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Smooth functions and zero traces

PAVEL DOKTOR

Abstract. In the present paper, we prove a possibility of approximation of a function f €
W¥P(Q) by smooth functions which vanish on the same part of the boundary as f.

Keywords: Sobolev spaces, density theorems, approximation of boundary values

Classification: 41A30, 46E35

1. Introduction.

In this paper, we consider density of smooth functions in subspaces V C W*?(Q)
of all functions of the Sobolev space W*»(2) which vanish on some part of the
boundary 9. It is well known that if V is the space of all functions with zero
traces on the whole boundary, then we have V = WFP(Q) = C$°(R) supposing the
boundary to be Lipschitzian ( a survey of notations and definitions is written out
in the section 2 below; see also [1] or [2]). Under the same assumption we have
W¥P(Q) = C(Q). One can suppose that for V = {u € W5?(Q);u = 0onT C
a0}, ¥V = VN C=(N) the density identity V = V holds; some affirmative examples
are given in [2] and a more general result of this type is in [3]. In the present
paper, we prove a slightly stronger density theorem for a wide class of “zero sets”
I' C 89 supposing higher smoothness of the boundary 99 (depending on k). The
main theorem is proved in section 4 as a consequence of the auxiliary Lemma 1.
The proof of this lemma — which is essentially a special case of the density theorem
— is given in the section 3, while the section 2 contains definitions and notations
used in the following.

2. Notations and definitions.

In this section, we briefly summarize notations and concepts used in the following
and repeat their main properties needful for our considerations; for details and
proofs, see [1] or [2].

By Ry we denote the M—-dimensional Euclidean space of points z = (zy,...,zum);
R}, = {z € Ry;zm > 0} is the “positive halfspace”. We shall write usually
M = Nor M = N + 1 and we shall abbreviate for z € Ry : z = (¢',zn), for
T € Ry4y iz = (2',2N,ZN41), where z' stands for (z1,...,2N-1).

Having f a real function (with domain of definition D C Rp) we denote by
supp f = {z € Rus; f(z) # 0} ( the closure with respect to usual Euclidean metric)
the support of f. Let 2 C Ry be an open domain, bounded or equal to the whole
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244 P.Doktor
space Ry, or the halfspace R},. We denote:

C(R) — the space of all functions f, uniformly continuous
on 2, with compact support
C=(Q) ={f e C(Q); D?f e C(Q) for all multiindexes 3}

gy OPttAu
(B=(p,---,Bm),DF = e
Co(R) = {f € C=(Q);supp f C O}
(C=(Q) = £(Q),C () = D(N) according to [2])
For p > 1, k positive integer, we denote by
Ly(R) = W%P(Q)- the set of all measurable functions f with

finite norm | fllo.pe = [|fllo = ( /ﬂ \FIP da)!/?

WhP(Q) = {f € Lp(Q); DP f € Ly(R) (in the sense of distributions)
for [B| = A1 + -+ + Bm < k, with the norm || fllep0 =

Ifllep = (Y IDP£IIE )17}

181<k
WeP(Q) = C°(R) (the closure in the space W*P(£2)).

We say that a bounded domain  is of the type C* (or C*!) and we write € C*
(or @ € C*') if there exists a finite number of Cartesian co-ordinate systems
z = (21,j,...,ZM,j)»J = 1,...,r, such that the boundary 0Q of Q is covered by
graphs (in these systems) of functions aj, continuous together with all derivatives
up to the order k in an open neighbourhood of the origin of j—th system, (with
k~th derivatives being Lipschitzian) and such that these graphs divide locally Ry
onto the interior and exterior of Q. For @ € C%! or = R},, we denote by T'f the
trace of f (on 0Q). The “mapping of trace” T is uniquely defined as a continuous
mapping from W?(Q) into L,(). It is possible to characterize W: () via traces,
namely: u € Wy?(Q) iff u € W*P(Q) and TDPu = 0 on 8 for |§] < k—1. (Hence,
supposing @ € C°! we have {u € WFP(Q); TDPu = 0,|8| < k — 1} = Cg°(c0).)
For the W*?(Q), we have W*?(Q) = C>(Q) supposing 2 € C° or @ = Ry
or Q@ = R},; moreover, W¥P(Q) = C$°(Rpy) in the sense of restrictions. The
following assertion holds: let ; C Ra,§; C Ry be two bounded domains and
let ¢ : Oy — @, be a Lipschitzian mapping with Lipschitzian inverse ;. Then
the mapping ® : u — v : v(z) = u(p(z)) is an isomorphism between W'P(,) and
W1P(Q,). Moreover, if ¢ has Lipschitzian derivatives up to the order k — 1 as well
as ), then the mapping & is an isomorphism between W*?(Q,;) and W*?(Q;). In
the following, extension theorems will be helpfull, too:

1. Let f € WyP(Q), Q2 C Ry. Then f € WHP(Ry) if we define f(z) = 0 for
z ¢9N.
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2. Let f € WFP(R},). Then f € WrP(Ry) if we define f(z1,...,~zM) =
af(zy,y...,zm) + c2f(z1,..-,22Mm) + -+ + ek f(z1,...,kzpm) for zp > 0
with convenient choice of ¢; (method of Nikolski).

3. An auxiliary lemma.

Lemma 1. Let G and G be two (N + 1)-dimensional parallelepipeds defined as
follows: G = (0,1)N x (0,1),G = (0,1)N x (=1,1). Let Gy C Go C (0,1)N be
N-dimensional domain of class C° and let us denote by T the set T = Go x {0} C
G. Let, moreover, P C P C G be an open set. Let v € W*P(Q) (k positive
integer) be such a function that suppv C P, and v =0 on T in the sense of traces.
Then there ezists a sequence {w,} C C°(P) such that nl_x_x'r;o"w,, = V|lk,p;6 =0 and

Tn suppw, = 0.

PROOF : According to the assumption Go € C?, there exist « > 0,6 > 0 and r
Cartesian systems (z;;)¥,(j = 1,...,r) and r functions a;, continuous on A =
(=86,86)N-1 such that :

(i) z =(z},2n,;) €EGo for 2} € A,
aj(:v'j) <zN,; < aj(z;) +a

(il) = € Gy = Ry — Gy for aj(z}) — a < zN,; < a;(z})

(iii) for any = € OG, there exists j and z); such that = = (z}, a;(z})).
Without loss of generality we can suppose a such small that U; C (0,1)" where
Uj = {z € Ry;2} € Aaj(z)) —a < zn,; < a;(z}) +a}(j = 1,...,7). Let

— — —_— r+1
Uo C Uo C Go, U,-+1 C U,-+1 C (0, l)N —Go be such domams that U Uj = (0, I)N.
i=0
The domains Vj,V; = U; x (—1,1) cover P, and hence there exists a partition of
r+1
unity:p; € Cg°(Vj) for j =0,...,r +1,0< pj(z) <1forz € V; and } pj(z) =1
j=0

r+1
for z € P. Thus we have v = f:uv_,- where v; = v - ;. It is now sufficient to
J=
find sequences wj,, € C(P),wj, — v; and suppw;, NT = §; the functions
Wn = Wo,n + +* + Wry1,, satisfy the assertion of our lemma. In the following, we
construct such sequences for arbitrary j =0,1,...,r,r +1.

a. Let i = 0. Obviously v, € WFP(G) and we can extend it by zero on the
whole Ry4;. Hence we can approximate vy by a function vg ¢ : vo ¢(2', 2N, ZN41) =
vo(z',zN,zN+1 —t). Then ,l_iﬁi"”"»' — vo|lk,p;Rw4, = 0 in virtue of L,-mean conti-
nuity theorem and for ¢ small enough we have suppvo: C PNG. Now it is sufficient
to write wo,n = wn *vg,¢ With t = %, where w, is a sequence of mollifiers with radii
tending to zero and by * we denote a convolution.

b. Let ¢ = r + 1. Defining v.4; = 0 on R','{,_té — G and then extending it by
the method of Nikolski we obtain v,4+1 € W: '?(G),suppvey; C Vi1 and, more-
over, suppv,4; NT = . Now, again the functions wr41,n = wp * V41 satisfy our
requirements.

245



246

P.Doktor

c. Now, let j = 1,2,...,r. Then defining v; = 0 outside G we obtain v; €
W*P(RY, 1) Hence, writing vj,s(z}, ZN,j, TN+1) = vj(2}, TN +8,2N41)(0 < s <
a), we have lir(x)1+[|vj,, - v;llk = 0. Moreover, supposing a small enough we

s—
obtain suppv;, C V; N P.
* Now, let us define 'U’ = {z € Uj;zn,; > aj(z}) — s},U? = {z € Uj;an,; <
aj(zi) = §1 V' = U* x (=1,1)(i = 1,2). Then there exist two functions ¥; €
Q8°(Vi),0 < ¥i(z) < 1, and ¥y(z) + ¥2(z) = 1if = € suppvj,,; let us define
vl =v;, ¥,i=12

PRY

It is obvious that v} € WEP(G) and we can approximate v! by functions w} , €

Cs°(P),suppw} p,, N T = 0, using the procedure of the point a.

On the other hand, we have suppv? C V2 and according to the point b we can
construct a sequence w} ,, € C3°(PNV?),w? = — vl. Now, to obtain the desired
sequence wj,, we chose, for arbitrary n, s small enough and then m great enough,
and then we write wj,, = w} ,, + w2 .. u

4. The main density theorem.

Let @ C C%?! be an (N + 1)-dimensional domain and let I' C 9 be a relatively
open set, (i.e. T is open in the metric space d). According to the smoothness
of R, there exist § > 0,a > 0 and r cartesian systems (z; ;)¥%! (j = 1,...,7),
analogous to that ones in the proof of Lemma 1, with functions A; (which correspond
to functions a; from this proof) being Lipschitzian. Now we say that I' has C%*
property if for arbitrary j = 1,...,r the projection Go,; of ' N W; to A in the
direction of ziy,, ; axis (W; = {z € Rn41;(2},2n,;) € A Aj(z),2n,;) —a <
zn41 < Aj(2,2n ;) + a}) is the domain of class C°. ( In this sense, the property
C%* depends not only on Q and I but on the covering of 952, too. Hence, more
precisely, we say T to have C%* property if there exists a covering described above).

Theorem 1. Let @ € C*~1! (k positive integer) be (N + 1)-dimensional domain
and let (for convenient covering of 0Q) T' C 8N has C%* property. Let a function
u € WEP(Q)(p > 1) be equal to zero on T in the sense of traces. Then there ezists
a sequence vy, v, € C&(RN41),suppvn NT = B,v, — u in the space W5?(R).

PROOF : First, we add to the system W; an open set Wy, W, C Wy C Q to
form a covering of Q. It is easy to see that _we are able to construct, for arbitrary
Jj =1,...,r, an open parallelepiped A’ C A’ C A (not obviously parallel to the
interval (=6,6)N = A) such that the sets W] = {(z}, Xn,;); 4j(z},2n,;) — a <
zn+1,; < Aj(2},zn,;) + a} have the same covering properties as the Wj, and,
moreover, the open set Gy ; N A' is of the type C°. So we can construct a partition
of unity ®; with ‘respect to the covering W] of Q. The functions uj = u-P;
have their support contained in Wi(j = 1,...,r), or in Q(j = 0), respectively,
and so, if we construct sequences v;, of smooth functions, vjn, — uj,suppvj, C
W} - suppvj, N (T N W)) = dsupp, vy, C €, we can write v, = 3, vj,a. To this
end, we map the set Wj(j = 1,...,7) onto the parallelepiped G= (0,1)N x (-1,1)
defining ¥(z) = (Y(z;,z’N,j),yh_l+1(-’t)), withY :yi= &z, j+1(i=1,...,N) and
YN+1 = i(zNH.j - Aj(z'j,zn,j))- This mapping has Lipschitzian derivatives up
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to the order k — 1 (as well as the functions Aj), and hence it is sufficient to apply
Lemma 1 on the function v(y) = u;(®-1(y)), with P = ®(W)),Go =Y (Go,; N A"),
and then to use the isomorphism property of the mapping ® (see Section 2). The
existence of a sequence vy, is obvious, and hence the proof is finished. ]
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