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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

SOME REMARKS AND APPLICATIONS OF AN EXTENSION 

OF A LEMMA OF KY FAN 

Salvatore SESSA 

A b s t r a c t . We apply a recent theorem of Lin, that is a 
generalization of a well known Lemma of Ky Fan, in order to obtain 
some extensions of results of Lin, Prolla and Park. It is pointed out 
that the theorem of Lin is equivalent to a fixed point theorem, here 
used to extend some fixed point theorems of Browder. Two coincidence 
theorems are established in the last Section generalizing known 
results of Browder, Komiya, Mehta and Tarafdar. 

Key words: almost affine map, coincidence theorem, fixed point, 
Inward set. 

Classification: 47H10, 49A40. 

1. Introduction. All topological vector spaces considered are 

real and are assumed tacitly to be separated. 

In 1961, Fan [6, Lemma 1] established his infinite-dimensional 

generalization of the famous KKM-theorem [14] . Later he was able to 

relax the compactness condition of his famous Lemma in Theorem 4 of 

[81, that was used by Lin [16, Theorem 1] obtaining the following 

generalization of [6, Lemma 4 ] . 

Theorem 1. Let X be a nonempty convex subset of a topological 

vector space. Let A-=XxX be a subset such that 

(a) for each x€X, the set {y€X: (x,y)eA) is closed in X; 

(b) for each yeX, the set {xeX: (x,y)£A} is convex or empty; 

(c) (x,x)€A for each xeX; 

(d) X has a nonempty compact convex subset Xo such that the set 

B={yeX: (x,y)eA) for all x€Xo) is compact. 

Then there exists a point y0eB such that Xx{yol
€A. 
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Lin [16] der ived some consequences from Theorem 1: among the 
o the r s , a genera l i za t ion of a va r i a t i ona l inequa l i ty of Browder [2] 
and Theorem 7 of Fan [ 8 ] . An aim i s t o apply Theorem 1 to extend 
Theorem 3 of [16] and a r e s u l t of P r o l l a [19] . An equ iva len t 
formulation as a fixed poin t theorem i s pointed out and i s used to 
generalize some re su l t s of Browder [3] . 

Two coincidence theorems are also establ ished: the f i r s t one i s an 
immediate extension of a recent r e su l t of Komiya [15], the second one 
i s a generalization of Theorem 2.2 of Mehta [17]. 

2. Some appl icat ions . Following Halpern and Bergman [12], we 
reca l l tha t the inward set of a subset X of a topological vector space 
E at a point x€X i s defined as 

I(X,x) -= {x+r* (u-x)6E:w€X, r>0}. 

clS denotes the closure in E of a subset S of E. Following Prolla 

[19], a mapping g : X-+E, where X is a convex subset of a normed vector 

space E, is said to be almost affine on X if 

UgtX-xrMl-X) -x2)-y| |<. 

X-| Igtx-.J-yM + U-A.) -| lg(x2)-y| I 

for all Xi,x2€X, 0<X<1 and y€E. Clearly any affine mapping g:X-+E is 

almost affine on X. 

Using now Theorem 1, we unify Theorem 3 of [16] and the result of 

[19V 

Theorem 2. Let X be a nonempty convex subset of a normed vector 

space E, f,g:X—>E be continuous and g be almost affine on X. 

(d) If X has a nonempty compact convex subset Xo such that the set 

B--{y€X:| |g(x)-f (y) |V>| |g(y)-f (y) | I for all xeX0} is compact, 

then there exist a point yo€B such that 

I lg(yo)-f (yo) I l=min{| Iw-f (y0) I I :weg(X) }. (1) 

Proof. Let 

A=-{(x,y)€XxX:| lg(x)-f(y) | |i>| | g (y) -f (y) II } . 
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Then the set {y€X:(x,y)€A} is closed in X since g and f are 

continuous. Evidently (x,x)eA for each xeX and the set 

C = {x€X: (x,y)*A} = {xeX:| lg(x)-f (x) I |<| |g(y)-f (y) I 1} 

is convex or empty. Indeed, since g is almost affine on X, we have 

that 

I |g(Xx1+(l-X)x2)-f (y) I l<-

X- | |g(xi)-f (y) | \ + (l-X) -I lg(x2)-f (y) I |<| |g(y) -f (y) I I for x^x-eC. 

By Theorem 1, there exists a point y0eB such that 

I lg(y0)-f (yo) I l<-l ig(x)-f <y0) 11 

fo r each xeX and hence (1) . 

Remark 1 . ( i ) As i s s t r e s s e d by Lin [ 1 6 ] , c o n d i t i o n (d) of 

Theorem 2 can be r e p l a c e d by t h e fo l lowing c o n d i t i o n : 

(d*) Le t X0 b e a nonempty compact convex s u b s e t of X, K be a 

nonempty compact s u b s e t of X such t h a t f o r each yeX-K, t h e r e e x i s t a 

p o i n t xeX0 such t h a t 

I | g ( x ) - f (y) | |<! l g ( y ) - f (y) I I . 

Then the conclusion of Theorem 2 will be: there exists a point 

y0€K such that (1) holds. 

(ii) If X=K=X0, (d1) is automatically satisfied and if g(X)=X, 

Theorem 2 becomes the theorem of [19], where the author proved his 

result using the fixed point theorem of Bohenblust and Karlin [1]. 

(iii) If g=identity on X, Theorem 2 is Theorem 3 of [16]. 

Remark 2. If g(X) is convex, then (1) implies that 

1 lg(yo)-f (yo) I l=min{| |z-f (y0) I |:z€clX'}, 

where X'=I (g (X) ,g (y0)) . Indeed, following a well known argument (e.g. 

Park [18]), let z be a point of X*-g(X). 

Hence, there exist ueg(X) and r>0 such that z=g(y0)+r- (u-g(y0)) . We 

have r>l otherwise the convexity of g(X) should imply 
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r-u+(l-r) •g(y0)
aszeg(X), 

a contradiction. Thus ( l j r ) *z+ ( 1 - l j r ) *g(yo) -=ueg(X) and (1) implies 

that 

llg(yo)-f<yo) 11*1 lu-f (y0)l I 

S l j r - | Jz-f (y0) I | + (l-l/r) • I lg(y0)-f <yo) II, 

from which I lg(yo)-f (yo) I l-*l lz-f (y0) I I for each zeX* and then for each 

zeclX*. 

For g-=identity on X, similar consideration can be made on Theorem 

2 of [16], here enunciated for sake of completeness. 

Theorem 3. Let X be a nonempty convex subset of a locally convex 

topological vector space E, f:X—»E* be continuous. 

(d) If X has a nonempty compact convex subset X0 such that the set 

B=-{yeX: (fy,y-x)i>0 for all xeX0) is compact, 

then there exists a point yo€B such that (f yo* yo~z).>0 for all 

z€clI(X,y0). 

Remark 3. Theorem 3 generalizes (in the inward case) Theorem 2 of 

Park [18], which in turn strenghtens Browder [2, Theorem 2 ] . 

3. Fixed point theorems. Fan [7] pointed out the equivalence of 

his intersection Lemma to the fixed point theorem of Browder [2, 

Theorem 13. 

Similarly, Theorem 2 is equivalent to the following result. 

Theorem 4. Let X be a nonempty convex subset of a topological 

vector space and T:X—>2X be a mapping such that 

(a) for each xeX, T(x) is a nonempty convex subset of X; 

(b) for each yeX, T~1(y)-s-{x€X:y€T(x)} is open in X; 

(c) X has a nonempty compact convex subset X0 such that the set 

B» X- u TMy) 
yex0 

is compact. 

Then there exists a point xo€X such that xo€T(x0). 
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Browder proved his Proposition 2 of [3] using Theorem 1 of [2]. In 

accordance to this idea, we now use Theorem 4 to generalize 

Proposition 2 of [31. 

Theoram 5. Let X be a nonempty convex subset of a topological 

vector space E,f:X—>E and p:CxE-»9t (reals) be continuous such that 

(a) for each xeX, the set {y€E:p(x,y)<r} is convex for each re^t; 

(b) X has a nonempty compact convex subset Xo such that the set 

B={xeX:p(x,y-f (x) )i>p (x, x-f (x) ) for all yeXol is compact; 

(c) for each xeX with x*f(x), there exists a point yeX such that 

p(x,y-f (x))<p(x,x-f (x)) . 

Then f has a fixed point in C. 

Proof. If f has no fixed points in C, then the set 

T (x) =-{yeX:p (x,y-f (x)) <p (x, x-f (x)) } 

is nonempty and convex by (a) and (c). Further, the continuity of p 

and f implies that 

X-T-- (y)={x€X:p(x,y-f (x) ).>p (x, x-f (x) ) } 

is closed for each yeX. Moreover, (b) implies that 

B = n [X-T-- (y) ] = X- u T"1 (y) . 

By Theorem 4, there exists a point XQGTXO for which p(xo,xo-f (xo)) 

<p (x0, xo-f (xo)), a contradiction. 

We now generalize Theorem 1 of Browder [3]. 

Theorem 6. Let X be a nonempty convex subset of a topological 

vector space E,f:X-»E and p:XxE~»SR be continuous such that 

(a*) for each xeX,p(x, •) is a convex function on X; 

(b') as (b) of Theorem 5; 

(c') for each xeX with x#f(x), there exists yeI(X,x) such that 

p(x,y-f(x))<p (x,x-f (x)). 

Then f has a fixed point in C. 

- 571 -



Proof. Clearly (a*) implies (a) and, as in [3, p.4760], one 

proves that (c') implies (c). Hence the thesis follows from Theorem 5. 

4. Coincidence theorems. Clearly Theorem 5 is a particular case 

of Theorem 3.1 of Mehta [17] or Theorem 1.2 of Tarafdar [21]. These 

authors proved their results using Theorem 4 of [8], but Tarafdar [22] 

gave a proof of his result independent of Theorem 4 of (8] using his 

fixed point theorem [20] and he also proved the equivalence of his 

result with the cited theorem of Fan. 

Inspired by some recent papers, we like to point out here a 

coincidence theorem that unifies the fixed point theorems of Tarafdar 

[20, Theorem 1] and Komiya [15, Theorem 1 ] . We omit the proof since it 

is obtained, as in [15], using Lemma 1 of Ha [10] and Proposition 1 of 

Browder [4]. 

Theorem 7. Let X be a nonempty convex subset of a topological 

vector space E and let Y be a nonempty compact convex subset of a 

topological vector space F. Let S:X—>2Y be an upper semicontinuous 

mapping and T:Y—>2X be a mapping such that 

(a) for each xeX, S(x) is a nonempty closed convex subset of Y; 

(b) for each yeX, T(y) is a nonempty convex subset of X; 

(c) for each xeX, T"1 (x) contains a relatively open subset 0 (x) of 

Y(0(x) could be empty for some x ) ; 

(d) U 0(x)«Y. 
X€X 

Then there exist points x0eX, y0eY such that yo€S(x0) and x0€T(y0). 

Remark 4. (i) Note that if T-~(x) is open in Y for each xeX, we 

have Theorem 1 of [15], which in turn generalizes Theorem 3 of [4]. 

(ii) If E=F, X=Y and Sx={x} for each xeX, we deduce Theorem 1 of 

[20], which in turn includes Theorem 1 of [2]. 

For convenience of the reader, we recall that a mapping S:X-»2Y is 

upper semicontinuous iff S-1(B)ss{x€X:S (x)nB*0} is closed for any closed 

subset B of Y. 

Mehta [17], proved in Theorem 2.2 that the compactness of the 

domain of the multifunction, required in the results of Browder and 

Tarafdar, can be weakened in locally convex topological vector spaces 
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setting. His method of proof relies on a partition of unity argument 

to derive a continuous selection, whose fixed point is the fixed point 

of the assigned multifunction. The existence of this fixed point is 

guaranteed by a well known result of Himmelberg [13], that here we use 

to obtain the following coincidence theorem. 

Theorem 8. Let X be a nonempty paracompact convex subset of a 

locally convex topological vector space E. Let D be a nonempty subset 

of E, S:D—>2X be an upper semicontinuous mapping and T:X—>2D be a 

mapping such that 

(a) VyeD, Sy is a nonempty closed convex subset of X; 

(b) Vx€X, Tx is a nonempty convex subset of D; 

(c) S(D)= u S(y)€C, where C is a compact subset of X; 
yeD 

(d) for each xeX, there exists a point y€D such that xeintT_1(y), 

where intT"1 (y) denotes the topological interior of T"1 (y) . 

Then there exist points xeX, yeD such that xeS(y) and yeT(x) . 

Proof. We adopt essentially the proof of Theorem 2.2 of [17] with 

some slight variants. 

By putting 0 (y) --intT"1 (y) for any y€D, we have that the family 

{0(y) :y€D} is an open covering by (d) of the paracompact space X and 

let {fy:y€D} be a partition of unity by continuous nonnegative real 

functions defined on X subordinate to this covering such that suppfy 

£0(y) for each yeD. We note that {supp fy:yeD} is a locally finite 

closed covering of X and XyeD fy(x)=l for each xeX. 

Define a continuous function f :X—>D by setting for each x€X, 

f <x)=- I fy(x)-y. 
y€D 

If x€X and fy(x)#0, then xesuppfyS 0(y)£ T"1 (y) , i.e. yeT(x) and 

f(x)6T(x) since T(x) is convex for each x€X by (b), being f(x) a 

convex combination of a finite number of points y of T ( x ) . We now 

define a mapping H:X~>2X by putting H(x)=S (f (x)) for each xeX. Since f 

is continuous and S is upper semicontinuous, H is upper 

semicontinuous. Further, H(x) is a nonempty closed convex subset of X 

for each xeX by (a) and H (X) S S (D) S C S x. Since C is compact by (c), 
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a p p l y i n g t h e f i x e d p o i n t theorem of Himmelberg [ 1 3 ] , t h e r e e x i s t s a 

p o i n t x€X such t h a t x€H(x)=-S(y) where y=f (x)eT(x)SD. 

Remark 5 . ( i ) I f D i s a compact s u b s e t of X and S(x) -{x} f o r each 

xeD, Theorem 8 becomes Theorem 2.2 of [ 1 7 ] . 

( i i ) As s t r e s s e d by Mehta [ 1 7 ] , any s u b s e t of a l o c a l l y convex 

space i s of Ziroa t y p e [ 1 1 ] . Thus i n Theorem 8 one may assume X t o be 

of Zima t y p e and E t o be a t o p o l o g i c a l v e c t o r s p a c e n o t n e c e s s a r i l y 

l o c a l l y convex, bu t i n t h e proof one must use Theorem 5 of Hadzic [11 , 

p .136] t h a t g e n e r a l i z e s t h e c i t e d theorem of Himmelberg [ 1 3 ] . 

( i i i ) I f C-*X, t h e n i n t h e p r o o f of Theorem 8 one may u s e t h e 

c l a s s i c a l f i x e d p o i n t theorem of Fan [5] or G l i c k s b e r g [ 9 ] . 

F u r t h e r co inc idence theorems can be found in [4]' , [11] and [15] . 

Acknowledgement . Thanks a r e due t o P r o f s . 0 . H a d z i c , T .C. L i n , 
G. Mehta and S. Pa rk f o r p r o v i d i n g me w i t h r e p r i n t s of t h e i r works 
which have mot iva t ed t h i s s t u d y . 
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