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On Baire approximations of normal integrands 

ANNA KUCIA, ANDRZEJ NOWAK 

Abstract. Let D C T x X, where T is a measurable space and X a metric space. We give 
conditions on T, Xjand D such that every upper semicontinuous in x and meausarable 
function / : D —• R is the limit of a decreasing sequence of measurable functions which 
are continuous in x. 

Keywords: Normal integrand, Baire approximation 

Classification: 54C30, 28A20 

1. Problem. The well known theorem of Baire states that every upper semicontin­
uous function on a metric space is the limit of a decreasing sequence of continuous 
functions. In this note we prove an analogue of this theorem for an upper semicon­
tinuous functions which depends measurably on the parameter. 

Throughout the paper (T, T) is a measurable space, (X, d) a metric space, and D 
a nonempty subset of T x X. The set D is always considered with the trace cr-field 
{D H A\A € T ® B(X)}, where B(X) stands for the Borel a-field on X. By Dt we 
denote t-sections of D, i.e. Dt = {x|(t,x) € D},t € T. 

We shall deal with the following classes of extended real-valued functions on D: 
Fi(D) = {/ : D —• R\f is measurable and for each t £ T,f(t, •) is upper semicon­
tinuous on Dt}, 
F2(D) = {/ : D —• R\ there is a sequence of measurable functions fn:D~+R such 
that / n + i < / n , / n ( ^ * ) is continuous on Dt and lim / n ( t , x ) = / ( t , x ) , ( t ,x) € 

n—->oo 
D). 

Functions from Fi(D) are called normal integrands. They are extensively stud­
ied in mathematical programming. The class F2(D) also appears in optimization, 
especially, in stochastic dynamic programming ([7]-[9]). 

It is obvious that F2(D) C Fi(D) . We give sufficient conditions for the equality 
Fi(D) = F2(D), and point out its application. 

Remark. If X is separable and g : T x X —•JKisa Caratheodory map (i.e. 
measurable in t and continuous in a?), then g is measurable. Hence, in the definition 
of ^ ( T x X ) it suffices to require the measurability of / n ( - , x) instead of the product-
measurability of / n . 

2, Auxiliary results. In this section we quote some set-theoretical and topolog­
ical results which will be used in the proof of the main theorem. 

Let % be a family of sets. By S(K) we denote the family of all sets obtained 
from % by the Souslin operation. If S(1l) = ft, we say % is a Souslin family (cf. 
[2], Chap.2; [12], §2). 
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The <T-field T on T is a Souslin family provided one of the following conditions 
holds: 

(i) T is complete with respect to a a-finite measure, 
(ii) T is the family of all ^-measurable sets, where p is an outer measure on T, 

(iii) T is the a-field of universally measurable sets for some cr-field on T, 
(iv) T is a topological space, and T is the family of all sets with the Baire property. 

A metric space X is called Souslin if it is a continuous image of a Polish space. 
In such a space the family of all Souslin subsets coincides with S(B(X)) and S(.F), 
where T is the set of all closed sets in X. 

For a subset Z C T x X we denote by pr^Z its projection on T, i.e. PTTZ = 
{t|(*,a:) 6 Z for some x 6 X}. The following projection theorem is very useful. 

Theorem 2 . 1 . (cf. [2], Th.1.8). Suppose T is a Souslin family and X is a Souslin 
space. Then prTZ G T for every Z € S(T ® B(X)). 

We shall also use the following results. 

Theorem 2.2. ([4]). Let T and X be Polish spaces, A a Souslin subset ofTxX, 
and B a subset of A such that B is Borel in A, and Bt is open in Atlt £ T. Then 

B = Af)\J CnxGn, 

where Cn is Borel in T and Gn is open in X, n € N. 

Theorem 2.3. ([5], Th.2.8; [6], Th.5). Let X with the topology Q be a separable 
and metrizable space. Then for any sequence {Bn} of Borel sets in X there is a 
separable and metrizable topology Q1 on X such that Q CQ1, each Bn € Q', and the 
a-fields generated by Q and Q1 are the same. 

3 . Main theorem. The following theorem is the main result of the paper. 

Theorem 3.1 . Let X be a metrizable space and D € S(T®B(X)). Then FX(D) = 
F2(D), provided one of the conditions holds: 

(i) T is a Souslin family and X is a Souslin space, 
(ii) T and X are Polish spaces, and T = B(T). 

Moreover, for each f £ Fi(D) there is g € F2(T x X) such thai g\o ~ / • 

PROOF : It suffices to prove that each / € Fi(D) can be extended to a function 
from F2(T x X). Since there is an increasing homeomorphism of R and [—1,1], we 
may assume |/(t,ar)| < l , ( t ,£) € D. 

We start with the proof under the assumption (i). By Theorem 2.1, the set 
P = PTTD belongs to T. Similarly, as in the proof of the theorem of Baire (see e.g. 
[1], p.390), we define the functions fn: PxX —• ( -co , 1] and gn : P x X -> ( -1 ,1] 
by the formulae 

/„(*,*) = sup{/(t ,y) -nd(x,y)\y € Dt}, 

gn(t,x) = max{/n(t,aO, - 1 -I- - } , n € N. 
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These functions are measurable in t. Indeed, for any x £ X and r € R we have 

{t\fn(t, x) > r} = {t\f(t, x) — n d(xy y) > r for some y £ Dt} = 

= prr{(t, y) £ D\f(t, y)-n d(xy y) > r} £ T, 

because of the measurability of / and the projection theorem. Being decreasing, 
the sequence {gn} is convergent to a function g : P x X —• [—1,1], FVom the proof 
of the theorem of Baire we know that gn(ty •) are continuous, and g\o = / . Since 
gn is a Caratheodory map on P x X, it is measurable. Hence, g £ F2(P X X). It 
is clear that g has an extension to a function from F2(T X X). 

For the second part of the proof we assume that T and X are Polish spaces. Since 
/ G Ki(D), for each rational r £ ( -1,1] the set Ar = / " ^ ( [ - V ) ) is Borel in D, 
and its t-section is open in Dtl t £ T. In virtue of Theorem 2.2, 

A' = Dn [jCnxGn, 
n€/V 

where Cn £ B(T) and Gn is open in K, n € N. Denote by Q the Polish topology of 
T. By Theorem 2.3, there is a stronger separable and metrizable topology Q* on T, 
such that Cn £ Q' for each n £ N and each rational r € (—1,1], and the a-fields 
generated by (/ and Q' are the same. Now we regard T x X with the new product 
topology, where T is equipped with Q'. In this topology each Ar is open in D and, 
consequently, / is upper semicontinuous. We refer to the proof of the theorem of 
Baire again. Let fn:T x X —> (~oo, 1] and g : T x X —> (—1,1] be defined as 

fn(a) = sup{/(6) - np(a,b)\b £ £>}, 

gn(a) = max{/„(a), - 1 + - } , n £ N, 
n 

where /o is a metric of T x K. The decreasing sequence of continuous functions {#n} 
is convergent to a function g : T x X —» [—1,1] such that g\o = / . Since the ^--fields 
generated by Q and £ ' are the same and the topology of X does not change, each gn 

is Borel-measurable with respect to the original topology of T x K, and continuous 
in x. Thus g £ F2(T x K), which completes the proof. • 

Remarks. 1. Related problems were studied by Dynkin ([3], Lemma 3.2), Schal 
([8], §11; [10]) and &lezak ([11], Lemma 1). Our theorem generalizes corresponding 
results from [10] and [11]. 
2. It would be interesting to know if the inclusion F\(T x X) C F2(T x X) holds 
for an arbitrary <r-field T and a Polish space X. 

4. Application. The assumption that a function / belongs to the class F2(D) 
appears in some theorems in optimization ([7]-[9]). Using Theorem 3.1, we can 
replace this assumption by an easier verified condition / € F\(D). As an example 
we give one of such results. 
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Let / : T x X —• R be measurable and bounded from above in t, and q : T x X —• 
[0,1] a transition probability from X to T, i.e. <?(•,£) is a probability measure on 
T for each x € X, and #(A, •) is measurable for each A € T . Then the function 

Ф ) = / /(*> *M*> *), * € X 

is well defined. In stochastic optimization it is interesting to know under which 
assumptions v is upper semicontinuous. 

We say that the transition probability q is 5-continuous, if for each bounded and 
measurable u : T —> R the function 

x —• / u(t)q(dt, x), x € X 
JT 

is continuous. 
The following result is an immediate consequence of Prop. 14.1 of Schal [8] and 

our Theorem 3.1. 

Theorem 4.1 . Suppose either (i) T is a Souslin family and X is a Souslin space, 
or (ii) T and X are Souslin subsets of Polish spaces and T = B(T). If f belongs 
to F\(T X X) and is bounded from above, and q is s-continuous, then v is upper 
semicontinuous. 
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