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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

CHROMATIC NUMBER OF PRODUCTS OF GRAPHS 

Vladimír PUŠ 

Abstract: We give a description of all products G # H of simple graphs 
(excepting the direct product) having the following property: the chromatic 
number x / G * H ) is a function of numbers %(G) and %(H). We also determine 
these functions. 

Key words: Product of graphs, chromatic number. 

Classification: 05C15 

0. Introduction. L. Lov^sz's well-known problem is the following one: 

Is it true that the chromatic number of the direct product of simple graphs 

is given by the formula flf,(GxH)=min( %(G), * ( H ) ) ? 

(In other words: Does the function f exist such that 5C(Gx .H )=f (^ (G ) , %(H)) 

for every pair G,H of simple graphs?) 

In this paper we describe all products G # H of simple graphs (excepting 

the direct product) for which there exists a function f such that the chroma

tic number of G*H is given by the formula ^(G.. jcH)=f( %(G), %(H). The expli

cit expressions of the functions f are also given. 

1. Definitions- The graphs we consider are simple graphs, i.e. undirec

ted graphs without loops and multiple edges. The set of vertices of a graph G 

is denoted by V(G) , E(G) is the set of edges. We will consider only graphs 

with a non-empty set of vertices. 

By %(G) we denote the chromatic number of G. 

K is the complete graph on n vertices, D is the discrete graph on n 

vertices and C is the circuit of the length n. 

Let us recall the general definition of products of simple graphs (see 

11]). 

Let p: {1,-1,01*{1,-1,Ol—* {1,-1,Ol be a fixed mapping such that 

p(i,j)=0 iff i=j=0. 
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For a simple graph G=(V,E) and a pair of vertices x,y«V define 

^ ^ ~ 1 i f f {x ,y}*E 

s ( x , y ) = - ^ ^ — - 1 i f f {x ,y i4 iE and x # y 

^"^"-^•0 i f f x=y 

(i.e. s:V*V-*il,-l,op. 
Given a pair G,H of simple graphs, define the product 6 » H as follows: 

P 
V(G* H)=V(G)xV(«) 

and 

E(G* H)={<(x,x'),(y,y')}; p(s(x,y),s(x',y'))=l}. 
8 This definition covers all products of graphs (there exists 2 =256 different 

products). 
For example, let p(i,j)=l iff i=j=l. Then x is the direct product; we 

P 
denote x instead of x in this case. 

Let p(i,j)=l iff i=l or j=l. The product we obtain is in 123, p. 52,cal
led the cartesian sum and denoted by © . 

Let p(i,j)=l iff i=0 and j=l, or i=l and j=0. Then x is the well-known 
cartesian product;this product will be denoted by D . 

P 

Let p(i,j)= -1 iff i= -1 or j= -1. Then x is the so-called strong pro
duct; we denote it by El . 

Let p(i,j)=l iff either i=l, or i=0 and j=l. Then we obtain the so-call
ed lexicographic product (or the substitution of the graph H into G). In this 

P 
we denote G x H=G[H1. 

2. Auxiliary results. First we notice that 

GCH3 

(GxH)w(GjQ H)-G0H G©H 
V° o, 

HtG] ' 

and that 

%(GoH)=max(^(G),*r.(H)). 

In the following proposition we show that generally %(G @ H ) < : %(G) « %(H). 

Proposition 1 . %(C2fn+10 ^n+P * 8 f o r m » n S 2 -

- 458 -



Proof: Let G, H be graphs. For vcV(G) and wcV(H) denote Sv={v}*V(H) 

and Rw=V(G)xiwf. The mapping 9p:V(G)**V(H)-* «Cl,2,...,k| is a colouring of 

the graph G © H by k colours if and only if the following conditions hold: 

ív1,v2l€,E(G); 

and 

íw1,w2!*E(H)' 

\« vø 

R w o R =0. 
wl w2 

Hence, the following matrix (with 2n+l rows and 2m+l columns) represents a 

colouring of the graph C-, , ^ c?n+l b y 8 c o l o u r s * 

1 2 1 2 

4 5 4 5 

1 2 1 2 

4 5 4 5 

1 2 1 2 3 

4 5 4 5 6 

1 2 1 2 3 

4 5 4 5 6 

1 2 1 2 

4 5 4 5 

1 2 1 2 

4 5 4 5 

7 8 7 8 

1 2 1 2 3 

4 5 4 5 6 

1 2 1 2 8 

4 5 4 5 3 

7 8 6 7 8 

Proposition 2. Suppose that there exists a function f such that 

P 
%(G x H)£ f ( ^(G), %(H)). Then the following condition holds: 

(T) p(i,j)=l -+» i=l or j=l. 
P 

Conversely, if the condition (T) is fulfilled, then %(G * H) 6 %(G) • 9t(H). 

P 
Proof: Suppose that there exists a function f such that %(G x H) £ 

£ f( %(G), %H)) and that p(i,j)=l. Assume that for contradiction i 4« 1 and 

3 + 1. 
P P 

If (i,j)*(-l,-l) then K n C D px Dn, hence n * ^ ( D n x Dn)£f(l,l) for e-

very n, a contradiction. 

P ... P 

If (i,j)=(-l,0) then 0 n * D1-S KR, hence n=%(Dn*. D1)6f(l,l), a cont

radiction. Similarly, the case (i,j)=(0,-l) leads to a contradiction. 

Conversely, let the condition (T) be fulfilled. Then the product A x B 
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p 

of discrete sets A -»V(6) and BS V(H) is a discrete set in G x H, which im

plies that %(G * H ) * %(G) • %(H). 

3. The wain result 

Theore* 

(I) Suppose that p fulfils the following conditions: 

(1) p(i,j)=l-f i=l and 

(2) p(l,0)=l. 

P 
Then ^(6 * H)= %(G). 

(II) Suppose that 

(3) p(i,j)=l — * j=l and 

(4) p(0,l)=l. 

P 
Then ^(6 * H)= *(H). 

P P 
(III) If x is the cartesian product, then ^ ( G x H)=max( sr/G), sr.(H)l 

P 
(IV) If p is identically equal to -1, then J J ( G * H) is identically e-

qual to 1. 
P 

(V) Assume that there exists a function f such that «[(Gx H)=f(i^(G), 
P 

3( (H)) for every pair G,H of (finite) graphs. Then either * is the direct 
product or some of the cases (I)-(IV) occurs. 

(VI) Assume that there exists a function f such that ?c(G»<H)=f(^(G), 

%(H)). Then 3r,(6*H)=min( ̂ (6), 5*00). 

P 
Proof: Suppose that there exists a function f such that sr,(6x H)= 

=f(^(6), #(H)). Then the condition (T) from Proposition 2 is satisfied. Now 

we distinguish four cases (©c), (/5), (7O and ((f). 

(«6) Let p(l,0)=l and p(0,l)= -1. 
P 

Then f(n,m)=qj(Kn>t Km)=n. For this, let V(Kp)= {1,2,... ,n J and V(Kffl)= 

= {l,2,...,mf. Then the function 07 definsd by Cf(i,j)=i is a colouring of 
P P 

K „ * K_ by n colours and moreover K fi K„x. K . n m J i n n m p 
It follows that p(-l,l)= -1. Indeed, p(-l,l)=l implies Knfi 0R x Kp for 

P 
every n, and so n= %(Vn* Kn)=f(l,n)=l, a contradiction. Hence, according to 
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(T), the following condition holds: 

(1) p(i,j)=l--j> i=l. 

Since, moreover, by the assumption, p(l,0)=l, the conditions (1) and (2) in 

Part (I) of Theorem are fulfilled. Conversely we show that under these condi-
P 

tions ^(G) x H)= %(G). 
Indeed, (1) follows from the fact that A x V(H) is a discrete set for 

P 
every discrete set ASV(G). Hence, jfc(G) x H ) . ^ ^ ( H ) . Further, (2) follows 

P P 

from G S G * H and so ^(G x H)£^(G). 

( £ ) Let p(l,0)= -1 and p(0,l)=l. 

Then, similarly as in the case (oc), the conditions (3) and (4) in Part II of 
P 

Theorem follow. Conversely, these conditions imply that ^ ( G x H)= %(H). 

Now we suppose that 

(P) p(l,0)=p(0,l). 

We divide this case into two partial cases (Qr) and (<P). 

(?) In addition, let p(l,l)= -1. 

By (P), either p(l,0)=p(0,l)=l or p(l,0)=p(0,l)= -1. 

(fi) In the first case we have KR -5 K m - Kn O Km, 
P 

hence max(n,m)= %(*n* Kffl)=f( $(KR),$(Km))=f(n,m). It follows that p(l,-l)= 
P 

=p(-l,l)= -1. Indeed, if for example p(l,-l)=l then K2 x (K2+K2) contains K. 
P 

(see the figure) and so 4 ^ ^ ( K 2 x (K2+K2))=f(2,2)=2, a contradiction. Thus, 
P 
><. is the cartesian product; hence, the case (III) in Theorem has occurred. 

Figure 
P 

(y 0) In the second case we have K„x, K € D , so f(n,m)=l. But this 
• z n m „ n«m 

P 
means that p is identically equal to -1 and ĵ (G * H) is identically equal to 
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p 

-1 and s(,(G »c H) is identically equal to 1, which is the situation described 

in Theorem, Part (IV). 
(of) Let p(l,l)=l. 

By (P) we again consider two cases. 
p 

(f^ Let p(l,0)=p(0,l)=l. Then K n * K m ~ K n . m , Hence f(n,m)= 

P P 

= *t(Kn*<
 K

m ) = n * m' Further, by (P), G * H S G 0 H (more exactly, this case in

cludes the strong product, the lexicographic product and the cartesian sum). 

Therefore, by Proposition 1, we have 

9=3.3=1(3,3)= S K C ^ , £ C 2 n + 1) t , ( C 2 m + 1 G> C2n+1)=8, 

a contradiction. 
p 

(eT2) Let p(l,0)=p(0,l)= -1. Then * 0 < n *
 K

m>-* »in(n,ni). For this, if 

V(KR)= -(l,2,...,n1 and V(Km)= -CI,2,.. .,m}, then the function y defined by 
P 

y((i,j))=i (or ^p((i,j))=j) is a colouring of the graph K x K by n (or m) 
P 

colours. Conversely, since p(l,l)=l, we have K . / m\ fi K * K . Therefore, 
P 

f(n,m)= %(Knn Km)=min(n,m). 

The last formula implies that p(-l,l)=p(l,-l)= -1. To see this, let us 
P 

suppose without loss of generality that p(-l,l)=l. Then n= 1^(0 >« K ^fd,.!)-5 

P 
=min(l,n)=l for every n, a contradiction. Thus, K is the direct product 

(the case (VI) in Theorem). 

It is clear that the discussion just given includes proofs of all propo

sitions (I)-(VI) in Theorem. 

The previous theorem gives also the answer to the question of C. Thomas-
P P 

sen whether there exists a product *. such that ^ ( G H H)= ^(G) *3[(H). 
P 

Corollary. There is no product *. of simple graphs with the following 
P 

property: ^(G * H)= \(G) • ̂ (H) for every pair G,H of (finite) graphs. 
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