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The MaPtsev operation on countably compact spaces 

V.V.USPENSKIJ 

Abstract. Let X be a countably compact topological space and / : X3 —• X be a continuous 
mapping such that the identity f(x, y,y) = f(y, y,x) = « holds. Then /?X is Dugundji. It 
follows that compact retracts of topological groups are dyadic. 

Keywords: Dugundji space, retract, pseudocompact 

Classification: primary 54D30; secondary 22A30 

We say that a topological space X is MaPtsev if there exists a continuous mapping 
/ : X 3 —• X (called a MaPtsev operation [M]) such that the identity f(x,y,y) = 
f(y, y,x) = x holds for all x, y € X. Every topological group G is a MaPtsev space, 
since the mapping (x,y,z) —> xy""1z is a MaPtsev operation on G. M.G.Tkacenko 
proved in 1981 that compactly-generated topological groups have the Suslin prop­
erty [Ti]. This result was extended by the author in [Ui]: every a-compact MaPtsev 
space has the Suslin property. In the present paper we show that compact MaPtsev 
spaces are Dugundji (Theorem 1). Moreover, if X is a countably compact MaPtsev 
space, then /3X is Dugundji (Theorem 2). Clearly any retract of a MaPtsev space 
is MaPtsev. It follows that compact retracts of topological groups axe Dugundji. 
This is an extension of the Ivanovskij - Kuzminov theorem (its proof can be found 
in [U3]) which says that compact groups are dyadic. 

Let X be a subspace of Y. A topological space Z is said to be injective with 
respect to the pair (X, Y) iff every continuous function / : X —• Z has a continuous 

extension / : Y —• Z. For a compact space X the following are equivalent [H]: 
1) if Y is a zerodimensional compact space and Z is closed in Y, then X is injective 
with respect to the pair (Z, F) ; 2) if X is a subspace of a compact space Y, then 
every compact convex subset of a locally convex topological vector space is injective 
with respect to the pair (X, Y). A compact space X is called Dugundji [P] if one 
of these conditions holds. Let X be Dugundji. There exist a zero-dimensional 
compact space Y and an onto mapping / : Y —• X . We may assume that Y is a 
subspace of a Cantor cube 2 m . Since X is injective with respect to (Y,2m), there 
is an extension / : 2 m —• X of / . This shows that Dugundji spaces are dyadic [H]. 

An equivalence relation R on a space X is open if the quotient mapping X —• X/R 
is open. 

Scepin's theorem SI [§]. A compact space X is Dugundji iff there exists a family 
$ of equivalence relations on X such that: 

1) for every R€ $ the quotient space X/R is metrizable 
2) $ is closed under countable intersections 
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3) all RE $ are open 
4) $ separates points of X (that means the intersection fl$ equals the diagonal 

ofX*)-

Let S = {X0 ,p£, A] be an inverse system of compact metric spaces Xa and onto 
bonding mappings p£ : X$ —• Xa. We call S a Scepin system if for every countable 
subset B C A there exists a least upper bound a = sup I? £ A and the family 
{pjy : fi £ B} separates points of Xa. Theorem SI means that a compact space X 
is Dugundji iff it is the inverse limit of a Scepin system 5 = {Xayp^^A} such that 
the projections pa : X —> Xa are open (or, equivalently, the bonding mappings pf 

, are open). 

Scepin's theorem S2 [§]. Let S = {X^p^,A} and T = {Ya,g£, A} be two Scepin 
systems (the directed index set A is the same for S and T)} X = HmS,F = l imT. 
Let f be a mapping of X to Y. Let Af be the set of all a £ A with the following 
property: there exists fa : Xa —> Ya such that faopa = qaof (here pa : X —• Xa 

and qa : Y —• Ya are the projections). Then Af is cofinal in A. 

Let / : X 3 —i• X be a Mal'tsev operation on a space X. An equivalence relation 
R on X is called a congruence (or an /-congruence) if f{xx, a?2,-C3) is .R-equivalent 
t° Z(yi»y2>y3) whenever Xi is i?~equivalent to yi, i = 1,2,3. 

MalHsev's theorem [M]. If f is a MaVtsev operation on a space X, then every 
f-congruence R on X is open. 

PROOF : Let U be open in X and V = {y € X : (ar, y) € R for some x £ U}. We 
have to show that V is open. Let y £ V. Choose x £ U so that (a?,y) € R. If z 
is close enough to y, then / (x ,y , 2) is in £/, since f{x,y,y) = x is in U. On the 
other hand, f{xy y, z) is .ft-equivalent to / ( x , x, z) = z. Hence V is a neighbourhood 
ofy. • 

Theorem 1. Every compact MaVtsev space is Dugundji. 

BROOF : Let / : Xz —• X be a MaTtsev operation on a compact space X. Let # 
be the family of all /-congruences R on X such that the quotient space X/R is 
metrizable. Clearly # is closed under countable intersections, so conditions 1) and 
2) of Scepin's theorem SI are satisfied. MaTtsev's theorem shows that condition 3) 
holds, too. It remains to prove that $ separates points of X. Let S = {Xa>Pb>^} 
be a Scepin system whose limit is X. Then Xz is the limit of Scepin's system 
S3 = {{Xaf,{p^f,A}. Let pa : X -4 Xa be the projections of 5. Call a £ A 
nice if there exists fa : X% —> Ka such that / a o (pa)3 = pa o / . The relation 
-f?a = {(x,y) € X2 : Pa{x) = Po(y)} is && /-congruence whenever a is nice. 
Theorem S2 implies that the set Af of all nice a is cofinal in A. Hence the subfamily 
{Ra : a £ Af} of # separates points of X. • 

If PX is Dugundji, then X is pseudocompact. We give a characterization of 
spaces X for which fiX is Dugundji. 
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Proposition 1. Let X be pseudocompact. Then ($X is Dugundji if and only if 
there exists a family # of equivalence relations on X such that: 

1) for every R € $ the quotient space X/R is submetrizable 
2) # is closed under countable intersections 
3) every R € $ is open 
4) the topology of X is determined by the quotient mappings fn : X —• X/R, 

RG$. 

We need some lemmas. Recall that a mapping p : Y —* Z is <f-open if one of the 
equivalent conditions holds: 

1) clp""1^) = p-^clC/) for every U open in Z 
2) P(Y) £. m t clp(V) for every V open in Y. 

Lemma 1. If X is pseudocompact and M is metric, then every d-open mapping 
f : X —> M is open. 

PROOF : Let U be open in X and x £ U. Choose an open set V so that *x € 
V C clV C U. Since clV is pseudocompact, f(c\V) is closed in M. It follows that 
cl /(V) = / ( c lV ) , hence f(x) € intcl/(V) = int/(clV) C int/(£/). This means 
that f(U) is open. • 

Lemma 2. Let X be pseudocompact. If R is an open equivalence relation on X 
such that the quotient space X/R is submetrizable, then X/R is metrizable (and 
hence compact). 

PROOF : Let / : X —• X/R be the quotient mapping, g : X/R —• K be a one-
to-one mapping of X/R onto a compact metric space K, and h = g o f. We have 
to show that g is a homeomorphism, or, equivalently, that h is open. In virtue of 
Lemma 1 it suffices to show that h is cf-open. Let If be open in K and F = cl h"1U. 
Since / is open, F = cl f"1 g"1 (U) = f~l cl g~lU = h"~lE for some E C K. Now 
F is pseudocompact, being a regular closed set in X, so E = h(F) is closed in K. 
It follows that E = cl ll and cl /i""1 /̂ = /i""1 cl U. This means that /i is d-open. • 

Lemma 3. Let X be Gs-dense in Y (= every non-empty Gs-subset ofY meets X). 
If f maps Y to a metric space M and the restriction f\X : X —* M is open, then 
f : Y —* M is open. 

PROOF : If U is open in F, then f(U) = f(U n X). m 

Lemma A.IfY is Dugundji-compact and X is a dense subspace of Y, then the 
following are equivalent: 

1) Y = PX 
2) X is pseudocompact 
3) X is Gg-dense in Y. 

PROOF : Dugundji spaces are perfectly /c-normal (= closures of open sets are 
zero-sets), and G«-dense subspaces of perfectly K-normal spaces are C-embedded 
[T2]. This gives 3)=M). If f$X is dyadic, then X is pseudocompact [EP]. Since 
Dugundji spaces are dyadic, 1)=>2) follows; and 2)=.>3) is obvious. • 
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PROOF of Proposition 1: The "only if" part follows from theorem SI and Lemma 1. 
Conversely, let $ be such a family as described in Proposition 1. The spaces 
K/.R, R € # , are compact and constitute a Scepin system S. Let Y = lim S. Then 
X can be regarded as a G$ -dense subspace of Y. The open mappings / # : X —» X/R 
are restrictions of the projections of 5 , so Lemma 3 shows that the projections of 
S are open. Theorem SI implies that Y is Dugundji, and Lemma 4 shows that 
Y = fiX. • 

Suppose G is a subgroup of the product of metrizable groups, H is a closed 
subgroup of G. Let X = G/H be the quotient space. If X is pseudocompact, 
then fiX is Dugundji. This follows from Proposition 1, combined with Lemma 7 in 

. [U3]. Theorem 1 in [U3] also can be extended to the pseudocompact case: if G is 
a subgroup of the product of groups with a countable base and G acts transitively 
on a pseudocompact space K, then fiX is Dugundji. If a pseudocompact space X 
is a retract of a topological group, then fiX is Dugundji [U4]. 

Conjec ture 1. If X is pseudocompact and Mal'tsev, then fiX is Dugundji. 

Conjec ture 2. The product of any two pseudocompact Mal'tsev spaces is pseu­
docompact. 

Proposition 2 . Conjectures 1 and 2 are equivalent. 

PROOF : Suppose {Xa : a € A} is a family of pseudocompact spaces such that 
fiXa is Dugundji for every a £ A. Then Q = UfiXa is Dugundji and P = nXa 

is C?$-dense in Q. Lemma 4 implies that P is pseudocompact. Hence if Conjec­
ture 1 is true, then the product of any family of pseudocompact Mal'tsev spaces is 
pseudocompact. Conversely, let / : X3 —+ X be a Mal'tsev operation on a pseudo-
compact space X. If Conjecture 2 is true, then X3 is pseudocompact. By virtue 
of Glicksberg's theorem [G], [E, problem 3.12.20], fi(Xz) = (fiX)3, hence / has an 

extension / : (fiX)z —» fiX. Clearly / is a Mal'tsev operation on fiX, so Theorem 
1 shows that fiX is Dugundji. • 

We shall prove that Conjecture 1 is true for countably compact spaces 
(Theorem 2). 

Reznicenko's theorem R l . Suppose X\,X2,Xz are countably compact and have 
the Suslin property, M has a countable base, f : X\ XX2 XK3 —> M is separately con­
tinuous (i.e., ifx\, #2, Xz are fixed, Xi £ Xi, then the functions f(x\, x2, •), f(x\, •, £3), 
f(-jX2ix$) are continuous on Xz,X2,X\, respectively). Then there exist compact 
metric spaces Fi,Y2, J3, continuous onto mappings p, : Xi —• Yi,i = 1,2,3, and a 
separately continuous function g : Y\ x Y2 x F3 —• M such that f = g o(pt x P2 x p3). 

Reznicenko's theorem R2. Suppose X\ and X2 are pseudocompact, M has a 
countable base, f : X\ x X2 —• M is (jointly) continuous. Then there exist Eberlein-
compact spaces Fi,.r2, continuous onto mappings p, : Xi —• Yi, and a separately 
continuous function g : Y\ x Y2 —*• M such that f = g o (p\ x P2). If X\ and X2 

have the Suslin property, then Y% and >2 are metrizable. 

Recall that a compact space X is Eberlein iff X embeds in the function space 
CP(Y) for some compact Y. 
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Proposition 3. Suppose X is a Tikhonov countably compact space having the 
Suslin property. If there exists a separately continuous MaVtsev operation f : K3 —> 
X, then fiX is Dugundji. 

PROOF : Let # = {R : R is an equivalence relation on X and X/R is submetrizable} 
and # = { .R€ 1 $ r : -Risan /-congruence}. Mal'tsev's theorem shows that every 
R € $ is open. Clearly $ is closed under countable intersections. To check the 
condition 4) of Proposition 1, it suffices to prove that for every T € # there exists 
R 6 $ such that R C T. Let T € ^. Using theorem Rl, construct a sequence 
T0 = T,Ti,T2 . . . such that every Tn is in ^ and the conditions (x,,yj) € Tn+i,i = 
1,2,3, imply that f(xi,x2jxz) and f(yi,y2,Vz) are Tn-equivalent, n = 0 , 1 , . . . 
Then Rf\Tn is b, congruence, so R € $. It follows that $ satisfies the conditions of 
Proposition 1. Hence 0X is Dugundji. • 

Definition 1. A space X has the property (T) iff for every family {xa : a < u>\} 
of points of X and every family {ja : a < u>i} of open covers of X there exist • 
a, ft < u)\ such that a ^ fi and St(xa,ip) meets St(xp,fa) (where St(x\y) = 
U{U£j:UBx}). 

This property was considered by M.Tkacenko [Tl] who proved that every compact 
space has the property (T). Moreover, every Lindelof S-space has the property (T) 
[U1],[U2]. A space X is a S-space [N] iff there are two covers F and C of X 
such that F is <r-locally finite , C consists of countably compact sets and for every 
K € C and every neighbourhood U of K there exists E € F such that K C E C U. 
Now we prove that countably compact spaces have the property (T). 

Proposition 4. IfX is a H-space in which every closed discrete subset is countable, 
then X has the property (T). 

PROOF : Let {xa : a < u>\} be a family of points of X and {7^ : a < w\} 
be a family of open covers of X. For a < u>i put Xa = {x$ : 0 < a} and 
A« = {Xa n St(xa,ip) : p < a}. For E C X let S(E) be the set of all a < ux 

such that xa € E and the family \a\E = {L C\ E : L € Xa} does not have the 
finite intersection property. We assert that for every E C X the set S(E) is non-
stationary (i.e. some closed unbounded subset of UJ\ does not meet S(E)). For 
every finite set A C u>i fix an open cover 7,4 of X which refines ya for every a € A. 
If a € S(E), there is a finite set A = / ( a ) C a such that Xa d E D St(xa, yA) = 0. 
Suppose S(E) is stationary. Fodor's Lemma [K] implies there is an uncountable 
subset B C 5(-E) and a finite set A C cvi such that / ( a ) = A for every a € B. If 
a,/? € £ and fi < a, then a:̂  6 X« n J£ C X \ S t f c o ^ ) . It follows that the set 
{xa : a € B} is closed discrete in X, since every element of 7,4 contains at most 
one point of this set. This contradiction proves that S(E) is non-stationary. 

Let F and C be two covers of X witnessing the E-property. Then F is countable. 
Since the union of countably many non-stationary subsets of u>i is non-stationary 
[K], there exists a € u>\ \ {0} such that a $ S(E) for every E 6 F. Let K be an 
element of C containing xa. If E € F and K C E, then the family Xa\E has finite 
intersection property. It follows that the family p =* {K 0 L : L £ \a} also has 
the finite intersection property. Since K is countably compact and fj, is countable, 
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there exists a point z € Ofi> Then z € Xa and z € St(xa,ip) for every ft < a. Let 
U be an element of 7 0 containing z. Since 2 (= Xa, U meets Ka, so there is fi < a 
such that xp € 17. Since z 6 5t(a: t t,7^) and z € £7 C St(xp,*ya), the intersection 
St(xa,yp) fl St(xp,ya) is non-empty. The proof is complete. • 

Proposition 5. J/ a MaVtsev space X has the property (T) then X has the Suslin 
property. 

PROOF : Let {Oa : a < UJ\} be a family of non-empty open sets in X. We have 
to show that this family is not disjoint. For every a < w\ pick xa € Oa. Let 
/ : Xz —> X be a MaTtsev operation. Call a set U C X a-small if f(xa,y, z) € Oa 

and f(y,z,xa) € Oa whenever y,z € U. Since f(xa,y,y) = f(y,y,xa) = x a € 
Oa for every y € K, the collection 7 a of all a-small open sets covers X. The 
property (T) implies there are distinct a, ft < u\ and a point z £ X such that 
z e St(xa,ip)r\St(xf),~ia). Thenf(xa,z,xp)eOanOp ^0. • 

Propositions 4 and 5 imply 

Proposition 6. If X is a MaVtsev H-space in which every closed discrete subset 
is countable, then X has the Suslin property. 

Let us say that a space X is Crg-cellular if for every family A of O^-sets in X 
there exists a countable subfamily /J. C A whose union is dense in the union of A. It 
can be shown that under the assumptions of Proposition 6, X is Gs-cellular. For 
MaTtsev Lindelof S-spaces this fact is proved in [U2]. In particular, a-compact 
topological groups are G^-cellular. 

Propositions 3 and 6 imply the main result of the paper: 

Theorem 2 . If X is a countably compact MaVtsev space, then f3X is Dugundji. 

Now we introduce a new class of spaces which is contained in the class of MaTtsev 
spaces. For a € X define subsets Xa and Xa of X2 as follows: Xa{(a, x) : x 6 X} 
and Xa = {(x,a) : x € X}. Let A x = {(x,x) : xX} be the diagonal of X2. 

Definition 2. A space X has a rectifiable diagonal iff there is a homeomorphism 
/ : X2 -> X2 of X2 onto itself such that: 

1) f(Xx) = Xx for every x € X; 
2) / ( A x ) = Xa for some a € X. 

Every topological group has a rectifiable diagonal, and every space with a recti­
fiable diagonal is homogeneous. 

Proposition 7 (M.M.Coban). A space X has a rectifiable diagonal if and only 
if there exist mappings p : X2 —> X and q : X2 —• X satisfying the identities 
p(x, q(x, y)) as q(x, p(x, y)) = y and p(x, x) = p(y, y). 

PROOF : If p and q are as above, let f(x,y) = (x,p(x,y)). Then f~1(x,y) = 
(x, q(x, y)), so / is a homeomorphism of X2 onto itself. If p(x, x) = a for all 
x € X, then / ( A x ) = Xa. Conversely, if / is as in definition 2, the same formulas 
f(x,y) = (x,p(x,y)) and f'l(x,y) = (x,q(x,y)) define p and q. • 



The Mal'tsev operation on countably compact spaces 401 

Corollary. Every space with a rectifiable diagonal is MaVtsev. 

PROOF : If p and q are as in Proposition 7, then (x,y,z) —> q(x,p(y,z)) is a 
Mal'tsev operation. • 

T h e o r e m 3 . Let X be a pseudocompact space with a rectifiable diagonal If X has 
the Suslin property, then ftX is Dugundji. 

PROOF : Let p and q be as in Proposition 7. We say that an equivalence relation 
R on X is a congruence if the following conditions holds: if xi is .R-equivalent to 
yi,i = 1,2, then p(x\,x2) is JR-equivalent to p{yi,y%) and q(x\,x2) is J?-equivalent 
to 9(2/1,2/2)- Let $ = {R : R is a congruence and X/R is submetrizable}. Then $ 
satisfies the conditions of Proposition 1. If R is a congruence, then R is also an in­
congruence, where m(x, y, z) = q(x,p(y, z)) is a Mal'tsev operation, so the Mal'tsev 
theorem shows that R is open. It remains to show that the quotient mappings 
X —> X/R,R € $ , determine the topology of X. The argument is essentially the 
same as in the proof of Proposition 3, only Reznicenko's theorem R2 should be used 
instead of R l . • 

Quest ions . Is it true that every pseudocompact space with a rectifiable diagonal 
has the Suslin property? Is it true that every space with a rectifiable diagonal is a 
retract of a topological group? 

O.V.Sipaceva has recently proved that every compact Mal'tsev space is a retract 
of a topological group. It can be shown that the same is true for countably compact 
Mal'tsev spaces. 
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