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Some new results on accretive multivalued operators 

LIBOR VESELÝ 

Abstract. Let A be a multivalued accretive operator on a separable Banach space. Then 
the set of all points in a domain D( A) of A, at which A is not norm continuous, forms a first 
category set. If an accretive operator A on a general Banach space admits an extension 
which is norm-weak upper semicontinuous on int D(A), then A is norm continuous on a 
residual subset of int D(A). As a consequence we obtain generic continuity on int D(A) for 
any accretive operator on a reflexive Prechet smooth Banach space. 

Each maximal accretive operator on a Banach space X has convex values iff the norm on 
X is Gateaux smooth. An analogous necessary and sufficient condition for weak closedness 
of values of any maximal accretive operator is given, too 

Keywords: Accretive operators, multivalued mappings, geometry of Banach spaces, cr-
porous sets 

Classification: 47H06 

0. Introduction. 
A lot of nonlinear problems of applied mathematics lead to monotone or accretive 

operators on Banach spaces which are defined in an analogous way (T : X —• 2X* is 
monotone iff (x-yy x*-y*) > 0 whenever x* G T(x) and y* € T(y); for the definition 
of an accretive operator see Definition 2). In this paper we deal with accretive 
multivalued operators and derive several theorems analogous to well-known results 
for monotone operators. However, the properties of accretive operators depend 
much more on geometrical properties of the space in question. 

Using a method of Preiss and Zajicek [7] we prove that for any accretive operator 
A on a separable Banach space, the set M of all points x with A(x) nonempty 
and such that A is not norm continuous at x, is a first category set. In uniformly 
Prechet smooth separable Banach spaces this method gives o"~porosity of M. For a 
monotone operator, this set is a-porous (and even something more) in any Banach 
space with a separable dual [7]. 

It is a well known fact that every monotone operator T on an Asplund space 
is norm continuous on a residual subset of int D(T) (interior of domain of T) [4]. 
Using the method of separable reduction [2], we prove generic norm continuity on 
int D(A) of an accretive operator A, having a norm-weak upper semicontinuous 
extension on in tD (A ) , in a general Banach space. As a consequence we obtain 
generic norm continuity on int D(A) of any accretive operator on a reflexive Frechet 
smooth Banach space. (For an analogous result, obtained by Kenderov's methods, 
see [5].) 

In the last section we derive a necessary and sufficient condition which a Banach 
space ought to satisfy so that any maximal accretive operator on X has convex, 
respectively weak closed values. Note that maximal monotone operators have always 
convex and weak* closed values. 
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1. P r e l im ina r i e s . 
In this paper, X will always be a Banach space over the reals R and B(x,r) = 

{ t / € K : | | x — y | | < r } will be an open ball centered at x and having radius r. 
For a continuous convex function / on X and x, v £ X, we shall denote df(x) = 

{x* £ X* : f(z) > f(x) -f (z — x,x*) for any z £ X) (a subdifferential of / at x) 
and 

f'(x, v) = lim(/(x -f tv) - / (* ) ) /* = sup{(t>, x*) : x* £ d / (x )} 

(one-sided derivative of / at x in the direction v). 
Let us denote q(x) = ||x||,Q(.r) = f | | s | |2 and J(x) = {x* £ X* : (x,x*) = ||x||2 = 

||x*||2} = dQ(x) for x G X. It is easy to compute that 

(1) Q'(x,v) = WxW(xiv) for any x, i> € X. 

The multivalued mapping J : X —• 2 * is called a duality map and its properties 
are closely related to geometrical properties of X : X is Gateaux (respectively 
Frechet) smooth if and only if J is singlevalued (singlevalued and continuous, re
spectively) (cf. [1]). 

Defini t ion 1. X is said to be uniformly Frechet smooth if it is Gateaux smooth and 
the limit lim H'+HHMI - q*fa v) j s uniform on {(x, v) £ X x X : \\x|| = 1, \\v\\ = 

1}. 
It is evident that uniformly Frechet smooth spaces are Frechet smooth. 

Lemma 1. The following assertions are equivalent: 

(i) X is uniformly Frechet smooth; 
(ii) J is singlevalued and uniformly continuous on {x G X : \\x\\ = 1}; 

(iii) J is singlevalued and uniformly continuous on 

{x € X : ri < \\x\\ < r2} whenever 0 < ri < r2. 

PROOF: For the proof of the equivalence (i)<=^ (ii) see [1], The equivalence 
(ii)<=>(iii) is an easy consequence of the fact that J(tx) = tJ(x) for any t £ R. • 

For any u £ X and a € R denote 

EUfa = {x € X : (u,x*) > a\\u\\ • \\x\\ for each x* € J(x)}, 

Fu$a = {x € X : (x,u*) > a\\x\\ • \\u\\ for some u* £ J(u)}. 

L e m m a 2. 

(i) For any a > —1 

EUta = {x £ X : \\x - tu\\ < \\x\\ - at\\u\\ for some t > 0}. 

(ii) Let u £ 0 or a < 1. Then 

F«,a = {x £ X : \\u -h tx\\ > \\u\\ -r at\\x\\ for any t > 0}. 
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P R O O F : 

(i) If u = 0 both the sets are empty. Let u ^ 0. For any x € X the set J(x) is 
weak* compact in X*. Hence by (1) 

Eu,a = {x € X : min{(u,x*) : x* G J(x)} > a||u|| • ||x||} = 

= {x € X : - m a x { ( - u , x * ) : x* € J(x)} > a||u|| • ||x||} = 

= {x € X : Q'(x, -u) < -a\\u\\ • ||x||} = {x G X \ {0} : q'(x, - u ) < -a | | u | | } = 

= {x € X \ {0} : I |X " tU^ " ^ < -a\\u\\ for some t > 0} = 

= {x € X : ||x - *u|| < ||x|| - atf||u|| for some t > 0} for any a > - 1 . 

(ii) If u = 0 and a < 1 then both the sets are equal to X . Let u ^- 0 and a G R. 
Then, similarly as in (i), we get ' 

F«,a = {x€X: max{(x,u*) : u* € J(u)} > a||x|| • ||u||} = 

= {x G X : Q'(u,x) > a\\x\\ • ||u||} = {x G X : q'(u,x) > a\\x\\} = 

= { x G X : l l ^ ^ | " M > a | | x | | f o r a n y t > 0 } = 
Irll 

= {x G X : ||u + *x|| > ||u|| 4- at||x|| for any t > 0}. • 

Definition 2. Let A : X —> 2X be a multivalued mapping, D(A) = {u € X : 
A(u) ?- 0} be its domain and G(A) = {(u,x) £ X x X :u £ D(A), x G A(u)} be 
its graph. A is said to be accretive if for any (u,x) G G(A), (v,y) G G(A) there 
exists w* G J(u — v) such that (x — y,w*) > 0. 

Note that Lemma 2, (ii) for a = 0 gives an equivalent definition of an accretive 
operator (cf. Kato [3]): 

A : X -> 2X is accretive iff ||u - v + t(x - y)\\ > \\u - v\\ 

whenever (u,x) G G(A), (v,y) G G(A) and * > 0. 

Definition 3 . A : X —•• 2X is maximal accretive if A is accretive and G(A) is a 
proper subset of graph of no accretive operator on X . 

2. Continuity on separable Banach spaces. 

Definition 4. Let P, S be topological spaces and A : P —• 2 5 . We shall say that 
A is upper semicontinuous (u.s.c.) at a point Uo G D(A) if for any open set V C S 
containing A(uo) there exists an open set U C P containing u0 such that A(u) C V 
for any u € U. A is said to be continuous at uo G D(A) if A is u.s.c. at uo and 
A(uo) is a singleton. 

We state the following well-known and easy lemma without a proof. 
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Lemma 3 . Let P, S be topological spaces and A : P —> 2s be a multivalued mapping 

with D(A) = P. Then the following two conditions are equivalent: 

(i) A is u.s.c. at any point of P; 
(ii) The set A'^C) = {u € P : A(u) n C ^ 0} w c/oje<* m P /or any c/ojed 

subset C of S. 

Let us define a system M of certain small sets. 

Definition 5. For any a > 0, let Ma be the system of all sets M with the following 
property: 

for any u £ M and any e > 0 there exist 2 € B(u,e) and v € X \ {0} such that 
M n (2+ £-,,«) = 0. 

Now we define JVf as the system of all sets M such that for any a > 0 M is a 
countable union of sets from Ma-

The sets from Ma and JV( are analogous respectively to a-angle porous sets and 
angle small sets from [7]. 

Lemma 4. Each set from M is of the first Baire category. 

PROOF: Choose an arbitrary a € (0,1) . Then for any v € X \ {0} the set 
EVia is open by Lemma 2, (i) and contains all vectors of the from tv with t > 0. 
Consequently all sets from Ma are nowhere dense and hence each set M € Af, 
being a countable union of sets from Ma, is a first category set. • 

Definition 6 (cf. [6], [8]). For M C K, x € X and d > 0 denote 7 (x ,d ,M) = 
sup{r > 0 : B(z,r) C B(x,d) \ M for some z € K}. A set M is said to be porous 
if limsup7(x,d, M)/d > 0 for any x € M. A set is termed cr-porous if it can be 

rflo 
written as a union of count ably many porous sets. 

Lemma 5. Let X be uniformly Frechet smooth and 0 < a < 1. Then there exists 
r > 0 such that B(u,r | |u | | ) C Eu,a for any u ^ 0. 

PROOF: Denote c = (1 - a) /2 a n d P = { x € K : l - c < ||x|| < 1 + c}. The duality 
map J is singlevalued and uniformly continuous on P by Lemma 1. Consequently 
there exists 6 > 0 such that | |J(xi) - J(x2)|| < ac = c(l - 2c) whenever x i , x 2 € P 
and ||xi — x2 | | < 6. Put r = min(c,£). 

Let ||u|| = 1 and let x € B(u,r) be an arbitrary point. Then ||x — u|| < c, 
||x — u|| < S and u ,x € P. Consequently 

2(u, J(x)) = (u, J(u)) + (x, J(x)) - (x - u, J(x - u)) + (u - x, J(x))+ 

(x, J(x - «)> - (u, J(x - u)) + (u, J(x) - J(u)) > ||u||2 + | | x | | 2 -

- | | x - u| |2 - 2||x|| • ||u - x|| - ||u|| • ||* - u|| - ||«|| • | |J(x) - J(«)|| > 

> 1 + ||x||2 - c2 - 2c||x|| - c - c(l - 2c) = ||x||2 + (1 - cf - 2c\\x\\ > 

> 2(1 - c)||x|| - 2c||x|| = 2(1 - 2c)||x|| = 2a||x|| = 2a||x|| . ||u||. 
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Hence x € Eu>a, and the needed inclusion is proved for ||u|| = 1 . For an arbitrary 
u ^ 0 we have 

B(u,r\\u\\) = ||ti|| • B ( p j , r ) C ||u|| • £ « / W , « = Eu,a 

and the proof is complete. • 

Theorem 1. Let X be a separable Banach space and A : X —• 2X be an accretive 
operator. Then the set 

M = {u € D(A): A is not norm continuous at u} 

is in Л4. 

PROOF: It is easy to see that M = {u € D(A) : limdiamA(B(uy6)) > 0}. Let 

C be a countable dense set in X and let a > 0. Then M is a countable union of 
sets MHtd = {« € D(A) : ]imdiamA(B(u,6)) > £ and dist(d,A(w)) < ^ - } , d € 

C, n — 1,2, Clearly, it suffices to prove that of the sets Mn>d is in M.a. Let 
n,d, u € Mn,d and e > 0 be fixed. There exist z 6 B(u,e) and z 6 A(z) such that 
||z — d\\ > ^ - , since d iamA (£(u ,£ ) ) > J . Put i; = ?— d. Choose an arbitrary 
y E Mn,d. There exists y G A(y) such that ||y — d|| < ~ . Since A is accretive, there 
exists w* € J(y — z) such that (y — -?,«;*) > 0. Then 

(v,w*) = ( ? - < * > * ) = (y-d ,u>*) - (y-z,w*) < (y-<i,ti>*) < 

<||y-d||.||u,*||<|-|K||<a|H|.|K||. 

Consequently y — z^ Ev,a and thus Mn^(z-^EVya) = 0. The proof is complete. • 

As an immediate consequence of Theorem 1, Lemma 4 and Lemma 5 we state^ 

Theorem 2. Let X be a separable Banach space and A : X —• 2X be an accretive 
operator. Then the set 

M = {u € D(A) : A is not norm continuous at u} 

is a first category set. If in addition X is uniformly Frtchet smooth then M is 
o-porous. 

3. Non—separable case. 

Theorem 3 . Let X be a Banach space and U C X be a nonempty open set. Let 
A : X —• 2X be an accretive operator with U C int D(A) and such that there exists 
an accretive operator A : X —• 2X with the following properties: 

(i) G(A) c G(A), 
(ii) A is norm-weak u.s.c. at each point u £U. 



50 L.Vesely 

Then the set H = {u €U : A is norm continuous at u} is a dense G$ subset of U. 
oo 

PROOF: Clearly H = f) {u € U : HmcHamA(B(ti,£)) < 1 /n} . H is a G6 set 
n=-l '1° 

since each member of the intersection is open. It suffices to prove that U \ H is of 
the first Baire category. 

Let on the contrary U \ H be a first category set. Then there exist a positive 
integer m0 such that the set 

D m , = {u € U : there exist x € A(u) and a sequence {(t;*, y*)} C G(A) 

such that lim v* = u and ||y* — x\\ > l / m 0 for k = 1 ,2, . . . } 
Ik—*oo 

is not nowhere dense. Hence there exists an open nonempty subset G of U such 
that Dmo is dense in G. 

We shall construct a sequence F0 C Y\ C ^ C . of separable subspaces of X 
by induction. 

Choose u0 € Dmo A G arbitrarily. There exist x0 € A(u0) and a sequence 
{(vk,yk)} C G(A) such that lim t>* = u0 and ||y* - x0|| > l / m 0 . Define F0 = 

k—MX* 

Hn({u0} U {z 0 } U {t;*}?0 U {yk}?)< Clearly F0 is separable. 

Let Yo> Yi» • • •»F» be defined. There exists a sequence {c\* } £ i which is a count
able dense subset of Ys f) G. (Note that Ya C\ G is nonempty since it contains 

u0.) For any t = 1 ,2, . . . there exists a sequence {i-;*„}JJLi C Dmo H G such that 
lim u}*.; ss c)*'. By the definition of Droo, for any i ,n = 1,2, . . . there exist 

*\'l € -4<«^») and a sequence { ( » £ , * , # . . , » ) } £ . C G(A) such that 

W « m »S,» ^ <'„ and IlirJrifc - *S;.*|| > 1/mo for any fc. 
K—*00 ' ' ' ' * 

Define 
Y.+1 = lin(Y. U {<*,>}£=, U {-{,•>}&_, U {«#!,»}&,*,, U {yS£t}&,*-i)-

Put F = |J F#. It is evident that F is a closed separable subspace of X and 

GY = G n F is a nonempty open set in F . 
For any w € F put Ay (to) = A(u>) n F . The operator Ay : F —• 2 y is accretive 

o n F . 
Let w € GY and £ > 0 by fixed. It is easy to see that there exist positive integers 

5 , i ,n ,k such that 

(5) \\w - u#\\<6 and | |w - t ^ J < *• 

Hence D ( A y ) is dense in Gy . But D(AY) 0 Gy = A-1(F) n Gy . Consequently 
D(A F ) n Gy is closed in Gy since F is weak-closed and A is norm-weak u.s.c. on 
G (Lemma 3). Hence Gy C D(AY). 
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Now l imdiamAy(B(tv ,£)) > l / m 0 for any w £ Gy, by (4) and (5) (B(w,8) is a 
610 

ball in Y). Consequently an accretive operator Ay is not norm continuous at any 
w £ Gy • But this is in contradiction with Theorem 2. • 

The idea of the following two proofs is due to L.Zajicek. 
Lemma 6. Let u0 £ X,e > 0 and let A : B(u0,e) —» X be an accretive (singl-
evalued) mapping such that ||A(u)|| < r for u belonging to some dense subset of 
B(u0,e). Then \\A(u0)\\ < r. 

PROOF: It is possible to assume u0 = 0 without any loss of generality. Suppose 
||A(0)|| > r. The density assumption implies the existence of u £ B(0, e) \ {0} such 
that ||A(w)|| < r and 

u A(0) | |A(Q)| | -r 
"Hull | | i l ( 0 ) | | H < ||A(0)|| ' 

Then (see a note after Definition 2) » 
\\u - 0|| < ||(u - 0) + t(A(u) - A(0))\\ for any t > 0, or equivalent^ 1 < || JĴ T + 
t(A(u) - A(0))|| for any t > 0. Putting t = 1/||A(0)|| we get 

1< IIJL _ A(°) • M») || . \\M0)\\-r , r 
- ! , W ||A(0)ir ||A(o)||H< ||A(0)|| +||A(0)|| • 

This is a contradiction. • 

Lemma 7. Let A : X —*• 2X be an accretive operator with i n tD (A ) nonempty. 
Then A is locally bounded on some dense open subset ofintD(A). 

P R O O F : Let G C in tD (A ) be any nonempty open set. Denote Gn =- {u £ G : 
A(u) 0 B(0, n) j£ 0} for n = 1,2, Then G = UGn and consequently there exists 
n0 such that Gno is dense in some nonempty open subset V of G. Then for any 
v £ V ||A(u)|| < n0 . Indeed, it suffices to use Lemma 6 for a proper singlevalued 
selection of A on some B(v,e) C V. • 

Lemma 8. Let X be reflexive and Frechet smooth, and let A : X —> 2 * be a 
maximal accretive mapping. If A is bounded on some neighborhood of u0 € i n tD (A ) 
then A is norm-weak u.s.c. at u0. 

PROOF: Let A be not norm weak u.s.c. at u0. Then there exist a weak open set W 
and a sequence {(un,xn)} C G(A) such that A(u0) C W, lim un = ti0 and xn $ W 

n—too 
for n = 1,2, The assumptions imply that the sequence {xn} is bounded. Hence 
there exists a subsequence {#*} of {xn} weakly converging to some x0 € X. It 
is clear that x0 $. W. Accretiveness of A implies (a** — y, J(u* — v)) > 0 for any 
(v, y) £ G(A) and any k. J is norm continuous; hence, limiting k to infinity, we get 

(x0 - y, J(u0 - v)) > 0 for any (v, y) £ G(A). 

Consequently x0 £ A(u0) C W because of maximality of A, and this is the needed 
contradiction. • 

As a coroUary of Lemma 7, Lemma 8 and Theorem 3 we state the foUowing 
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Theorem 4. Let X be a reflexive Frechet smooth Banach space and let A : X —• 2X 

be an accretive operator with int D(A) ^ 0. Then A is norm continuous on a residual 
subset of int D(A). 

PROOF: Let A : X —* 2X be a maximal accretive operator with G(A) C G(A) (A 
exists by Zorn's lemma) and let U C int D(A) be a dense open subset such that A 
is locally bounded on U (Lemma 7). Then A is norm-weak u.s.c. on U by Lemma 
8. Consequently A is norm continuous on a dense Gs subset H of U (Theorem 3). 
Evidently, H is residual in int D(A). • 

4. Convexity and weak closedness of values of maximal accretive map
pings. 

The following two propositions are well-known and we give a sketch of proofs 
only. 

Proposit ion 1. Let L be a real linear space and f,g be linear functionals on L. 
Suppose g is not identically equal to zero and for any x € L the following implica
tions holds: 

(6) / ( * ) > 0 => g(x) > 0. 

Then there exists a > 0 such that g = af. 

SKETCH OF PROOF: It is easy to prove that (6) implies /~*(0) C g~l(0). Since 
g is not identically zero, the sets /"~1(0),flf~1(0) are subspaces of codimension 1 in 
L. Thus f~l($) = ^ _ 1 (0 ) . Take arbitrary x0 € X \ f~l(0) = X\ g"1^) such that 
f(xo) > 0. Then also g(xo) > 0 and it is easy to prove 

9 = 7Mf' 
Propos i t ion 2. Let S be a closed nonempty proper subset of X such that both S 
andSc =X\S are convex. Then S = {x € X : (x,y*) > 0} for some yj) € X* \{0} 
and p € R. 

SKETCH OF PROOF: 5,SC are disjoint nonempty convex sets and Sc is open. By 
Hahn-Banach Theorem, there exist yj € Y* and /S £ R such that S C {x £ X : 
(x, yo) > 0} and Sc C {x € X : (a?, yj) < /?}. Clearly y* ^ 0. Since 5 U Sc = X, 
the inclusions are in fact equalities. 

For simplicity, we shall denote (see (2) in first section) Fa = Ftt>o = {# € X : 
(xyU*) > 0 for some u* € J(«)}. 

Lemma 9. Let u € X. Then the following two assertions are equivalent: 

(i) J(u) is a singleton; 

(ii) Fu is convex. 

PROOF: For u = 0 the equivalence is trivial. Let u ^ 0. If J(u) is a singleton then 
the set Fu = {x € X : (a:, J(u)) > 0} is a halfspace and hence convex. 
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Let Fu be convex. Then tu G Fu for any t > 0 and tu G F* = X \ Fu for 
t < 0. Lemma 2 (ii) implies that Fu is closed. It is obvious that F£ is convex since 
Fu = f! {* G X : (a:, u*) < 0}. By Proposition 2, there exist yj € X* \ {0} and 

u*€J(u) 
PeR such that 

(7) Fu = {xeX;(x,y*o)>0}. 

/? = 0 since 0 is a boundary point of Ftt. Without any loss of generality, it is possible 
to suppose | |yj | | = ||u||. Choose an arbitrary u* G J(u). The definition of Fu and 
(7) imply that {x € X : (x,u*) > 0} C {x G X : (x,yj) > 0}. Hence y0 = au* for 
some a > 0 (Proposition 1). But ||y*J| = ||u|| = ||u*||, thus y* = u.- Consequently 
J(u) = {y0*}. • 

In the following lemma, dimJ (u) means the dimension of a linear hull of..J(u). 

Lemma 10. Let u G X. Then the following assertions are equivalent: 

(i) dimJ(u) < oo; 

(ii) Fu is weak closed. 

PROOF: Lemma 10 is trivial for u = 0. Let u ^ 0. Let {t>*,..., v*} be a basis of 
the linear space L = lin J(u). Let x0 G F$ = X\FU = f) {x G X : (x, u*) < 0}. 

«*€J(«) 
Then m := sup{(x0,u*) : u* G J(u)} = max{(.ro,u*) • u* 6 J(u)} < 0, since J(u) 

n 
is weak* compact. Any u* 6 J(u) can be written in the form u* = ^ a i (M*) v* 

i=i 
where a,(u*) G It, i = 1 , . . . , n. Since all norms on finite-dimensional space L are 
equivalent, there must exist c\ > 0 such that 0 < max{|aj(u*)| : t = l , . . . , n } < 
Cl | |u*|| = ci| |u| | = : c for any u* G J(u). Define W = {y G X : \(y - x 0 , < ) | < ^ 
for i = 1 , . . . , n } . W is a weak neighborhood of xo- It suffices to prove W C F£. Let 
ye Wand u* G J(u). Then (y,u*> = (.r0,u*) + (y-ar0 ,u*) < ( i 0 ,«*) + E M " * ) | -

t = i 

\(y-x0iv*)\ <m + nc(=^) = m / 2 < 0. Hence y G F£ and the implication (i)=»(ii) 
is proved. 

Let d imJ (u) be infinite. It is evident that (—u) G F„. We shall show that —u 
is not in the weak-interior of F£. Let {v*,...,v*} be an arbitrary finite subset 
of K*\{0} a n d e > 0. Define W = {y G X : |(y + u,v*)| < e for i = l , . . . , n } 
and X = lin{t;*,.. . , v * } . There exists uj G «/(u) \ L. Let w e X be such that 
(u;,uj) > ||u||2 and (w,v*) = 0 for any v* G I . Put y = w - u. Clearly y G W 
since (y + u,vt*) = (w,v*) = 0 for t = 1 , . . . ,n . But (y,uj) = (u>,uj) - (u,u*,) = 
(u;, u0) — ||u||2 > 0, thus y £ F£ and F£ does not contain W. Consequently —u is 
not a weak interior point of F£, since the sets W form a base of weak neighborhoods 
of - u . • 

Remark. It is possible to prove that the condition (i) from Lemma 10 is equivalent 
to: 

u = 0 or codimLu < oo, where Lu{v G X : q'(u,v) = — q'(u, —v)} 



54 L.Vesely 

(Lu is the linear space of all vectors v such that the norm on X is differentiable in 
the direction v at u). 

The following two theorems will be proved simultaneously. 

Theorem 5. The following assertions are equivalent for any Banach space X: 

(i) X is Gateaux smooth; 
(ii) A(tt) is convex for any maximal accretive operator A : X —• 2X and any 

u £ D(A). 

Theorem 6. The following assertions are equivalent for any Banach space X: 

(i) dim J(u) < oo for any u £ X; 
(ii) A(u) is weak closed for any maximal accretive operator A : X —* 2X and any 

u £ D(A). 

PROOF: of Theorem 5 and Theorem 6 Let (i) hold. Let A : X —* 2X be a maximal 
accretive operator and u £ D(A). The maximality of A implies 

A(u) = {x £ X : V(t>,y) £ G(A) 3w* £ J(u - v) (x-y,w*)>0} = 

= ( | {x £ X : (x — y>w*) > 0 for some w* £ J(u — v)} = 
(vty)€G(A) 

(8) = fj (y + Fu-v) 
(v,y)£G(A) 

and hence (ii) holds by Lemma 9, respectively Lemma 10. 
Let (i) not hold. There exists u £ X such that J(u) is not a singleton, respec

tively dim J(u) is infinite. Obviously u ^ 0. Then Ftt is not convex by Lemma 9, 
respectively Fu is not weakly closed by Lemma 10. Put Ai(0) = {0}, A\(u) = F„ 
and A\(v) = 0 for v 6 X \ {0,«}. Then A\ : X —* 2X is an accretive oper
ator with D(A\) = {0,«}. Let now A be a maximal accretive operator such 
that G(AX) C G(A). Let x € A(u). Then there exists u* € J(u - 0) such that 
(x — 0,«*) > 0. Hence x € Ftt = Ai("). Consequently A(u) = Fu and thus (ii) does 
not hold. 

The theorems are proved. • 

Remark. Note that the formula (8) from the proof, and Lemma 2, (ii) immediately 
imply that A(u) is norm closed for any maximal accretive operator A : X —*• 2X 

and any u £ D(A). 
It would be interesting to know a characterization of Banach spaces X with the 

following property: 
for any maximal accretive A : X —• 2X the set A(u) is convex (resp. weak closed) 
for u € int D(A). 
Does a general Banach space satisfy this property? These problems seem to be 
open. 
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