATICAE UNIVERSITATIS, CAROLINAE 

29,3 (1988) 

THE FACTORIZATION THEOREM FOR PARACOMPACT 2 -SPACES 

N.G. CHARALANBOUS 

Abstract: Factorization theorems and some corollaries are obtained for 
several classes of paracompact spaces. 

Key words and phrases: Uniform, topological, metric, Lindelof, Tychon-
off spaces; p-spaces, ff-spaces, X-spaces, closed and perfect maps. 

Classification: 54F45 

1. Introduction. The factorization theorem for a class of spaces *C is 

the following statement. 

(FT ) . For every map f:X—*Y into a member of *f , there exists Z in ^ 

and maps g:X—•Z and h:Z — • Y such that f=h»g, wZ-S.wY and dim Z.4dim X. 

FT is known to hold for several classes of spaces such as compact spa

ces, metric spaces and paracompact p-spaces H Q j . It is not known whether it 

holds for the class of all paracompact spaces. Bregman [1] asks whether FT 

holds for every map f:X—* Y between paracompact ef-spaces, having proved it 

for a restrictive class of such maps called €-discrete. We show in Section 3 

that a stronger version of FT holds for paracompact 2£-spaces. In fact, it 

holds for a bigger class of spaces that includes Lindelof spaces. The class 

of paracompact 2£-spaces is an important class of generalized metric spaces, 

and includes all paracompact p-spaces, all paracompact locally compact spaces 

and all paracompact €f-spaces (see £83 and the articles of Burke and Gruenha-

ge in [ 6 ] ) . In Section 4, we prove FT for a class of maps between paracompact 

€f-spaces that includes perfect maps. In Section 5, we establish FT for a mo

re general class of paracompact spaces that includes closed images of para

compact, locally compact spaces. Some corollaries of FT such as universal 

theorems are pointed out in Sections 3 and 5. 

In this paper, all spaces are Tychonoff, N denotes the set of positive 

integers, I the unit interval 10,1}, |JX and wX the Stone-Cech compactifica-

tion and weight of a space X, respectively,and |Y| the cardinality of a set 
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Y. For standard results in Dimension Theory the reader is referred to 15] 

and £11}. 

2. Preliiidrtary results. Our factorization theorems follow from three 

results concerning the covering dimension, Dim X, of a uniform space X £2,33. 

A uniformly open set of X is a set of the form f (G) where f:X—.*M is a u-

niformly continuous function into a metric space M (with its natural unifor

mity) and G is an open set of M. The set of all uniformly open sets of X is 

a base and it is closed under finite intersections and countable unions. DimX 

is defined in terms of uniformly open sets. Thus, Dim X-»n iff every finite 

uniformly open cover of X has a finite uniformly open refinement of order £ n . 

If every cozero set of X is uniformly open, then Dim X=dim X. This happens, 

e.g., when X is Lindelbf or metric. 

Theorea 1. Let f:X - * Y be a uniformly continuous function and {X^: 

: oo><f$ a collection of subspaces of X, where t is a cardinal not less 

than W(Y), the uniform weight of Y. Then there exists a uniformly continuous 

g:X—*Y x I such that f=jfog, where JT:Y X I —** Y is the canonical pro

jection, and Dim g(X00)--sDim X^, for each 06 < f 13, Theorem 5l. 

Theorem 2. Let f:X—•Y be a closed uniformly continuous function with 

Lindelbf fibers into a (paracompact) space Y with the property that every o-

pen cover of Y has a 6*-locally finite uniformly open refinement. Then X is 

paracompact and dim X^Dim X [3, Theorem 10]. 

Theorem 3. If YcX, then Dim Y&Dim X £2, Proposition 3J. 

3. FT for paracowpact ISL'-spaces. In this section, we prove a stronger 

version of FT for paracompact 2£'-spaces, a class of spaces that includes all 

Lindelbf spaces as well as all paracompact S-spaces. If «£ and ^ are covers 

of a space X, # is called a (mod *C )-net for X if whenever C c U with C in ^ 

and U open in X, there is some F in 3F such that C c F c U . We call X a 2 # -

space if it has a closed cover *C consisting of Lindelbf subspaces and a 6T -

locally finite (mod *£ )-net & . Recall that if each C in f is countably 

compact (respectively, compact), then X is called a 2-space (respectively, a 

strong 2-space) £8]. Since a paracompact countably compact space is compact, 

every paracompact S-space is a £'-space. 

tone 1. f:X—*Y be a perfect surjection. Then X is a 'SE.-space iff Y 

is a SL'-space. 
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Proof. If <£ is a closed cover of X by Lindeldf subspaces and & is a 

6f-locally finite (mod *€ )-net for X, it is routinely verified that f(tf )= 
= -lf(C):Cc<€i is a closed cover of Y by Lindeldf subspaces and f(^) is a 

Cf-locally finite (mod f(«£))net for Y. Conversely, if ^ is a closed cover 

of Y consisting of Lindeldf spaces and & a (mod <£ )-net for Y then f (̂ f)= 

= i f (C):C e *£ { is a closed cover of X consisting of Lindeldf spaces and 

t'l(f) is a C-locally finite (mod f 1(if))-net for X. 

Remark 1. For the converse, it is evidently sufficient to assume that f 
is closed and continuous with Lindeldf fibers. 

Lenma 2. Let X be a paracompact X'-space. Then there is a continuous 
<£:X—->M onto a metric space M such that, if X is equipped with a uniformity 
that makes $ uniformly continuous, then every open cover of X has a <T-lo-
cally finite uniformly open refinement. -

Proof. Let ^ be a closed cover of X by Lindeldf spaces and $ -
ao 

= KJ &n a 0-locally finite (mod *£ )-net for X. Write f ={F : « c AA* 
n=l n n * n 

and consider a locally finite cover 9 of the paracompact space X such that 
for each P in 4P , T5" intersects only finitely many members of £*n. If H^= 
=X- CKP:P c 3> and Tr\?^ =0), then -fH^ :oC€ A n } is a locally finite collec
tion of open subsets of X with F^ c H * . Let G^ be a cozero set of X with 
F c G_ c H ., f _ :X —»*I a continuous function with GL, = f (0,13, and set 

d(x,y)= £ -rmin-U, £ L C (x)-f^ (y)J I . 
n=l 2 n <*%Xn * 

Now d is a continuous pseudometric on X, and we let M be the metric spa
ce obtained by identifying x, y iff d(x,y)=0, and $ the corresponding quo
tient map. Note that G . = $ ( $ ( G W ) ) is open w.r.t. d and hence uniformly 
open, assuming X carries a uniformity that makes $ uniformly continuous. Fi
nally, given an open cover % of X, let V be a refinement of % by uniformly 

m 
open sets, and consider W = « C L J V . : V , « V i . For each C in *t , since C is 

i=l x l 

Lindeldf, there is W in tfTsuch that CcW. Hence there is F in $ with C c F c 
c W. Let A ' consist of all ©G in A n for which we can fix C ^ in «£ and W ^ 
in Wr with C^c F^c W^. Clearly, i F ^ : oce A' n»n*N| constitutes a cover of 
X. Also, if W^= U V.^ where V.^ • IT , then C G ^ n V ^ : <*« A'n.i,nc M 1 

is a €f-locally finite uniformly open refinement of tt . 

- 413 -



We now record for future reference a result whose proof is contained in 

the proof of Lemma 2. 

Leona 3. Let ^ be a closed cover of a space X by Lindelbf subspaces 

and & = {F^ '.oc t A i a 6f-locally finite (mod <€ )-net for X. If there is a 

€f-locally finite open cover { G ^ :oc c A $ of X with F ^ c G < ( then X is pa-

racompact and, if it is endowed with a uniformity that makes every G^ unif

ormly open, then every open cover of X has a AT-locally finite uniformly o-

pen refinement. 

The FT for paracompact S'-spaces generalizes Theorem 4 of £10), and we 

recall some definitions from this paper. The compact weight of X, bwX, is the 

smallest cardinal X for which there is a space Z of weight x , a metrizable 

space M and an embedding of X into MxZ. The metrizable weight of X, £*wX, is 

the supremum of all cardinals x for which there exists a map onto a metriza

ble space of weight X . It is readily checked that wX=max -fbwX, ffcwXi and, if 

X is metrizable, ^twX=wX and bwX=l, unless X=0, when bwX=0. Also, bwX -6 *-* 

implies X is metrizable, Y c X implies bwY-4bwX, X Lindelbf and infinite imp

lies £*wX= Jft , and X Lindelbf and non-metrizable implies bwX=wX. 

Leane 4. Let X be a paracompact 21'-space, t a closed cover of X by 

Lindelbf subspaces and $ an infinite «f-locally finite (mod *€ )-net for X. 

Then ftwX=|^|. 

Proof. Write ^ = {F^ :<* «A|with |F| = |A|, let iG^:«C * A ! be a cf -

locally finite cozero cover of X with f^ a G ^ , and $:X —*• M the quotient 
map constructed in Lemma 2. Then 4 $ ( G ^ ) : «c c A I is a point-countable open 

cover of M. Let D be a dense subset of the metric space M with |D|=wM and for 

each xgD, let A(x)-{d&cA:xe$(G J &)l. We can assume that F^ =0 for at 

most one oc in A and hence that G^-^0 for all oc in A . Then A = U(A(x): 

:xcD) with each A(x) countable . Hence, if D is infinite, |^| = |Al * 101 = 

=wM *{4wX; and if D.is countable, then ¥ is countably infinite, which implies 

that X is Lindelbf and infinite so that l ^ ^ ^ p w X . Thus, in any case, 

l ^ l ^ w X . 

To prove ^4wX^lf|, consider a continuous surjection f:X—•S onto a me

tric space S. Let «£Up :/3<wS} be a discrete collection of non-empty open sets 

of S, for each # < w S , pick x^ in U* , let U^S-ix^ :/S<wS|, i6 = CU < c: 

: «c-<wS| U i U j , and note that a refinement of 11 must have cardinality at 

least wS. Now consider the open cover 

W= -Cf-^U^U^ ...):Uj* U } 
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of X. For each C in •£ , there is some F in £ and W in W with CcFcW. Let 

A ' consist of all cc' s in A fo r which we can fix C^ in *€ and W ^ in W 

with C ^ c F ^ c W^. If WcC=f~"(U, o
 u

2 t> •••)» where l^ s 16 , then cle

a r l y {f(Fo0 )n Uioo : oc d A',i eNi refines U . Hence wSi max 4 s*0, | A'| } .£ 

£|A! = |#I- This implies p,wX=|?'|, which completes the proof. 

Lemma 5. Let f:X—>Y be a closed, continuous su r jec t ion with Lindelbf 
fibers between infinite paracompact 2'-spaces. Then ̂ cwX= ^wY. 

Proof. Let *<? be a closed cover of Y consisting of Lindelbf spaces,and & 

a 6"-locally finite (mod S? )-net fo r Y. If necessary,we add to sTa countably 

infinite collection of singletons so that it becomes infinite and, by Lemma 4, 

ft,wY=|f|. Clear ly f~ (<£) is a closed cover of X consisting of non-empty Lin

delbf spaces and f~ (3*) is an infinite ^-locally finite (mod f~ (^))-net 

fo r X, and Lemma 4 implies <u.wX=|f~ (^)|= \f |= x*.wY. 

Lemma 6. Let E be an F̂> -set of a paracompact 2/-space X. Then E is a 

paracompact 21 '-space with ^twE k ftwX. 

Proof. E is paracompact and we may assume that it is also i n f i n i t e . Let 

*tf be a closed cover of X by Lindelbf spaces and $ a 6f-locally finite 

(mod *£ )-net for X which contains countably infinitely many singletons from 

E. Then <t? r\ E={Cr,E:C & «£$ is a closed cover of E by Lindelbf spaces and 

*£c\ E is an infinite €T-locally finite (mod <•£ r% E)-net fo r E. By Lemma 4, 

f/LwE=\$r\ E| £|F| = ,tiwX. 

Proposition 1. Let f:X—>Y be a continuous function into a paracompact 
-E -space. Then there is a paracompact 2/-space Z and continuous g:X—*Z 
and h:Z—> \ such that h is pe r fect , f=h*g, dim Z-&dim X, (*twZ6^i.wY and 
bwZ&bwY, 

Proof. We can c lea r l y assume that Y is i n f i n i t e . Note that if fit is 

the extension of f to Stone-Cech compactifications, dim /If" (Y)=dim (l X= 

=dim X and fif: fif~ (Y)—#• Y is pe r fect . Thus, we can also assume that f:X—* 

— • Y is per fect and, in view of Lemma 6, su r j ec t i ve . 

By Lemma 2, there is a continuous function $:Y—•M into a metr ic space 

M such that, if Y is endowed with a un i fo rmity that makes $ uniformly conti

nuous, every open cover of Y has a fiT-locally finite uniformly open refine

ment. Let ¥:Y—*L x I x be an embedding, where L is metr izable and t =bwY. 

We endow M, L, I* and MxLxI^ with t h e i r natu ral un i f o rmi t i es , X with its 
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finest uniformity and Y with the uniformity induced by the embedding 

§ x f s Y - ^ M x L x I * , Evidently, every cozero set of X is uniformly con

tinuous so that dim X=Dim X, f :}< —*• Y and $ :Y —• M are uniformly continu

ous and hence every open cover of Y has a G'-locally finite uniformly open 

refinement. Now, by Theorem 1, there are uniformly continuous g:X —,> I and 

h : Z — * Y such that Z=g (X )cM x L x I* x I* , f=h «g and Dim ZADim X=dim X. 

Since f is perfect and f and g are onto, then h is a perfect surjection and 

hence Z is paracompact and, by Lemma 1, a X'-space. Now applying Theorem 2 

and Lemma 5, we obtain, respectively, that dim Z4Dim Z4dim X and (i*wZ 6. 

4 (u»wY. Finally, the inequality bwZ* bwY= r follows from that fact that Z 

is < a subspace o f M x L x I ^ x I 1 1 . 

Our next two results are corollaries of Proposition 1. The first of the

se results follows from Proposition 1 by a straightforward application of a 

method due to Pasynkov £91. 

Proposition 2. The class *C of all paracompact X#-spaces X with bwX £ 

& ec , (uwX 4|J and dim X&n has a universal element which is a paracompact 

p-space. 

Proof. We may clearly assume that oc, and fl are infinite. If M is a 

universal metrizable space of weight fi , it is readily seen that every mem

ber of <£ is embeddable in M x I*, b w ( M x I * ) & oc and, by Lemma 5 applied to 

the projection of M x I* onto M, (Uw(MxI* )= /* . Let {XA : A e A l he the 

collection of all subspaces of M x I * in *£ , X their topological sum and 

f :X —»» H x I * the map whose restriction to each X^ is its inclusion into 

M x I** . By Proposition 1, there are continuous g:X —• Z and h : Z — • Y such 

that h is perfect, f=h»g, dim Z-sdim X-»n, bwZ £ oc and <«*wZ & fi . Evident

ly, Z is a universal element of *£ . 

Proposition 3. For every paracompact 2L'-space Y, there is a paracomp

act X-space Z with dim Z-iO, bwZAbwY, û,wZ it <M-WY, and a perfect surjecti
on h:Z-+ Y. 

Proof. Consider a cardinal oc such that I** contains a copy of /JY, and 

hence of Y. Let f :C* —• I** be a surjection, where C is Cantor's discontinu-

um, and X=f (Y ) . Let X, Y be endowed with the subspace uniformities inherit
ed from C*6, I**, respectively. Note that every cozero set of Y is uniformly 

open. Furthermore, f:X<—*Y is uniformly continuous and perfect, and by Theo

rem 2, dim X*Dim X. But, by Theorem 3, Dim X-f Dim C ^ d i m C*-* 0. Hence 

dim X & 0 . Now, by Proposition 1, there is a paracompact X ' -space Z and con-
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tinuous g:X —• Z and h : Z — * Y such that f=h»g, dim Z .£0 , bwZ^bwY and 
ftwZ .ts^wY. Note that because f:X—-iwY is a perfect surjection, the same is 

true of g and h. 

4. FT for paracompact 6f-spaces. In this section, we prove FT for the 

class of paracompact €f-spaces and 6 -locally finite maps, which strength
ens [1, Theorem 3J. A continuous f:X —* Y onto a paracompact C-space will 

be called €f-discrete (resp. ©-locally f i n i t e ) if there is a CT-discrete 

(resp. 6T-locally finite) network & for X such that f(T) is a ^-discrete 

(resp. € -locally finite) network for Y. Here, it is understood that f(SO 
should be €*-discrete or 6-locally finite as a collection indexed by the sa

me set as 3F* . Thus, as the example of the projection of an uncountable dis

crete space onto a singleton shows, it is false that every closed surjection 

between paracompact tf-spaces is ff-discrete or even €f-locally finite. This 

casts doubt on the validity of FT for such maps {1, Corollary 1}. However, a 

perfect map between paracompact €> -spaces is S'-locally finite, which leads 

to a factorization theorem for these maps. 

Le-ma 7. Let a uniform function f:X—»Y be 6-locally finite, where Y 

is endowed with its finest uniformity. Then X is paracompact and dim X 6 

£ Dim X. 

Proof. Let 9 f=«CF t J < f:oC€A?bea ff-locally finite network for X with 

f(90 a ^-locally finite network for the paracompact space Y. As in Lemma 2, 

there is a ^-locally finite cozero cover «£G^: oc « A J of Y with f ( F a C ) c G 0 C 

for each oc in A . Now, since each cozero set of Y is evidently uniformly 

open, {f (Gtf ) : *c e A { is a 6T-locally finite uniformly open cover of X 

with F^ c f" (G^ ) . By Lemma 3, X is paracompact and every open cover of X 

has a C-locally finite uniformly open refinement. Finally, by Theorem 2 ap

plied to the identity X ~-* X, dim X£Dim X. 

Proposition 4. Let f:X—-#Y be a ^-locally finite map. Then there are 

€f-locally finite maps g : X — • Z and h:Z—>Y such that f=h« g, dim Z* dim X, 

bwX£bwY and <u.wZ .fc^wY. 

Proof. Proposition 1 provides a paracompact 2'-space W and continuous 

g:X—•W and h:W—*Y such that f=hog, dim W*dim X, bwW &bwY and <nwW £ 

dk (H-wY. Let X, Y, W be endowed with their finest uniformities and Z=g(X) 
with the subspace uniformity inherited from W. Let 7 be a ^-locally finite 

network for X with f ( # ) 6 -locally. Then g(t?) is a AT-locally finite net
work for Z with h(g(?))=f(^) flT-locally finite. Hence h:Z — + Y is 6>-locally 
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finite and, by Lemma 7, Z is a paracompact space so that g : X — > Z is 6* -lo

cally finite. Also, Theorem 3 implies Dim Z^Dim W=dim W^dim X and, by Lem

ma 7, dim Z-ssDifn Z£dim X. Finally, bwZ .6 bwW .4 bwY and, by Lemma 4, since we 

may clearly assume that Y and hence f($0 and g(j?) are infinite, uwZ=|g( J*)|i 

£ |h (g (^)) |=(U,wY . 

The following result follows immediately from Proposition 4, or, more di

rectly, from Proposition 1. 

Proposition 5. Let f:X — > Y be a perfect surjection between paracompact 

&-spaces. Then there is a paracompact <f-space Z and perfect surjections g: 

:X-—•Z and h:Z — • Y such that f=h » g, dim l£ dim X, bwZ^bwY and ^uwZjt-^wY . 

5. FT for more general paracompact spaces. In this section, we prove FT 

for the class *€ consisting of all paracompact spaces X containing a closed 

subset E with a base of neighbourhoods of cardinality £ wX such that E and 

every closed set of X disjoint from E is a 2l'-space. If X is the topological 

sum of o>, copies of the space of ordinals L o>,, the first uncountable or

dinal, and Y is obtained from X by identifying &>, in each copy to a single 

point, then X is a paracompact 2.-space while its closed image Y is, of cour

se paracompact, but not a ?£-space 16, p. 452, Example 4.181. However, Y is 

in *€ . Note that K is closed w.r.t. perfect preimages. 

Proposition 6. Let f :X — * Y be a continuous function into a member of 

*€ . Then there is a member Z of ̂  and continuous g:X —-> Z and h:Z-—>• Y 

with h perfect, f=h«g, dim Z^dim X and wZ^wY. 

Proof. As in Proposition 1, we can assume that T.?=WY is infinite and f 

is a perfect surjection. Then there is a closed cover i E ^ : oc <£tl of X by 

paracompact 2» '-spaces such that each closed subset of X disjoint from E is 

contained in some E ^ . 

Let ^ ^ be. a cover of E ^ by Lindelbf sets and 9^ = -f F^n : /}<. tfl a 

6f -locally finite (mod ̂ ^ )-net for E^ . As in Lemma 2, let-i(^«: ft -c X ? 

be a 6*-locally finite cozero cover of E ^ with F^aC G^-g. It can be seen 

that Y can be embedded in 1^ in such a manner that G .- -E* n ^a for some 

cozero set F U . * of I* . Letting each subset of Y carry the subspace unifor

mity induced by 1^ , we see that each G ^ A is uniformly open in E ^ so that, 

in view of Lemma 3, every open cover of E ^ has a e'-locally finite uniformly 

open re f inement . Also, W(Y) £ x and if X is endowed with its finest unifor

mity, then f:X—>Y is uniformly continuous and Theorem 1 provides a subspace 
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Z of I* and uniformly continuous surjections g:X—*Z and h:Z—#Y such that 

f=h«g and Dim gf~ (E06)^Dim f ( E ^ ) for «> < X . Note that, by Theorem 3, 
Dim f~1(E<Jfc) 6Dim X=dim X and hence Dim gf~

1(E <)^dim X. Also, since f is a 

perfect surjection, the same is true of g and h and hence of h :h~ (E^,) »—» 
-1 

—>^-p^ for each cC< T . Now Theorem 2 applies and gives dim h (E^) £ 

£Dim h"1(E0<-)=Dim gf~
1(E0j.)^dim X. Thus, dim h~

1(EoC)^dim X and if F is a 

closed subspace of Z disjoint from h" ( E ) , then Fc f~ (E^.) for some cc so 
that, as Z is paracompact and hence normal, dim F^dim X. Hence dim Z.6dim X 

Proposition 6 like Proposition 1 has corollaries analogous to Propositi

ons 2 and 3, 

Finally, by a subset theorem for dim t3, Proposition 2], if X is the uni

on of a tf-locally finite collection of cozero Lindelbf subspaces, then 

dim X£Dim X, It follows that Proposition 6 holds if *C is the class of all 
paracompact spaces X containing a closed set E such that E and every closed 

set of X disjoint from E can be expressed as the union of a 0-locally finite 

collection of cozero Lindelbf subspaces. If f:X—»• Y is a closed map from a 

paracompact and locally compact space X onto a space Y, then Y contains a 

closed discrete subset E such that f (y) is compact for each y in Y-E [7]. 

Hence, for any closed subset F of Y disjoint from E, f:f~ (F)—> F is per

fect, which readily implies that F is paracompact and locally compact and Y 

is in *t . 
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