Commentationes Mathematicae Universitatis Carolinas

Giovanni Rotondaro
On the $H p$-theorem for hypersurfaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 2, 385--387

Persistent URL: http://dml.cz/dmlcz/106756

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On the H_{p}-theorem for hypersurfaces

Giovanni Rotondaro

Abstract

Let $f: M^{m} \rightarrow \mathbf{R}^{m+1}$ be an immersion of a closed orientable smooth mmanifold, $m \geq 2$. Denote by H, r, p the first mean curvature, distance and support functions of f. We prove that, if $H p=1$, then M is embedded as a standard m-sphere. Furthermore we derive an integral formula, which also implies this theorem. Finally we point out an extrinsic inequality for $\boldsymbol{H}^{\mathbf{2}}$.

Keywords: Closed hypersurface, support function, mean curvature, m-sphere
Classification: Primary: 53A05, Secondary: 53C45

Let $f: M^{m} \rightarrow \mathbf{R}^{m+1}$ be an immersion of a connected orientable m-manifold M into Euclidean ($m+1$)-space, $m \geq 2$. (o) Denote by $n, r=|f|, p=-f \cdot n$, respectively the Gauss normal field, the distance function and the support function with respect to the origin 0 which is supposed not lying in $f(M)$. Let H be the first mean curvature, i.e. the arithmetic mean of principal curvatures. The classical $H p$-theorem [2] [4] says that a convex (hence embedded) closed surface of \mathbf{R}^{3} with $H p=1$ is a standard sphere. In [1] we have shown that the same result holds if the surface is merely immersed, without the strong hypothesis of convexity. In this note we want to extend our theorem to higher-dimensional hypersurfaces.

Let us adopt all customary conventions of index notation. In some local coordinate system $\left(u^{1}, u^{2}, \ldots, u^{m}\right)$ on M the fundamental forms of the immersion can be written as

$$
I=g_{i j} d u^{i} \otimes d u^{j} \quad I I=l_{i j} d u^{i} \otimes d u^{j}
$$

From the identity $r^{2}=|f|^{2}$ we derive

$$
r r_{i j}+r_{i} r_{j}=g_{i j}-l_{i j} p+r \Gamma_{i j}^{k} r_{k} .
$$

Then

$$
\begin{equation*}
\Delta \log r=\frac{m-m H p-2 \Delta_{1}(r)}{r^{2}} \tag{1}
\end{equation*}
$$

Here, Δ is the Laplacian of the Riemannian metric induced on M by f and Δ_{1} is the first Beltrami differential parameter, i.e. the square norm of the gradient.
(o) All the manifolds and maps are supposed sufficiently smooth.

Lemma. If $H p \geq 1-(2 / m) \Delta_{1}(r)$ and r has a relative minimum, then $f(M)$ is a piece of a standard m-sphere.
Proof : In fact $\log r$ has a relative minimum, and because of (1) $\Delta \log r$ is nonpositive. Therefore, by E.Hopf's principle [3,v.V, 181] $\log r$ must be a constant.

From this lemma we deduce the high-dimensional $H p$-theorem.
Theorem. Let $f: M^{m} \rightarrow \mathbf{R}^{m+1}$ be an immersion, M a connected closed orientable m-manifold, $m \geq 2$. Suppose that $H p=1$. Then M is embedded by f as a standard m-sphere.
Proof : Of course $H p \geq 1-(2 / m) \Delta_{1}(r)$ and r has a relative minimum. Then r is a constant. Thus $f(M)$ is a subset of the m-sphere U with centre 0 and radius r. By standard connectedness arguments, we must have actually $f(M)=U$. On the other hand (changing orientation, if necessary), the principal curvatures satisfy $k_{1}=k_{2}=\cdots=k_{m}=1 / r$. Therefore, at every point of M, the Weingarten map is positive definite. Then, by Hadamard's theorem on ovaloids [3,v.IV,121], f must be an embedding.
Remark 1. The proof of 2-dimensional $H p$-theorem in [1] is based on the integral formula

$$
\int_{M} \frac{p^{2}-H p r^{2}}{r^{4}} d V=0
$$

which holds for closed immersed surface. ($d V$ is the volume element.) We can generalize this formula as follows. First observe that $f=r g^{i j} r_{i} f_{j}-p n$. Then $r^{2}=|f|^{2}=r^{2} g^{i j} r_{i} g^{a b} r_{a} f_{j} f_{b}+p^{2}=r^{2} \Delta_{1}(r)+p^{2}$, i.e. $\Delta_{1}(r)=\left(r^{2}-p^{2}\right) / r^{2}$. Substituting into (1),

$$
\begin{equation*}
\Delta \log r=\frac{m r^{2}(1-H p)-2\left(r^{2}-p^{2}\right)}{r^{4}} \tag{2}
\end{equation*}
$$

On integration we have, for compact M,

$$
\begin{equation*}
\int_{M} \frac{m r^{2}(1-H p)-2\left(r^{2}-p^{2}\right)}{r^{4}} d V=0 \tag{3}
\end{equation*}
$$

Notice that, by this formula, $H p=1$ implies immediately $r=|p|=$ constant. Thus $H p$-theorem is also a consequence of (3) (or (2)).
Remark 2. By considering (2) as a quadratic equation for p, we have the inequality

$$
H^{2} \geq \frac{8}{m^{2}}\left(\frac{m-2}{r^{2}}-\Delta \log r\right) \text { for all immersed hypersurfaces. }
$$

References

[1] Rotondaro G., An integral formula for closed surfaces and a generalization of Hp-theorem, Comment.Math.Univ.Carolinae 29 (1988), 253-254.
[2] Schneider R., Eine Kennseichnung der Kugel, Arch.Math. 16 (1965), 235-239.
[3] Spivak M., "A comprehensive Introduction to Differential Geometry," vol.IV,V, Publish or Perish, Inc., Berkeley, 1979.
[4] Švec A., On the $f(H, K) p$-theorem, Comment.Math.Univ.Carolinae 17 (1976), 1-5.
Università degli Studi di Napoli - Dipartimento di Matematica e Applicazioni "R.Caccioppoli" Via Mezzocannone, 8 - 80134 Napoli-Italy
(Received December 6,1988)

