Commentationes Mathematicae Universitatis Carolinas

Lubica Kossaczká

Integral manifold of the parabolic differential equation with deviating argument

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 2, 253--260

Persistent URL: http://dml.cz/dmlcz/106743

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Integral manifold of the parabolic differential equation with deviating argument

Ľubica Kossaczká

Abstract. The integral manifold for the problem

$$
\begin{aligned}
\frac{d u}{d t}+A u & =L u_{t}+\varepsilon F\left(t, u_{t}\right) \\
u_{0} & =\varphi \\
u(0) & =x
\end{aligned}
$$

is constructed, where L is a linear operator, u_{t} denotes the deviation of u and A is ar sectorial operator.
Keywords: Functional differential equations, parabolic equations with delay, sectorial operator, integral manifold
Classification: 35R10, 34K30

§1. Introduction and results.

The appropriate tool for studying the dynamical systems are invariant manifolds. Their main meaning is in the fact that they generally enable us to reduce the infinite dimension of the investigated problem to the finite one. Invariant (or integral) manifolds were studied, e.g. in [Ha, 1], [Ke], [Pl],[Mit]. Invariant manifolds of the ordinary differential equations with deviation were also investigated in [Ha 2], [Fo]. The present paper deals with the functional differential equation

$$
\begin{align*}
\frac{d u}{d t}+A u & =L u_{t}+\varepsilon F\left(t, u_{t}\right) \\
u_{0} & =\varphi \tag{E}\\
u(0) & =x
\end{align*}
$$

We denote u_{t} the translation of u, given by $u_{t}(s)=u(t+s)$ for $s \in R^{-}=$ $(-\infty, 0), t \in R^{+}=\langle 0, \infty)$. The mild solutions $\left(u(t), u_{t}\right)$ under some assumptions on F can be expressed in the form (see $[\mathrm{Pe}-\mathrm{Mi}]$)

$$
z(t)=\left(u(t), u_{t}\right)=T(t+\sigma) z(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s)\left[F\left(s, u_{s}\right), 0\right] d s
$$

We shall investigate the existence of integral manifold of (E) in the form

$$
\widetilde{S}=\left\{(t, y, \xi) ; y \in R^{n}, t \in R, \xi=g(t, y)\right\}
$$

where g will be some appropriate function. This problem is similar to that of [Fo$]$. There the integral manifold of ODE with deviating argument

$$
\frac{d x}{d t}=f\left(x_{t}\right)+\varepsilon F\left(t, x_{t}\right)
$$

has been constructed, where f is a linear continuous operator.
So, applying the technique similar as in $[\mathbf{F o}]$ and the result of $[\mathbf{P e}-\mathbf{M i}]$, we get the desirable integral manifold.

§2. Assumptions and denotations.

We shall deal with the problem (E). Suppose that X is a Banach space and A is a sectorial operator in X with compact resolvent (for the definition see $[\mathrm{He}]$ or [$\mathbf{M i}, 1]$).

Let $R^{-}=(-\infty, 0), R^{+}=\langle 0, \infty)$.
Let Y be a space of strongly measurable functions on R^{-}with values in X such that $\int_{-\infty}^{0} e^{\gamma s}|\varphi(s)| d s$ for some fixed $\gamma>0$ is finite. Then we define $\|\varphi\|_{Y}=$ $\int_{-\infty}^{0} e^{\gamma s}|\varphi(s)| d s$. Let $L: Y \rightarrow X$ be a continuous linear operator. Denote, similarly as $[\mathrm{Mi}, 2], T(t): Z \rightarrow Z$ a C_{0} semigroup on the space $Z=X \times Y$ such that $T(t):(x, \varphi) \rightarrow\left(u(t), u_{t}\right)$, where u is a solution of (E) with $\varepsilon=0$. Let $F: R \times Y \rightarrow$ X be a continuous function such that $|F(t, u)| X \leq K$ for $(t, u) \in R \times Y$ and $\left|F\left(t, u_{1}\right)-F\left(t, u_{2}\right)\right|_{X} \leq \operatorname{Lip} F\left|u_{1}-u_{2}\right|_{Y}$ for each $t \in R, u_{1}, u_{2} \in Y$.
§3.
Let B be an infinitesimal generator of the semigroup $T(t)$. According to ([Mi,2], [$\mathrm{Pe}-\mathrm{Mi}$])
$\sigma^{1}=\left\{\lambda\right.$, re $\left.\lambda \cdot>-\gamma+\varepsilon_{1}\right\} \cap \sigma(B)$ is a finite spectral set and $\sigma^{2}=\left\{\lambda, \mathrm{re} \lambda \leq-\gamma+\varepsilon_{1}\right\} \cap \sigma(B)$ is a spectral set. Let P_{1}, P_{2} denote the corresponding projections and $Z_{1}=P_{1} Z, Z_{2}=P_{2} Z$. The projection P_{1} is finite dimensional and we have $Z=Z_{1} \oplus Z_{2}$. So, according to $[\mathrm{Mi}, 2]$ we can choose such $0<a<b$ that

$$
\begin{equation*}
\operatorname{re} \sigma(B) / Z_{1}>-a+\varepsilon_{0}>-b>\operatorname{re} \sigma(B) / Z_{2} \tag{1}
\end{equation*}
$$

There exists such a base of the finite dimensional space Z_{1} that

$$
\begin{array}{rl}
B \varphi_{1}^{1}=\lambda_{1} \varphi_{1}^{1} & B \varphi_{1}^{2}=\lambda_{2} \varphi_{1}^{2} \\
B \varphi_{2}^{1}=\lambda_{1} \varphi_{2}^{1}+\varphi_{1}^{1} & B \varphi_{2}^{2}=\lambda_{2} \varphi_{2}^{2}+\varphi_{1}^{2} \ldots \\
& \vdots \\
B \varphi_{k}^{1}=\lambda_{1} \varphi_{k}^{1}+\varphi_{k-1}^{1} &
\end{array}
$$

which means that this base corresponds to Jordan decomposition of the subspace Z_{1}.

Hence, if we generally denote this base as $\left(\varphi_{1}, \ldots \varphi_{n}\right)=\Phi$, then there exists such a matrix \tilde{B} that

$$
\begin{equation*}
B \Phi=\Phi \tilde{B}, \text { with } \sigma(\tilde{B})=\sigma\left(B / Z_{1}\right) \tag{2}
\end{equation*}
$$

From the fact that $B T(t) \Phi=T(t) B \Phi=T(t) \Phi \widetilde{B}$ we have

$$
\begin{equation*}
T(t) \Phi=\Phi e^{\widetilde{B} t} \tag{3}
\end{equation*}
$$

From (1) and (3) the following estimates take place

$$
\begin{align*}
\left|P_{2} T(t)\right| \leq C e^{-b t} & \text { for } t \geq 0 \\
\left|e^{\widetilde{B} t}\right| \leq C e^{-a t} & \text { for } t \leq 0 \tag{4}
\end{align*}
$$

Definition of a mild solution.

A function $u:(-\infty, T) \rightarrow X$ is called a mild solution on the interval $(0, T)$, if u satisfies the initial condition, its restriction to $(0, T)$ belongs to the space $C((0, T), X)$ and $u(t)=e^{-A t} x+\int_{0}^{t} e^{-A(t-s)}\left(L u_{s}+\varepsilon F\left(s, u_{s}\right)\right) d s$ holds for $t \in(0, T)$. According to $[\mathrm{Pe}, \mathrm{Mi}]$ under assumptions on F for the solution $u(t)$, the following formula takes place

$$
\begin{equation*}
z(t)=\left(u(t), u_{t}\right)=T(t)(x, \varphi)+\varepsilon \int_{0}^{t} T(t-s)\left[F\left(s, u_{s}\right), 0\right] d s \tag{5}
\end{equation*}
$$

where $\left[F\left(s, u_{s}\right), 0\right] \in Z$.

The expression of the element of Z.

Let $\Psi_{1}, \ldots, \Psi_{n}$ be linear continuous operators from Z into R such that $\operatorname{Ker} \Psi_{i}=$ $\varphi_{1} \oplus \ldots \varphi_{i-1} \oplus \varphi_{i+1} \oplus \ldots \varphi_{n} \oplus Z_{2}$ and $\Psi_{i}\left(\varphi_{i}\right)=1$ for each $i \in\{1, \ldots n\}$. Each element $z \in Z$ can be expresses in the form $z=z_{1}+z_{2}$, where $z_{1}=\Phi b, b \in R^{n}, z_{1} \in$ $Z_{1}, z_{2} \in Z_{2}$. Then $\Psi(z)=\Psi(\Phi b)+\Psi\left(z_{2}\right)=b+0, \quad P_{1} z=\Phi(\Psi(z))$. Then from (5) we get the following formulas

$$
\begin{align*}
& z_{1}(t)=T(t-\sigma) z_{1}(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s) P_{1}\left[F\left(s, u_{s}\right), 0\right] d s \tag{6}\\
& z_{2}(t)=T(t-\sigma) z_{2}(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s) P_{2}\left[F\left(s, u_{s}\right), 0\right] d s
\end{align*}
$$

Denoting $y(t)=\Psi(z(t))$ (so $y \in R^{n}$), from the first equation in (6) we have

$$
\begin{align*}
\Phi y(t)=T(t & -\sigma) \Phi \Psi(z(\sigma))+\varepsilon \int_{\sigma}^{t} T(t-s) \Phi\left(\Psi\left[F\left(s, u_{s}\right), 0\right]\right) d s= \tag{7}\\
& =\Phi e^{\widetilde{B}(t-\sigma)} \Psi(z(\sigma))+\varepsilon \int_{\sigma}^{t} \Phi e^{\tilde{B}(t-s)} \Psi\left[F\left(s, u_{s}\right), 0\right] d s
\end{align*}
$$

We define

$$
\begin{aligned}
h_{1} & : R \times X \times Y \rightarrow R^{n} \quad \text { and } \\
h_{2} & : R \times X \times Y \rightarrow Z_{2} \quad \text { such that } \\
h_{1}(s, x, y) & =\Psi[F(s, y), 0] \quad \text { and } \\
h_{2}(s, x, y) & =P_{2}[F(s, y), 0] .
\end{aligned}
$$

As for as Ψ, P_{2} are continuous and linear and F is bounded and Lipschitz continuous in the second variable, h_{1} and h_{2} are bounded and Lipschitz continuous in the third variable, too. Let H_{1} be a constant such that $\left|h_{1}\left(s, x_{1}, y_{1}\right)-h_{1}\left(s, x_{2}, y_{2}\right)\right|_{R^{n}} \leq$ $H_{1}\left\|y_{1}-y_{2}\right\|_{Y}$ and $\left|h_{1}(s, x, y)\right| \leq H_{1}$; and similarly h_{2}.
(7) implies that

$$
\begin{equation*}
y(t)=e^{\widetilde{B}(t-\sigma)} y(\sigma)+\varepsilon \int_{\sigma}^{t} e^{\widetilde{B}(t-s)} h_{1}(s, z(s)) d s \tag{8}
\end{equation*}
$$

Hence $y(t)=\Psi(z(t))$ satisfies the following conditions

$$
\begin{align*}
\frac{d y}{d t} & =\widetilde{B} y(t)+\varepsilon h_{1}(t, z(t)), \tag{9}\\
y(0) & =\Psi(z(0))=\Psi([x, \varphi]) .
\end{align*}
$$

Definition (analogous to [Fo]). Let $L(\rho, \gamma)=\left\{g: R \times R^{n} \rightarrow Z_{2} ; \mid g\left(t, y_{1}\right)-\right.$ $\left.g\left(t, y_{2}\right)\right|_{z_{2}} \leq \gamma\left|y_{1}-y_{2}\right|_{R^{n}}$ and $|g(t, y)| \leq \rho$ for each $\left.t \in R, y_{1}, y_{2}, y \in R^{n}\right\}$. Let $y\left(t ; \sigma, y_{0}\right)$ be a solution of the problem

$$
\begin{gathered}
\frac{d y}{d s}=\widetilde{B} y+\varepsilon h_{1}(s, \Phi y(s)+g(s, y(s)) \\
y\left(\sigma, \sigma, y_{0}\right)=y_{0}, \sigma \in(-\infty, \infty), y_{0} \in R^{n}
\end{gathered}
$$

We say that $\widetilde{S}=\left\{(t, y, \xi) ; t \in(-\infty, \infty), y \in R^{n}, \xi=g(t, y)\right\}$ is an integral manifold for the system

$$
\begin{align*}
\frac{d y}{d t} & =\widetilde{B} y+h_{1}\left(t, \Phi y(t)+z_{2}(t)\right) \\
z_{2}(t) & =T(t-\sigma) z_{2}(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s)\left[h_{2}\left(s, \Phi y(s)+z_{2}(s)\right)\right] d s \tag{10}
\end{align*}
$$

if from the fact that $y\left(t, \sigma, y_{0}\right)$ is a solution of the equation

$$
\frac{d y}{d t}=\widetilde{B} y+\varepsilon h_{1}(t, \Phi y(t)+g(t, y)) \text { for each } \sigma \in(-\infty, \infty), y\left(\sigma, \sigma, y_{0}\right)=y_{0}
$$

it follows that $y(t)=y\left(t, \sigma, y_{0}\right), z_{2}(t)=g(t, y(t))$ is a solution of the system (10).
Remark 1. (similar to [Fo])
If \widetilde{S} is an integral manifold for the system (10), described by the function g, then

$$
S=\left\{(t, \Phi y+\xi) ; t \in(-\infty, \infty), y \in R^{n}, \xi=g(t, y), \xi \in Z_{2}\right\}
$$

is an integral manifold for the equation (6):

$$
z(t)=T(t-\sigma) z(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s)\left[F\left(s, x_{s}\right), 0\right] d s
$$

Now we want to get a simpler expression for the integral manifold \widetilde{S} of the system (10), described by the function g. Denote $Y(s)=y\left(s, t, y_{0}, g\right)$.

Then $g\left(t, y_{0}\right)=T(t-\sigma) z_{2}(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s) h_{2}(s, \Phi Y(s)+g(s, Y(s)) d s$. From (4) and the fact that $\left|z_{2}(\sigma)\right| z$ is bounded, we have $g\left(t, y_{0}\right)=\varepsilon \int_{-\infty}^{t} T(t-s) h_{2}(s, \Phi Y(s)+$ $g(s, Y(s))) d s$. Let U be the operator such that

$$
U g\left(t, y_{0}\right)=\varepsilon \int_{-\infty}^{t} T(t-s)\left[h_{2}(s, \Phi Y(s)+g(s, Y(s)))\right] d s
$$

We show that for sufficiently small ε the operator U maps $L(\rho, \gamma)$ into itself and that $U: L(\rho, \gamma) \rightarrow L(\rho, \gamma)$ has a unique fixed point.

Theorem 1. Let the assumption from §2 be fulfilled. For each $\rho>0, \gamma>0$, there exists an $\varepsilon_{0}>0$ such that to each $\varepsilon, 0<\varepsilon<\varepsilon_{0}$, there exists a unique $g \in L(\rho, \gamma)$ with the property that \widetilde{S}_{g} is an integral manifold of the system (10).

Proof : The proof is very similar to those of [Fo]. We have already shown that if there exists an integral manifold of the system (10) generated with the function g, then this function is a solution of the equation $U g=g$.

Let g be a solution of this equation. We show that the set $\widetilde{S}_{g}=\{(t, y, g(t, y)), y \in$ $\left.R^{n}, t \in R\right\}$ fulfils the definition of an integral manifold for the system (10) and, thus, $S=\left\{\left(t, \Phi y+g(t, y), t \in R, y \in R^{n}\right\}\right.$ is a manifold for the equation (6). To that aim, it is necessary to show that $z_{2}(t)=g\left(t, y\left(t, r, y_{0}, g\right)\right)$ is a solution of the equation

$$
z_{2}(t)=T(t-\sigma) z_{2}(\sigma)+\varepsilon \int_{\sigma}^{t} T(t-s) h_{2}\left(s, \Phi y\left(s, r, y_{0}, g\right)+z_{2}(s)\right) d s
$$

According to the definition of z_{2} we have

$$
\begin{gathered}
z_{2}(t)=g\left(t, y\left(t, r, y_{0}, g\right)\right)=\varepsilon \int_{-\infty}^{t} T(t-s) h_{2}\left(s, \Phi y\left(s, t, y\left(t, r, y_{0}, g\right), g\right)+\right. \\
\left.\quad+g\left(s, y\left(s, t, y\left(t, r, y_{0}, g\right), g\right)\right)\right) d s= \\
=\varepsilon T(t-\sigma) \int_{-\infty}^{\sigma} T(\sigma-s) h_{2}\left[s, \Phi y\left(s, \sigma, y\left(t, r, y_{0}, g\right), g\right)+\right. \\
+g\left(s, y\left(s, \sigma, y\left(\sigma, r, y_{0}, g\right)\right)\right] d s+\varepsilon \int_{\sigma}^{t} T(t-s) h_{2}\left[s, \Phi y\left(s, r, y_{0}, g\right)+\right. \\
\\
+g\left(s, y\left(s, r, y_{0}, g\right)\right] d s
\end{gathered}
$$

which we have to prove.
On the other hand, we show that to each $\rho>0, \gamma>0$ there exists an $\varepsilon_{0}>0$ such that if $0<\varepsilon<\varepsilon_{0}$, we have a unique solution of $U g=g$.

First we must estimate $\left|y\left(s, t, y_{0}, g\right)-y\left(s, t, \bar{y}_{0}, \bar{g}\right)\right|$ for $s \leq t$: Denote $\bar{y}(s)=$:
$y\left(s, t, \bar{y}_{0}, \bar{g}\right)$, then we have

$$
\begin{gathered}
|y(s)-\bar{y}(s)|=\mid e^{\widetilde{B}(s-t)}\left(y_{0}-\bar{y}_{0}\right)+\varepsilon \int_{t}^{s} e^{\widetilde{B}(s-r)}\left[h_{1}(r, \Phi y(r)+\right. \\
+g(r, y))-\left.h_{1}(r, \Phi \bar{y}(r)+\bar{g}(r, \bar{y}(r))] d r\right|_{R^{n}} \leq \\
\leq C e^{-a(s-t)}\left|y_{0}-\bar{y}_{0}\right|+C \varepsilon H_{1} \mid \int_{t}^{s} e^{-a(s-r)}[(|\Phi|+\gamma)(|y(r)-\bar{y}(r)|)+\|g-\bar{g}\|] d r= \\
=C e^{-a(s-t)}\left|y_{0}-\bar{y}_{0}\right|+C \varepsilon H_{1} \mid \int_{t}^{s} e^{-a(s-r)}[(|\Phi|+\gamma)(|y(r)-\bar{y}(r)|) d r+ \\
+C \varepsilon H_{1}\left|\int_{t}^{s} e^{-a(s-r)} d r\right|\|g-\bar{g}\|=C e^{-a(s-t)}\left|y_{0}-\bar{y}_{0}\right|+ \\
+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|\left(e^{a(t-s)}-1\right)+C \varepsilon H_{1}(|\Phi|+\gamma)\left|\int_{t}^{s} e^{-a(s-r)}\right| y(r)-\bar{y}(r)|d r|
\end{gathered}
$$

and hence

$$
\begin{gathered}
|y(s)-\bar{y}(s)| \cdot e^{a(s-t)} \leq C\left|y_{0}-\bar{y}_{0}\right|+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|-\frac{C \varepsilon H_{1}}{a} e^{a(s-t)}\|g-\bar{g}\|+ \\
C \varepsilon H_{1}(|\Phi|+\gamma)\left|\int_{t}^{s} e^{a(r-t)}\right| y(r)-\bar{y}(r)|d r| .
\end{gathered}
$$

Put $|y(s)-\bar{y}(s)| \cdot e^{a(s-t)}=w(s)$ and

$$
\begin{aligned}
X & \left.=C\left(\left|y_{0}-\bar{y}_{0}\right|\right)+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|\right) \\
Y & =\frac{C \varepsilon H_{1}\|g-\bar{g}\|}{a} \\
Z & =C \varepsilon H_{1}(|\Phi|+\gamma)
\end{aligned}
$$

Then we have $w(s) \leq X-Y e^{a(s-t)}+Z\left|\int_{t}^{s} w(r) d r\right|$. Solving this we come to the inequality

$$
w(s)+k_{1} e^{a(s-t)} \leq\left(X-\frac{Z k_{1}}{a}\right)+Z\left|\int_{t}^{s} w(r)+k_{1} e^{-a(t-r)} d r\right|
$$

where $k_{1}=\frac{\gamma_{a}}{a+Z}$. Thus by the Gronwall inequality for $s \leq t$ we get $w(s)+$ $k_{1} e^{-a(t-s)} \leq\left(X-\frac{Z k_{1}}{s}\right) e^{Z(t-s)}$, from where it follows that

$$
\begin{gather*}
\left|y\left(s, t, y_{0}, g\right)-y\left(s, t, \bar{y}_{0}, \bar{g}\right)\right| \leq\left(X-\frac{Z k_{1}}{a}\right) e^{(-Z-a)(s-t)} \leq \tag{11}\\
C e^{-C c H_{1}[(|\Phi|+\gamma)-a](s-t)} \cdot\left(\left|y_{0}-\bar{y}_{0}\right|+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|\right),
\end{gather*}
$$

$$
\begin{equation*}
\left|U g\left(t, y_{0}\right)-U \bar{g}\left(t, \bar{y}_{0}\right)\right|=\mid \varepsilon \int_{\infty}^{t} T(t-s)\left[h _ { 2 } \left(s, \Phi y\left(s, t, y_{0}, g\right)+\right.\right. \tag{12}
\end{equation*}
$$

$$
\begin{gathered}
\left.+g\left(s, y\left(s, t, y_{0}, g\right)\right)\right)-h_{2}\left(s, \Phi y\left(s, t, \bar{y}_{0}, \bar{g}\right)+\bar{g}\left(s, y\left(s, t, \bar{y}_{0}, \bar{g}\right)\right)\right] d s \mid \leq \\
\leq \varepsilon C H_{2} \int_{-\infty}^{t} e^{-b(t-s)}[(|\Phi|+\gamma)|y(s)-\bar{y}(s)|+\|g-\bar{g}\| d s \mid \leq \\
\leq \varepsilon C H_{2} \int_{-\infty}^{t} e^{-b(t-s)} d s\|g-\bar{g}\|+\varepsilon C H_{2}(|\Phi|+\gamma) \int_{-\infty}^{t} e^{-b(t-s)}|y(s)-\bar{y}(s)| d s= \\
\varepsilon C H_{2} \int_{-\infty}^{t} e^{-b(t-s)} d s\|g-\bar{g}\|+\varepsilon C^{2} H_{2}(|\Phi|+\gamma) \int_{-\infty}^{t} e^{\left(-b+a+C \varepsilon H_{1}\right)(t-s)}\left(\left|y_{0}-\bar{y}_{0}\right|+\right. \\
\left.+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|\right) d s \leq \varepsilon C H_{2} \frac{\|g-\bar{g}\|}{b}+\frac{C^{2} \varepsilon H_{2}(|\Phi|+\gamma)}{b-a-C \varepsilon H_{1}}\left(\left|y_{0}-\overline{y_{0}}\right|+\frac{C \varepsilon H_{1}}{a}\|g-\bar{g}\|\right) .
\end{gathered}
$$

Also,

$$
\begin{equation*}
\left|U g\left(t, y_{0}\right)\right| \leq \varepsilon C H_{2} \int_{-\infty}^{t} e^{-b(t-s)} d s=\frac{\varepsilon C H_{2}}{b} \tag{13}
\end{equation*}
$$

From (12) and (13) it is clear that for sufficiently small $\varepsilon U(L(\rho, \gamma)) \subset L(\rho, \gamma)$ and $U g=g$ has a unique solution.
Remark 2. Dealing with the problem

$$
\begin{aligned}
\frac{d u}{d t}+A u & =L u_{t}+f\left(u_{t}\right) \\
u_{0} & =\varphi \\
u(0) & =x
\end{aligned}
$$

where L, X, Y be as in $\S 2$., and $f: Y \rightarrow X$ be a Lipschitz continuous bounded function, we can formulate a solution in the form

$$
\begin{equation*}
z(t)=\left(u(t), u_{t}\right)=T(t-\sigma) z(\sigma)+\int_{\sigma}^{t} T(t-s)\left[f\left(u_{s}\right), 0\right] d s \tag{14}
\end{equation*}
$$

where T is defined in $\S 2$. Then the semigroup $T(t)$ satisfies all assumptions $H_{1}-H_{4}$ from $[\mathbf{P u}]$. If we define $F(x, z)=(f(z), 0)$ a function $Z \rightarrow Z$, all assumptions for the existence of the center unstable manifold and foliation (see $[\mathbf{P u}]$) are satisfied and this problem is a special case of the problem studied in $[\mathrm{Pu}]$. Of course, the main idea to get this manifold was based on the formula (14) from [$\mathbf{M i}, 2]$.

References

[Fo] Fodčuk V., Integral'nyje mnogoobrazija dl'a nelinejnych differencijal'nych uravnenij s zapazdyvajuščim argumentom, Ukrajinskij matem.žurnal 21 (1969), 627-639.
[Ha,1] Hale J., Integral manifolds of perturbated differential systems, Ann.Math. 73 (1961), 496-531.
[Ha,2] Hale J., Averaging Methods for Differential Equations with Retarded Arguments and a
Small Parameter, Journ.Diff.Equat. 2 (1966).
[He] Henry D., "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes In Math.840, Springer Verlag, 1981.
[Ke] Kelley A., The center manifold and integral manifolds for Hamiltonian systems, Notices Amer.Math.Soc. 12 (1965), 143-144.
[Mi,1] Milota J., Stability and saddle-point property for a linear autonomous functional parabolic equation, Comment.Math.Univ.Carolinae 27 (1986), 87-101.
[Mi,2] Milota J., "Asymptotic behaviour of parabolic equations with infinite delay," Proc.of Trento conf., 1987.
[Mit] Mitropol'skij J.A., Ob issledovaniji integral'nogo mnogoobraxija dl'a system nelinejnych uravnenij, blizkich k uravnenijam s peremennymi koeficientami v Gil'bertovom prostranstve, Ukrajinskij.Mat.Žurnal 16 (1964).
[Pe-Mi] Petzeltová H., Milota J., Resolvent operator for abstract functional differential equations with infinite delay, Numer. Functional Anal. and Optimiz. 9 (1987), 779-807.
[Pl] Pliss V.A., Principle reduction in the theory of the stability of motion (Russian), Izv.Akad. Nauk S.S.S.R., 28 (1964), 1297-1324.
[Pu] Pulmann P., "Diplomová práca MFFUK," Bratislava, 1988.
ÚAMVT UK, Mlynská dolina, 84215 Bratislava, Czechoslovakia

