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The Mal’tsev operation on countably compact spaces

V.V.USPENSKIJ

Abstract. Let X be a countably compact topological space and f : X3 — X be a continuous
mapping such that the identity f(z,y,y) = f(y,¥,z) = z holds. Then X is Dugundji. It
follows that compact retracts of topological groups are dyadic.

Keywords: Dugundji space, retract, pseudocompact
Classification: primary 54D30; secondary 22A30

We say that a topological space X is Mal’tsev if there exists a continuous mapping
f: X% — X (called a Mal'tsev operation [M]) such that the identity f(z,y,y) =
f(y,y,z) = z holds for all z,y € X. Every topological group G is a Mal’tsev space,
since the mapping (z,y,2) — zy~!z is a Mal’tsev operation on G. M.G.Tkaéenko
proved in 1981 that compactly-generated topological groups have the Suslin prop-
erty [T;]. This result was extended by the author in [U,]: every o—compact Mal’tsev
space has the Suslin property. In the present paper we show that compact Mal’tsev
spaces are Dugundji (Theorem 1). Moreover, if X is a countably compact Mal’tsev
space, then X is Dugundji (Theorem 2). Clearly any retract of a Mal’tsev space
is Mal’tsev. It follows that compact retracts of topological groups are Dugundji.
This is an extension of the Ivanovskij ~ Kuzminov theorem (its proof can be found
in [U3]) which says that compact groups are dyadic.

Let X be a subspace of Y. A topological space Z is said to be injective with
respect to the pair (X,Y) iff every continuous function f : X — Z has a continuous

extension f : Y — Z. For a compact space X the following are equivalent [H):
1) if Y is a zerodimensional compact space and Z is closed in Y, then X is injective
with respect to the pair (Z,Y); 2) if X is a subspace of a compact space Y, then
every compact convex subset of a locally convex topological vector space is injective
with respect to the pair (X,Y). A compact space X is called Dugundji [P] if one
of these conditions holds. Let X be Dugundji. There exist a zero-dimensional
compact space Y and an onto mapping f : Y — X. We may assume that Y is a
subspace of a Cantor cube 2™. Since X is injective with respect to (Y,2™), there
is an extension f:2™ — X of f. This shows that Dugundji spaces are dyadic [H].
An equivalence relation R on a space X is open if the quotient mapping X — X/R
is open.
S¢epin’s theorem S1 [S]. A compact space X is Dugundyi iff there ezists a family
® of equivalence relations on X such that:

1) for every R € & the quotient space X/R is metrizable
2) ® is closed under countable intersections
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3) all R € ® are open
4) P separates points of X (that means the intersection N® equals the diagonal
of X2).

Let S = {Xa,p5, A} be an inverse system of compact metric spaces X, and onto
bonding mappings p5 : X3 — X,. We call S a Scepin system if for every countable
subset B C A there exists a least upper bound a = supB € A and the family
{p§:B€ B} separates points of X,. Theorem S1 means that a compact space X
is Dugundji iff it is the inverse limit of a S¢epin system S = {X4,p?, A} such that
the projections p, : X — X, are open (or, equivalently, the bonding mappings p?

. are open).

Stepin’s theorem S2 [S]. Let § = {X,,p8, A} and T = {Y,,q5, A} be two Séepin
systems (the directed indez set A is the same for S and T), X =1im S,Y =limT.
Let f be a mapping of X to Y. Let Ay be the set of all a € A with the following
property: there exzists fo : Xo — Y, such that fo 0 pa = ga o f (here po : X — Xo
and go : Y — Y, are the projections). Then Ay is cofinal in A.

Let f: X3 — X be a Mal’tsev operation on a space X. An equivalence relation
R on X is called a congruence (or an f-congruence) if f(z;,z3,23) is R—equivalent
to f(y1,¥2,y3) whenever z; is R~equivalent to y;, ¢=1,2,3.

Mal’tsev’s theorem [M]. If f is a Mal’tsev operation on a space X, then every
f-congruence R on X is open.

PROOF : Let U beopenin X and V = {y € X : (z,y) € R for some z € U}. We
have to show that V is open. Let y € V. Choose r € U so that (z,y) € R. If z
is close enough to y, then f(z,y,z) is in U, since f(z,y,y) = z is in U. On the
other hand, f(z,y, 2) is R—equivalent to f(z,z,z) = 2. Hence V is a neighbourhood
of y. [ ]

Theorem 1. Every compact Mal’tsev space is Dugundji.

PROOF : Let f : X3 — X be a Mal’tsev operation on a compact space X. Let ®
be the family of all f-congruences R on X such that the quotient space X/R is
metrizable. Clearly & is closed under countable intersections, so conditions 1) and
2) of Stepin’s theorem S1 are satisfied. Mal’tsev’s theorem shows that condition 3)
holds, too. It remains to prove that & separates points of X. Let S = {Xq,p2, 4}
be a Stepin system whose limit is X. Then X3 is the limit of Sgepin’s system
8% = {(Xa)®,(P8)%, A}. Let po : X — Xa be the projections of S. Call @ € A
nice if there exists f, : X3 — X, such that f, o (pa)® = pa 0 f. The relation
R, = {(z,y) € X? : pa(z) = pa(y)} is an f—congruence whenever a is nice.
Theorem S2 implies that the set Ay of all nice « is cofinal in A. Hence the subfamily
{Rqs : a € Ay} of @ separates points of X. ]

If X is Dugundji, then X is pseudocompact. We give a characterization of
spaces X for which #X is Dugundji.
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Proposition 1. Let X be pseudocompact. Then BX is Dugundji if and only if
there exists a family ® of equivalence relations on X such that:

1) for every R € ® the quotient space X/R is submetrizable

2) & is closed under countable intersections’

3) every R€ @ is open

4) the topology of X is determined by the quotient mappings fr : X — X/R,
Re &.

We need some lemmas. Recall that a mapping p:Y — Z is d-open if one of the
equivalent conditions holds:
1) clp~}(U) = p~Y(clU) for every U open in Z
2) p(V) Cint clp(V) for every V openin Y.

Lemma 1. If X is pseudocompact and M is melric, then every d-open mapping
f: X = M is open.

PROOF : Let U be open in X and z € U. Choose an open set V so that z €
V CclV CU. Since clV is pseudocompact, f(clV) is closed in M. It follows that
cd f(V) = f(clV), hence f(z) € intcl f(V) = int f(c1V) C int f(U). This means
that f(U) is open. ]

Lemma 2. Let X be pseudocompact. If R is an open equivalence relation on X
such that the quotient space X/R is submetrizable, then X/R is metrizable (and
hence compact).

PROOF : Let f: X — X/R be the quotient mapping, g : X/R — K be a one-
to-one mapping of X/R onto a compact metric space K, and h = go f. We have
to show that g is a homeomorphism, or, equivalently, that h is open. In virtue of
Lemma 1 it suffices to show that A is d—open. Let U be open in K and F = cl h~!U.
Since f is open, F =cl f~1¢g~ (U) = f~'clg™'U = h™'E for some E C K. Now
F is pseudocompact, being a regular closed set in X, so E = h(F) is closed in K.
It follows that E = clU and clh~'U = h~! clU. This means that h is d-open. ®

Lemma 3. Let X be Gs-dense inY (= every non-empty Gs-subset of Y meets X ).
If f maps Y to a metric space M and the restriction f|X : X — M is open, then
f:Y = M is open.

PrOOF : I U isopeninY, then f(U) = f(U N X). ]

Lemma 4. IfY is Dugundji-compact and X is a dense subspace of Y, then the
following are equivalent:

1) Y =X

2) X is pseudocompact

3) X is Gs-dense in Y.

PROOF : Dugundji spaces are perfectly s—normal (= closures of open sets are
zero-sets), and Gs—dense subspaces of perfectly k-normal spaces are C~embedded
[T2]. This gives 3)=>1). If BX is dyadic, then X is pseudocompact [EP]. Since
Dugundji spaces are dyadic, 1)=>2) follows; and 2)=>3) is obvious. n
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PROOF of Proposition 1: The "only if” part follows from theorem S1 and Lemma 1.
Conversely, let & be such a family as described in Proposition 1. The spaces
X/R,R € ®, are compact and constitute a Séepin system S. Let Y = lim S. Then
X can be regarded as a Gs—dense subspace of Y. The open mappings fg : X — X/R
are restrictions of the projections of S, so Lemma 3 shows that the projections of
S are open. Theorem S1 implies that Y is Dugundji, and Lemma 4 shows that
Y =pX. u

Suppose G is a subgroup of the product of metrizable groups, H is a closed
subgroup of G. Let X = G/H be the quotient space. If X is pseudocompact,
then SX is Dugundji. This follows from Proposition 1, combined with Lemma 7 in

. [U3]. Theorem 1 in [U3] also can be extended to the pseudocompact case: if G is

a subgroup of the product of groups with a countable base and G acts transitively
on a pseudocompact space X, then fX is Dugundji. If a pseudocompact space X
is a retract of a topological group, then fX is Dugundji [U4].

Conjecture 1. If X is pseudocompact and Mal’tsev, then SX is Dugundji.

Conjecture 2. The product of any two pseudocompact Mal’tsev spaces is pseu-
docompact.

Proposition 2. Conjectures 1 and 2 are equivalent.

PROOF : Suppose {X, : @ € A} is a family of pseudocompact spaces such that
BXq is Dugundji for every a € A. Then Q = II3X, is Dugundji and P = II1X,
is Gs—dense in Q. Lemma 4 implies that P is pseudocompact. Hence if Conjec-
ture 1 is true, then the product of any family of pseudocompact Mal’tsev spaces is
pseudocompact. Conversely, let f : X* — X be a Mal’tsev operation on a pseudo-
compact space X. If Conjecture 2 is true, then X3 is pseudocompact. By virtue

of Glicksberg’s theorem [G], [E, problem 3.12.20], 8(X?) = (8X)3, hence f has an

extension } :(BX)® - BX. Clearly } is a Mal’tsev operation on 8X, so Theorem
1 shows that 8X is Dugundji. ]

We shall prove that Conjecture 1 is true for countably compact spaces
(Theorem 2).

Rezni¢enko’s theorem R1. Suppose X1, X, X3 are countably compact and have
the Suslin property, M has a countable base, f : X; x X2 xX3 — M is separately con-
tinuous (i.e., if 21,22, T3 are fized, z; € X;, then the functions f(z,,z2,-), f(21,+,23),
f(-yz2,23) are continuous on X3, X2, X1, respectively). Then there ezist compact
metric spaces Y1,Y3,Ys, continuous onto mappings p; : X; = Y;,i =1,2,3, and ¢
separately continuous function g : Yy x Yy xY3 — M such that f = go(p) X pa X p3).
Rezni¢enko’s theorem R2. Suppose X; and X, are pseudocompact, M has a
countable base, f : X1 x X3 — M is (jointly) continuous. Then there ezist Eberlein-
compact spaces Y;,Y,, continuous onto mappings p; : X; — Y;, and a separately
continuous function g : Y1 x Y2 — M such that f = go(p1 x p2). If X; and X3
have the Suslin property, then Y, and Y, are metrizable.

Recall that a compact space X is Eberlein iff X embeds in the function space
Cp(Y) for some compact Y.
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Proposition 3. Suppose X is a Tikhonov countably compact space having the

Suslin property. If there exists a separately continuous Mal’tsev operation f : X3 —
X, then BX is Dugundji.

PROOF : Let ¥ = {R: Ris an equivalence relation on X and X/R is submetrizable}
and ® = {R € ¥ : Ris an f-congruence}. Mal’tsev’s theorem shows that every
R € ® is open. Clearly ® is closed under countable intersections. To check the
condition 4) of Proposition 1, it suffices to prove that for every T' € ¥ there exists
R € ® such that R C T. Let T € ¥. Using theorem R1, construct a sequence
To=T,T1,T; ... such that every T, is in ¥ and the conditions (z;,¥;) € Tn41,t =
1,2,3, imply that f(z;,z2,z3) and f(y1,y2,y3) are T,—equivalent, n = 0,1,...
Then RN T, is a congruence, so R € ®. It follows that ® satisfies the conditions of
Proposition 1. Hence 8X is Dugundji. ]

Definition 1. A space X has the property (T') iff for every family {zq4 : @ < w1}
of points of X and every family {vo : @ < w1} of open covers of X there exist
o, < w such that @ # B and St(za,7vs) meets St(zg,va) (Where St(z,v) =
U{U € y:U 3 z}).

This property was considered by M.Tkagenko [T1] who proved that every compact
space has the property (T'). Moreover, every Lindel6f £-space has the property (T')
[U1],[U2]. A space X is a L-space [N] iff there are two covers F' and C of X
such that F is o-locally finite , C consists of countably compact sets and for every
K € C and every neighbourhood U of K there exists E € F such that K C ECU.
Now we prove that countably compact spaces have the property (T').

Proposition 4. If X is a L-space in which every closed discrete subset is countable,
then X has the property (T).

PROOF : Let {zo : @ < w;} be a family of points of X and {74 : @ < w1}
be a family of open covers of X. For @ < w; put Xy = {25 : § < a} and
Ao = {Xoa NSHza,vs) : B < a}. For E C X let S(F) be the set of all @ < w;
such that z, € E and the family A\o|E = {LNE : L € Ay} does not have the
finite intersection property. We assert that for every E C X the set S(E) is non-
stationary (i.e. some closed unbounded subset of w; does not meet S(E)). For
every finite set A C w; fix an open cover v4 of X which refines v, for every a € A.
If a € S(E), there is a finite set A = f(a) C a such that X, N EN St(z4,74) = 0.
Suppose S(E) is stationary. Fodor’s Lemma [K] implies there is an uncountable
subset B C S(F) and a finite set A C w; such that f(a) = A for every a € B. If
a,f € B and B < a, then 23 € Xo N E C X \ St(zq4,74). It follows that the set
{za : @ € B} is closed discrete in X, since every element of ¥4 contains at most
one point of this set. This contradiction proves that S(E) is non-stationary.

Let F and C be two covers of X witnessing the X-property. Then F' is countable.
Since the union of countably many non-stationary subsets of w; is non-stationary
[K], there exists a € w; \ {0} such that a ¢ S(E) for every E € F. Let K be an
element of C containing zo,. If E € F and K C E, then the family A\, |E has finite
intersection property. It follows that the family 4 = {KN'L : L € Ao} also has
the finite intersection property. Since K is countably compact and u is countable,
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there exists a point z € Nu. Then z € X4 and z € St(z4,78) for every § < a. Let
U be an element of 7, containing z. Since z € X., U meets X,, so there is f < a
such that zg € U. Since z € St(z4,78) and z € U C St(2g,74), the intersection
St(zqa,7vs) N St(zg,7va) is non-empty. The proof is complete. ]

Proposition 5. If a Mal’tsev space X has the property (T') then X has the Suslin
property.

PROOF : Let {Oq : @ < w1} be a family of non-empty open sets in X. We have
to show that this family is not disjoint. For every a < w; pick zo € Oq. Let
f: X® — X be a Mal'tsev operation. Call a set U C X a-small if f(za,y,2) € O,
and f(y,2,7a) € O, whenever y,z € U. Since f(za,¥,y) = (Y, YsTa) = 7a €
O, for every y € X, the collection v, of all a—small open sets covers X. The
property (T') implies there are distinct @, < w; and a point z € X such that
z € St(za,¥8) N St(zg,7a). Then f(za,z,25) € Oa NOg # 0. |

Propositions 4 and 5 imply

Proposition 6. If X is a Mal’tsev T-space in which every closed discrete subset
is countable, then X has the Suslin property.

Let us say that a space X is Gs—cellular if for every family A of Gs—sets in X
there exists a countable subfamily ¢ C A whose union is dense in the union of \. It
can be shown that under the assumptions of Proposition 6, X is Gs—cellular. For
Mal’tsev Lindel6f X-spaces this fact is proved in [U2]. In particular, o—compact
topological groups are Gs—cellular.

Propositions 3 and 6 imply the main result of the paper:

Theorem 2. If X is a countably compact Mal’tsev space, then fX is Dugundji.

Now we introduce a new class of spaces which is contained in the class of Mal’tsev
spaces. For a € X define subsets X, and X° of X? as follows: X,{(a,z):z € X}
and X°® = {(z,a) : z € X}. Let Ax = {(z,z) : X} be the diagonal of X2.

Deflnition 2. A space X has a rectifiable diagonal iff there is a homeomorphism
f:X? = X2 of X? onto itself such that:
1) f(X;) = X, for every z € X;
2) f(Ax) = X* for some a € X.
Every topological group has a rectifiable diagonal, and every space with a recti-
fiable diagonal is homogeneous.

Proposition 7 (M.M.Coban). 4 space X has a rectifiable diagonal if and only
if there ezist mappings p : X2 — X and g : X? — X satisfying the identities
p(z,9(z,y)) = g(z, p(z,y)) = y and p(z,z) = p(y,y).

PROOF : If p and ¢ are as above, let f(z,y) = (z,p(z,y)). Then f~(z,y) =
(z,4(z,y)), so f is a homeomorphism of X? onto itself. If p(z,z) = a for all
z € X, then f(Ax) = X°. Conversely, if f is as in definition 2, the same formulas
f(z,¥) = (2, p(z,y)) and f~(z,y) = (z,4(z,y)) define p and g. ]
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Corollary. Every space with a rectifiable diagonal is Mal’tsev.

PROOF : If p and ¢ are as in Proposition 7, then (z,y,2) — ¢(z,p(y,2)) is a
Mal’tsev operation. ]

Theorem 3. Let X be a pseudocompact space with a rectifiable diagonal. If X has
the Suslin property, then BX is Dugundji.

PROOF : Let p and g be as in Proposition 7. We say that an equivalence relation
R on X is a congruence if the following conditions holds: if z; is R-equivalent to
Yi,t = 1,2, then p(z,,z2) is R-equivalent to p(y;,y2) and ¢(z;,z;) is R-equivalent
to q(y1,y2). Let ® = {R: R is a congruence and X/R is submetrizable}. Then ®
satisfies the conditions of Proposition 1. If R is a congruence, then R is also an m~
congruence, where m(z,y, z) = ¢(z, p(y, z)) is a Mal’tsev operation, so the Mal’tsev
theorem shows that R is open. It remains to show that the quotient mappings
X — X/R,R € ®, determine the topology of X. The argument is essentially the
same as in the proof of Proposition 3, only Rezni¢enko’s thearem R2 should be used
instead of R1. =

Questions. Is it true that every pseudocompact space with a rectifiable diagonal
has the Suslin property? Is it true that every space with a rectifiable diagonal is a
retract of a topological group?

0.V.Sipageva has recently proved that every compact Mal’tsev space is a retract
of a topological group. It can be shown that the same is true for countably compact
Mal’tsev spaces.
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