Commentationes Mathematicae Universitatis Carolinas

Roy A. Johnson; Eliza Wajch; Władysław Wilczyński Hereditary κ-separability and the hereditary κ-Lindelöf property in function spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 1, 75--80

Persistent URL: http://dml.cz/dmlcz/106705

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Hereditary κ-separability and the hereditary κ-Lindelöf property in function spaces

Roy A.Johnson, Eliza Wajch, Wladyslaw Wilczyński

Abstract

This paper is concerned with the smallest linear subspace $L_{p}(X)$ of $C_{p} C_{p}(X)$ containing the Tychonoff space X. It is proved that $L_{p}(X)$ is hereditarily κ-Lindelöf (hereditarily κ-separable, resp.) if and only if X^{ω} is hereditarily κ-Lindelöf (hereditarily κ-separable, resp.). Moreover, it is shown that a certain cardinal function of $L_{p}(X)$ called the weak pseudonet weight of $L_{p}(X)$ equals the net weight of X.

Keywords: Tychonoff space, function space, pointwise convergence, hereditary κ-separability, hereditary κ-Lindelöf property, weak pseudonet weight, net weight
Classification: 54A25, 54C35

Throughout this article, X denotes a Tychonoff space. The symbol $C_{p}(X)$ stands for the algebra of all continuous real-valued functions on X, with the topology of pointwise convergence. One easily sees that the formula

$$
\begin{equation*}
e(x)(f)=f(x) \tag{1}
\end{equation*}
$$

where $x \in X$ and $f \in C_{p}(X)$, defines a homeomorphic embedding of X into $C_{p} C_{p}(X)$ (cf. [1; Proposition $3.5(\beta)$, p.16]). Denote by $L_{p}(X)$ the smallest linear subspace of $C_{p} C_{p}(X)$ which contains $e(X)$ (cf. [1; p.17]).

It is known that $C_{p} C_{p}(X)$ is hereditary κ-Lindelöf (hereditary κ-separable, resp.) if and only if X^{ω} has that property (cf. [1;Corollary 3.28]). Our purpose is to prove that $C_{p} C_{p}(X)$ can be replaced by $L_{p}(X)$ in the preceding statement. Moreover, we shall show that the weak pseudonet weight of $L_{p}(X)$ is equal to the net weight of X.

Before proceeding to the body of the paper, let us introduce some notation and establish some useful facts.

In what follows, κ denotes an infinite cardinal number, and for simplicity, all cardinal functions will be infinite.

The smallest (infinite) cardinal number κ such that X is hereditarily κ-Lindelöf (hereditarily κ-separable, resp.) is denoted by $h l(X)$ ($h d(X)$, resp.).

As usual, $n w(X)$ denotes the net weight of X and $w(X)$ denotes the weight of X.

For each positive integer $n \geq 2$, let

$$
\Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{i}=x_{j} \text { for some } i \neq j(i, j=1, \ldots, n)\right\}
$$

Obviously,

$$
\begin{equation*}
\Delta_{n}=U\left\{\Delta_{i j}^{n}: 1 \leq i<j \leq n\right\} \tag{2}
\end{equation*}
$$

where $\Delta_{i j}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{i}=x_{j}\right\}$ (cf. [2;Definition 10.1]). One can readily observe that for $n \geq 2$, we have

$$
\begin{equation*}
\Delta_{i j}^{n} \text { is homeomorphic to } X^{n-1} \tag{3}
\end{equation*}
$$

Let \sum_{n} be the set of all permutations of the numbers $1, \ldots, n$. For $\left(x_{1}, \ldots, x_{n}\right) \in$ X^{n}, we define $q_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\{\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right): \sigma \in \sum_{n}\right\}$. Let

$$
X_{n}^{*}=\left\{q_{n}\left(x_{1}, \ldots, x_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in X^{n}\right\}
$$

be considered with the quotient topology generated by q_{n}. Because

$$
q_{n}^{-1}\left[q_{n}\left(U_{1} \times \cdots \times U_{n}\right)\right]=\cup\left\{U_{\sigma(1)} \times \cdots \times U_{\sigma(n)}: \sigma \in \sum_{n}\right\}
$$

where $U_{i} \subset X$ for $i=1, \ldots, n$, then

$$
\begin{equation*}
q_{n}: X^{n} \rightarrow X_{n}^{*} \text { is a continuous open surjection. } \tag{4}
\end{equation*}
$$

For $n \geq 2$, we define

$$
\begin{gather*}
Y_{n}=X_{n}^{*} \backslash q_{n}\left(\Delta_{n}\right), \tag{5}\\
Z_{n}=\left\{e\left(x_{1}\right)+\cdots+e\left(x_{n}\right) \in L_{p}(X):\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \backslash \Delta_{n}\right\}, \tag{6}\\
\phi_{n}\left(e\left(x_{1}\right)+\cdots+e\left(x_{n}\right)\right)=q_{n}\left(x_{1}, \ldots, x_{n}\right), \text { where } e\left(x_{1}\right)+\cdots+e\left(x_{n}\right) \in Z_{n} . \tag{7}
\end{gather*}
$$

Then since $e(X)$ is an algebraic base for $L_{p}(X)$ (cf. [1; Remark 3.14]), ϕ_{n} is a well-defined one-to-one mapping from Z_{n} onto Y_{n}. We shall show the following
8.Lemma. The mapping $\phi_{n}: Z_{n} \rightarrow Y_{n}$ is a homeomorphism for each $n \geq 2$.

Proof: To begin with, we shall show that the mapping ϕ_{n} is continuous. Let us take $z=e\left(x_{1}\right)+\cdots+e\left(x_{n}\right) \in Z_{n}$ and an open neighborhood V of $\phi_{n}(z)$ in Y_{n}. Because Y_{n} is an open subspace of X_{n}^{*}, then V is open in X_{n}^{*}. Since $\left(x_{1}, \ldots, x_{n}\right) \notin$ Δ_{n}, it follows from the continuity of q_{n} that there exist open subsets U_{i} of X such that $x_{i} \in U_{i}$, where $U_{i} \cap U_{j}=\emptyset$ for $i \neq j(i, j=1, \ldots, n)$ and $q_{n}\left(U_{1} \times \cdots \times U_{n}\right) \subset$ V. Choose functions $f_{i} \in C_{p}(X)$ such that $f_{i}\left(x_{i}\right)=1$ and $f_{i}\left(X \backslash U_{i}\right)=\{0\}$ for $i=1, \ldots, n$. From Proposition 3.10^{*} given in $[1 ;$ p.18], it follows that there exist continuous linear functionals $h_{i}: L_{p}(X) \rightarrow R$ such that $h_{i \mid e(X)}=f_{i} \circ e^{-1}$ for $i=1, \ldots, n$. Put

$$
W=\cap\left\{h_{i}^{-1}(R \backslash\{0\}): i=1, \ldots, n\right\} .
$$

Because $h_{i}(z)=h_{i}\left[e\left(x_{1}\right)\right]+\cdots+h_{i}\left[e\left(x_{n}\right)\right]=f_{i}\left(x_{1}\right)+\cdots+f_{i}\left(x_{n}\right)=1$ for $i=1, \ldots, n$, then $z \in W$. To complete the proof of continuity of ϕ_{n} it suffices to check that $\phi_{n}\left(W \cap Z_{n}\right) \subset q_{n}\left(U_{1} \times \cdots \times U_{n}\right)$.
Let $z^{\prime} \in W \cap Z_{n}$ and $z^{\prime}=e\left(x_{1}^{\prime}\right)+\cdots+e\left(x_{n}^{\prime}\right)$, where $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in X^{n} \backslash \Delta_{n}$. Then $f_{i}\left(x_{1}^{\prime}\right)+\cdots+f_{i}\left(x_{n}^{\prime}\right)=h_{i}\left(z^{\prime}\right) \neq 0$, so $f_{i}\left(x_{j}^{\prime}\right) \neq 0$ for some $j=1, \ldots, n$. Hence, for each $i=1, \ldots, n$ there exists $j=1, \ldots, n$ such that $x_{j}^{\prime} \in U_{i}$ so that $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in$ $\cup\left\{U_{\sigma(1)} \times \cdots \times U_{\sigma(n)}: \sigma \in \sum_{n}\right\}$. Thus, $\phi_{n}\left(z^{\prime}\right)=q_{n}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in q_{n}\left(U_{1} \times \cdots \times U_{n}\right)$.

Now we shall show that ϕ_{n} is an open mapping. Let U be an open set in $L_{p}(X)$ and $y \in \phi_{n}\left(U \cap Z_{n}\right)$. Take a point $z=e\left(x_{1}\right)+\cdots+e\left(x_{n}\right) \in U \cap Z_{n}$ such that $y=\phi_{n}(z)$. We can choose open sets $U_{i} \subset X$ such that $x_{i} \in U_{i}$, where $U_{i} \cap U_{j}=\emptyset$ for $i \neq j(i, j=1, \ldots, n)$ and $e\left(U_{1}\right)+\cdots+e\left(U_{n}\right) \subset U \cap Z_{n}$. Put $V=\phi_{n}\left(e\left(U_{1}\right)+\cdots+\right.$ $e\left(U_{n}\right)$. Because $V=q_{n}\left(U_{1} \times \cdots \times U_{n}\right)$, then by (4), V is open in Y_{n}. Moreover, $y \in V \subset \phi_{n}\left(U \cap Z_{n}\right)$, so ϕ_{n} is an open mapping.

Now we are a position to prove the main theorems of this paper.
9.Theorem. If X is a Tychonoff space, then $h l\left[L_{p}(X)\right]=h l\left(X^{\omega}\right)$.

Proof: Denote $\kappa=h l\left[L_{p}(X)\right]$. By virtue of [6; Theorem 3,p.177], to prove that $h l\left(X^{\omega}\right) \leq \kappa$, it suffices to show that $h l\left(X^{n}\right) \leq \kappa$ for each positive integer n.

Clearly, $h l(X) \leq \kappa$. Assume that $h l\left(X^{n-1}\right) \leq \kappa$ for some $n \geq 2$. Because $Z_{n} \subset L_{p}(X)$, then $h l\left(Z_{n}\right) \leq \kappa$; hence, Lemma 8 yields that $h l\left(Y_{n}\right) \leq \kappa$. Let U be an open subset of $X^{n} \backslash \Delta_{n}$. Then, by (4), the mapping $p_{n}=q_{n \mid U}$ is open, continuous and, moreover, all fibers of p_{n} have cardinalities less than or equal to n !. For $i=1,2 \ldots n!$, put $V_{i}=\left\{y \in p_{n}(U): p_{n}^{-1}(y)=i\right\}$ and $U_{i}=p_{n}^{-1}\left(V_{i}\right)$. Applying [3; Proposition 2.1.4, p.95] and the theorem given in [3; Probler 4.4D(b), p.358], we deduce that $p_{n \mid U_{i}}$ is a perfect mapping from U_{i} onto V_{i}, so U_{i} is κ Lindelöf for $i=1, \ldots, n$! (cf. [3; Theorem 3.8.9, p.248]). As $U=U_{i=1}^{n!} U_{i}$, then U_{i} is κ-Lindelöf. Hence, $h l\left(X^{n} \backslash \Delta_{n}\right) \leq \kappa$. Now, using (2)-(3) and our assumption that $h l\left(X^{n-1}\right) \leq \kappa$, we deduce that $h l\left(\Delta_{n}\right) \leq \kappa$; thus $h l\left(X^{n}\right) \leq \kappa$.

As $L_{p}(X) \subset C_{p} C_{p}(X)$, the inequality $h l\left[L_{p}(X)\right] \leq h l\left(X^{\omega}\right)$ is an immediate consequence of [6; Theorem 6,p.178]
10.Theorem. If X is a Tychonoff space, then $h d\left[L_{p}(X)\right]=h d\left(X^{\omega}\right)$.

Proof: Put $\kappa=h d\left[L_{p}(X)\right]$ and fix a positive integer $n \geq 2$. Similarly as in the proof of Theorem 9 , we show that $h d\left(Y_{n}\right) \leq \kappa$. Let $M \subset X^{n} \backslash \Delta_{n}$ and let A_{0} be a dense subset of $q_{n}(M) \subset Y_{n}$ such that $\left|A_{0}\right| \leq \kappa$; then by (4) we have that

$$
\overline{q_{n}^{-1}\left(A_{0}\right)} \cap q_{n}^{-1}\left[q_{n}(M)\right]=q_{n}^{-1}\left(\overline{A_{0}}\right) \cap q_{n}^{-1}\left[q_{n}(M)\right]=q_{n}^{-1}\left[q_{n}(M)\right]
$$

(cf. [3; Exercise 1.4.C,p.57]); so $q_{n}^{-1}\left(A_{0}\right)$ is dense subset of $q_{n}^{-1}\left[q_{n}(M)\right]$. Put $D_{0}=q_{n}^{-1}\left(A_{0}\right)$ and $M_{1}=\overline{D_{0} \cap M} \cap M$. Let us choose a set $A_{1} \subset q_{n}\left(M \backslash M_{1}\right)$ such that A_{1} is dense in $q_{n}\left(M \backslash M_{1}\right)$ and such that $\left|A_{1}\right| \leq \kappa$. Put $D_{1}=D_{0} \cup q_{n}^{-1}\left(A_{1}\right)$ and $M_{2}=\overline{D_{1} \cap M} \cap M$. We can inductively define sets A_{i}, D_{i}, M_{i} such that $\left|A_{i}\right| \leq \kappa, A_{i}$ is a dense subset of $q_{n}\left(M \backslash M_{i}\right), D_{i}=D_{i-1} \cup q_{n}^{-1}\left(A_{i}\right)$ and $M_{i}=\overline{D_{i-1} \cap M} \cap M$. The set $D=D_{n!-1} \cap M$ is of cardinality $\leq \kappa$. To show that D is dense in M, we need the following notation:

For $x=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}, U=U_{1} \times \cdots \times U_{n} \subset X^{n}$ and $\sigma \in \sum_{n}$, let $x^{\sigma}=$ $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ and $U^{\sigma}=U_{\sigma(1)} \times \cdots \times U_{\sigma(n)}$. Denote by $\mathcal{B}(x)$ the family of all open sets of the form $U_{1} \times \cdots \times U_{n} \subset X^{n}$ which contain x. Finally, let id $\in \sum_{n}$ be the identity permutation.

Suppose that the set D is not dense in M. Then there exists $x \in M$ and $U \in \mathcal{B}(x)$ such that
$\left(d_{0}\right) \quad U \cap D=0$.

Because $x \in M \backslash M_{n!-1}$ and the set $q_{n}^{-1}\left(A_{n!-1}\right)$ is dense in $q_{n}^{-1}\left[q_{n}\left(M \backslash M_{n!-1}\right]\right.$, then there exist ${ }_{1} y, \sigma_{1} \in \sum_{n}$ and ${ }_{1} V \in \mathcal{B}\left({ }_{1} y\right)$ such that

```
\(\left(a_{1}\right) \quad{ }_{1} V \subset U\),
\(\left(b_{1}\right) \quad{ }_{1} y \in q_{n}^{-1}\left(A_{n!-1}\right)\),
(c1) \(\quad 1 y^{\sigma_{1}} \in M \backslash M_{n!-1} \subset M \backslash M_{n!-2}\),
\(\left(d_{1}\right) \quad{ }_{1} V^{\sigma_{1}} \cap D_{n!-2} \cap M=\emptyset\).
```

It follows from $\left(a_{1}\right),\left(b_{1}\right)$ and $\left(d_{0}\right)$ that $\sigma_{1} \neq i d$. As the set $q_{n}^{-1}\left(A_{n!-2}\right)$ is dense in $q_{n}^{-1}\left[q_{n}\left(M \backslash M_{n!-2}\right)\right]$, then we obtain from $\left(c_{1}\right)$ that there are ${ }_{2} y, \sigma_{2} \in \sum_{n}$ and ${ }_{2} V \in \mathcal{B}\left({ }_{2} y\right)$ such that
$\left(a_{2}\right) \quad{ }_{2} V \subset{ }_{1} V$,
(b_{2}) $\quad{ }_{2} y^{\sigma_{1}} \in q_{n}^{-1}\left(A_{n!-2}\right)$,
(c2) $\quad{ }_{2} y^{\sigma_{2}} \in M \backslash M_{n!-2} \subset M \backslash M_{n!-3}$,
$\left(d_{2}\right) \quad{ }_{2} V^{\sigma_{2}} \cap D_{n!-3} \cap M=\emptyset$.
It follows from $\left(d_{0}\right),\left(a_{1}\right),\left(d_{1}\right),\left(a_{2}\right),\left(b_{2}\right)$ that $\sigma_{2} \in \sum_{n} \backslash\left\{i d, \sigma_{1}\right\}$. Arguing similarly, in the i-th step, we obtain ${ }_{i} y, \sigma_{i} \in \sum_{n}$ and ${ }_{i} V \in \mathcal{B}\left({ }_{i} y\right)$ such that

$\left(a_{i}\right)$	${ }_{i} V \subset_{i-1} V$,
$\left(b_{i}\right)$	${ }_{i} y^{\sigma_{i-1}} \in q_{n}^{-1}\left(A_{n!-i}\right)$,
$\left(c_{i}\right)$	${ }_{i} y^{\sigma_{i}} \in M \backslash M_{n!-i} \subset M \backslash M_{n!-i-1}$,
$\left(d_{i}\right)$	${ }_{i} V^{\sigma_{i}} \cap D_{n!-i-1} \cap M=\emptyset$.

From all the conditions $\left(d_{0}\right),\left(a_{j}\right),\left(d_{j}\right)(1 \leq j \leq i)$ and from $\left(a_{i}\right),\left(b_{i}\right)$ it follows that $\sigma_{i} \in \sum_{n} \backslash\left\{i d, \sigma_{1}, \ldots, \sigma_{i-1}\right\}$. As ${ }_{n!-1} y^{\sigma_{n}-1} \in M$ and the set $q_{n}^{-1}\left(A_{0}\right)$ is dense in $q_{n}^{-1}\left[q_{n}(M)\right]$, then there is ${ }_{n!} y$ such that ${ }_{n!} y^{\sigma_{n}{ }^{\prime-1}} \in_{n!-1} V^{\sigma_{n}!-1} \cap q_{n}^{-1}\left(A_{0}\right)$. For some $\sigma_{n!} \in \sum_{n}$, we have that ${ }_{n!} y^{\sigma_{n}!} \in M$. From the conditions $\left(a_{i}\right),\left(d_{i}\right)$ it follows that $\sigma_{n!} \neq \sigma_{i}$ for $1 \leq i \leq n!-1$. Because $\sigma_{i} \neq \sigma_{j}$ for $i \neq j(1 \leq i, j \leq n!-1)$, then $\sigma_{n!}=i d$ which contradicts $\left(d_{0}\right)$. Hence, the set D is dense in M and $h d\left(X^{n} \backslash \triangle_{n}\right) \leq \kappa$. Arguing as in the proof of Theorem 9, we can inductively show that $h d\left(X^{n}\right) \leq \kappa$ for each positive integer n. By applying Theorem 3^{*} of $[6 ; \mathbf{p} .177]$, we obtain that $h d\left(X^{\omega}\right) \leq \kappa$.

The inequality $h d\left[L_{p}(X)\right] \leq h d\left(X^{\omega}\right)$ follows from [6; Theorem 6, p.179]
The preceding two theorems imply
11.Corollary. If X is a Tychonoff space, then $h l\left[C_{p} C_{p}(X)\right]=h l\left(X^{\omega}\right)$ and $h d\left[C_{p} C_{p}(X)\right]=h d\left(X^{\omega}\right)$.

The above corollary is a slight modification of Corollary 3.28 given in [1; p.38], but with a different proof.
12.Corollary. If X is a Tychonoff space, then $h l\left[L_{p}(X)\right]=h l\left[C_{p} C_{p}(X)\right]$ and $h d\left[L_{p}(X)\right]=h d\left[C_{p} C_{p}(X)\right]$.
13. Corollary. If X is a locally compact Hausdorff space, then $h l\left[L_{p}(X)\right]=w(X)$.

Proof: If ωX is the one-point compactification on X, then $h l(X \times X)=h l(\omega X \times$ $\omega X) \geq \Delta(\omega X)=\omega(\omega X)=w(X)$ where $\Delta(\omega X)$ denotes the diagonal degree of ωX (cf. [4; p. 16 and Corollary 7.6, p.27]). This implies that $h l(X \times X)=w(X)$, so that $h l\left(X^{\omega}\right)=w(X)$. Theorem 9 completes the proof.
14. Corollary. If X is a locally compact Hausdorff space, then $h l\left[C_{p} C_{p}(X)\right]=$ $w(X)$.
15. Corollary. If X is a locally compact Hausdorff space, then $h d\left[C_{p}(X)\right]=w(X)$.

Proof: Inasmuch as $n w\left[C_{p}(X)\right]=n w(X)=w(X)$ (cf. [1; Theorem 1.1, p.24] and $\left[\mathbf{3 ;}\right.$ Theorem 3.3.5, p.197]), then $h d\left[C_{p}(X)\right] \leq w(X)$.

The inequality $w(X) \leq h d\left[C_{p}(X)\right]$ follows from Corollary 3.26 given in $[\mathbf{1 ; ~ p . 3 7] ~}$ and the fact that $h l\left(X^{2}\right)=w(X)$.
16.Definition. A family ε of subsets of a space X will be called a weak κ-pseudonet in X if and only if $|\varepsilon| \leq \kappa$. and for each open set $U \subset X$, there exists a set $A \subset U$ such that $|A| \leq \kappa$ and for each $x \in U \backslash A$, there exists $E \in \varepsilon$ such that $x \in E$ and $|E \backslash U| \leq \kappa$. The cardinal number.

$$
w p n(X)=\min \{\kappa \geq \omega: \text { there exists a weak } \kappa \text {-pseudonet in } X\}
$$

will be called the weak pseudonet weight of X.
17.Theorem. If X is a Tychonoff space, then $w p n\left[L_{p}(X)\right]=n w(X)$.

Proof: Because $n w(X)=n w\left[C_{p} C_{p}(X)\right]$ (cf. [Theorem 1.1, p.24], it follows that $w p n\left[L_{p}(X)\right] \leq n w(X)$.

Denote $\kappa=w p n\left[L_{p}(X)\right]$ and consider the spaces Y_{2}, Z_{2} defined in (5)-(6). By Lemma $8, Y_{2}$ is homeomorphic to Z_{2}, so $w p n\left(Y_{2}\right)=w p n\left(Z_{2}\right) \leq \kappa$. Let ε be a weak κ-pseudonet in Y_{2}. It is easy to observe that $\left|q_{2}^{-1}(B)\right| \leq \kappa$ for each $B \subset Y_{2}$ such that $|B| \leq \kappa$. This-together with (4)-implies that the family $\left\{q_{2}^{-1}(E): E \in \varepsilon\right\}$ is a weak κ-pseudonet in $X^{2} \backslash \Delta_{2}$; hence $w p n\left(X^{2} \backslash \Delta_{2}\right) \leq \kappa$. As \triangle_{2} is homeomorphic to X, we have $w p n\left(\Delta_{2}\right)=w p n(X) \leq w p n\left[L_{p}(X)\right]=\kappa$ so that $w p n\left(X^{2}\right) \leq \kappa$. As $n w(X)=w p n\left(X^{2}\right)(c f .[5 ;$ Corollary 1.12] $)$, we have $n w(X) \leq \kappa$.
18. Corollary. If X is a Tychonoff space, then $w p n\left[C_{p} C_{p}(X)\right]=n w(X)$.

We do not know if Corollary 18 can be strengthened to say that $w p n\left[C_{p}(X)\right]=$ $n w(X)$.

References

[1] Arhangelskii A.V., "Function spaces with the pointwise topology, I," in: General topology, function spaces and dimension (Russian), Moscow University, 1985, pp. 3-66.
[2] Arhangelskii A.V., Tkačuk V.V., "Function spaces and topological invariants," (Russian), Moscow University, 1985.
[3] Engelking R., "General topology," PWN-Polish Scientific Publishers, Warszawa, 1977.
[4] Hodel R., "Cardinal functions I," in:Handbook of set-theoretic topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 1-61.
[5] Johnson R.A., Wajch E., Wilczyński W., "Three cardinal functions similar to net weight," to be submitted.
[6] Zenor P., Hereditery m-separability and the hereditary m-Lindelöf property in product spaces and function spaces, Fund.Math. 106 (1980), 175-180.
R.A.Johnson: Department of Mathematics, Washington State University, Pullman, WA 99164, USA
E.Wajch, W.Wilczyński: Institute of Mathematics, University of Lódź, ul Banacha 22, 90-239 Lódź, Poland
(Received September 20,1988)

