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Mathematical modelling of an electrolysis process 

M I L O S L A V F E I S T A U E R , H A R I J S K A L I S , M I R K O R O K Y T A 

Dedicated to the memory of Svatopluk Fučík 

Abstract. The paper is devoted to the mathematical and numerical study of a problem 
arising in the investigation of the electrolytical producing of aluminium. The electrolysis 
process is described by the Poisson equation for the stream function to which we add 
nonlinear Newton boundary and transmission conditions representing turbulent flows in 
the boundary and anodes layers. The solvability is proved by the use of the monotone ' 
operator theory. The problem is discretized by conforming linear triangular elements and 
the solvability of the discrete problem and the convergence of approximate solutions to the 
exact solution is studied. 

Keywords: electrolysis, linearized Navier-Stokes equations, elliptic boundary value prob­
lem, nonlinear Newton and transmission conditions, weak solution, monotone operator 
theory, linear conforming triangular elements, convergence 

Classification: 35D05,35J65,65N30,76D99,76W05 

Introduction. 
The electrolysis belongs to modern technologies of obtaining aluminium. The 

motion of the aluminium metal and the electrolyte induced by the electromagnetic 
forces is described by the Navier-Stokes equations. In [1] it was shown that provided 
the forces flux is in the range 200 - 250 kA and the thickness of the aluminium -
electrolyte layer (0.05 - 0.3 m) is small in comparison with the horizontal size of the 
equipment (4 - 10 m), then the nonlinear terms can be neglected and the process 
can be averaged in the vertical direction. Then we come to a two - dimensional 
model problem in a domain Q C R2. This domain consists of several subdomains 
Q,, i = 1,..., N - for simplicity we shall suppose that N = 2 - which represent 
electrolytical tanks and of the common boundary (dQ\ D d£l2) D 0 representing 
the channel with anodes (see Fig.l). Let us assume that the flow is laminar in 
Hi and fti* Then the so-called stream function satisfies a linear Poisson equation 
in Qi U fi2- However, in thin layers near the boundary d£l and in the channel 
dUi n dft2 of anodes we get turbulent flows (see [13]). These flows need not be 
resolved and their contribution can be included into a boundary condition on dfl 
and a transmission condition on dQ\ D dQ2. 

As a result we get a boundary value problem in the domain ft for the stream 
function, which is discontinuous across dfti D dQ2 in general, satisfies the Pois­
son equation in ftj(t = 1,2), nonlinear boundary condition on dQ and nonlinear 
transmission condition on dfti f) dQ2. 
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Here we shall deal with the solvability and the finite element approximation of 
this problem, provided the domains Qi(i = 1,2) are polygonal. (More general 
situation with nonpolygonal domains will be studied in a forthcoming paper [4].) 

1. Continuous problem. 
Let H, Oi, 0 2 C JS2Jbe bounded polygonal domainswiththeir boundaries dQ, (Kit, 

dQ2 and closures n , f l i ,0 2 satisfying the relations 0 = Oi U?22, Qi fl Q2 = 0 . We 
denote T3 = dtti fl 0Q2 and T, = dUi - T3, i = 1,2 (see Fig. 1). 

x2 

fìi 

Fig.l 

We consider the following boundary value problem: Find u,-: 0* —• .R1, i = 1,2, 
such that 

(1.1) 

(1.2) 

(1.3) 

дn 

Aщ = div / in fìj, i = 1,2, 

+ fclt-.fЧ =/„ = 7*n onГй i = l,2, 

^ T = - ^ | = fc|u2-u1|«(u2-«1) + 7-rri onr s 

Here / = (/i,/2) : Q —• R2 is a given vector field (determined from Maxwell's 
equations), n = (ni,n 2 ) and n* = (nj,n2) denote a unit outer normal to 6*0 and 
to dQi, respectively, k > 0 and a > 0 are given constants. (The case a = 0 or a > 0 
corresponds to linear or nonlinear turbulence law, respectively, in the neighbourhood 
of dQ and T2.) d/dn and d/dn* denote the derivative in the direction n and n 1 , 
respectively. Of course, n 1 = - n 2 and d/dnl = -d/dn2 on T3, n = n*, 0/dn = 
d/dn4 on Ti, t = 1,2. 
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1.4. Definition. Let / 6 [Cl(Q)]2. We say that u = (uXiu2) is a classical 
solution of the problem (1.1) - (1.3), if t*,- G C*(jtii)(i = 1,2) satisfy equations 
(1.1), boundary conditions (1.2) and transmission condition (1.3). 

Let us notice that provided u = (ui>u2) is a classical solution and we define 
u : Hi U U2 —• R1 by u | Qi == u,-, t = 1,2, then in general, u has a discontinuity 
across r s defined together with u by equation (1.1) and conditions (1.2), (1.3). On 
the other hand, the derivative -^r is "continuous" across V*. 

Let u — (ui,tt2) be a classical solution. If we multiply equation (1.1) by an 
arbitrary v, e C°°(jCli)(i = 1,2), integrate (1.1) over (1*, apply Green's theorem 
and use conditions (1.2), (1.3), we get 

Y f Vui-Vvidx + y f k\ui\aUiVidS+ 
t£J*< £}Jr* 

(1.5) + / k\u2 - ut\a(u2 -mXt* - vi)dS = T I / • VV|<*V, 
JTz £rt J*i 

(wb^eHSiOxC 0 0 ^) . 

(Here V = (d/dxud/dx2), x = (xi,x2).) Identity (1.5) leads us to the concept of 
a weak solution of the problem. 

We shall deal with the well - known Lebesgue and Sobolev spaces 1^(0), 
I/(ai)yI/(m)t Wk*(Q)t Wk*(Qi) (etc.) (1 < p < oo, 1 < k < oo, Jfe is an in­
teger), equipped with the norms || • ||0,Ffo, || • ||o,F,Q<, II • lk„,*i, II • IU,F,n» II • ||*,Ffn, 
(etc.), respectively. (See e.g. [10],[11], [14].) By | • |*,F,Q we denote the seminorm 
in Wk**(n): 

(1-6) |u|fc,F,n = ( £ llj^TlloVn)17'. »eWk»(Q). 
a+fi*k OXxOX% 

Let us remind the completely continuous imbedding Hrl»2(Ol) *-+«-> L9(dQ>i) for 
ail q € (1, +oo) - see [11], [14]. Hence, there exists a constant cx -= c%(q) > 0 such 
that 

(1.7) IMkf,*>, < dMiAOi> * € W^ili) 

and from each sequence {un} bounded in W1,2(0,) we can choose a subsequence 
strongly convergent in L9(dQi). 

In the sequel we shall assume that 

(1.8) / € [ 2 . W . 

Let us define the Hilbert space H(Q) = W ^ f l i ) x Wl>2(to2), equipped with the 
norm 

(-.») llu||l.2fl = (||u1||?,2>ni+|K||?>2)(1,)
1!2, u = (.ultu2)eH(n), 
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and define the forms 

(1.10) Қщv 

c(uђv 

d(щv 

L(v 

a(u, v 

= 5ľ / Vu.Vü.daľ, 

= Ż / ҺWiľWidS, 
ІҐIJV* 

= / k\u2 - ui\a(u2 - UІ)(V2 -v^dS, 
Jr* 

= E/ 7 '*****' ÍҐiJЪ 

= Қuy v) + c(uy v) + d(u, ü), 

w = (t-i,tl3), V = (ÜЬ^2) 6 H(Ü). 

Let us notice that the forms c and d are well-defined in virtue of (1.7). 
In H(Q) we shall also use a seminorm | • 11,2,0: 

(i.u) H i ^ = (MU* + l«.l.,W1/2. « = («i.«a) e *(«)• 
1.12- Definition. We say that u = (t*i,u2) is a weak solution of problem (1.1) 
(1.3), if 

(1.13) 

6) 

« Є Я(íl), 
o(u,v) = I(t;) to Є Я(íì). 

1.14. Lemma. The form L is linear and continuous on H(U). For each u € 
JET(O) the forms a(u, •), 6(u, •), c(ut •) and d(u, •) are linear and continuous on H(Q). 
Moreover, b is a continuous bilinear form on H(Q). 

Rrom the above considerations it follows that problems (1.1) - (1.3) and 
(1.13, a-b) are formally equivalent in the following sense: If u = (uj, u2) is a classical 
solution, then it is also a weak solution. On the other hand, provided u — (ui,u2) 
is a weak solution and u,- € C2(Ot), t =-1,2, then u is a classical solution. 

If a = 0, then the problem is linear; for a > 0 we have a nonlinear problem with 
a similar structure as problems studied in [9] with the use of a variational approach. 
Here we shall apply the monotone operator method. 

2. Solvability. 
First, let us prove some auxiliary assertions. 

2.1. Lemma. Let q > 1. The there exists a constant c2 — c2(q) such that 

(2.2) 
l«lî,.,n + Ht.Гn ( Ż llu<llî,,.r, + l«i ~ «-Иîлл) > 

>ынь,ӣ 
Vu = (.i,щ)єя(й), U5É0. 
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PROOF : a) Let us prove the existence of a constant c2 > 0 such that 

2 

(2.3) |u|?,2,0 + £ ll«.IIS,,,r. + ll«i - «.IIS,,,r. >- " 
t = l 

Vu = (ui,u2)€lT(a), ||u||i,2,o = l. 

If (2.3) is not valid, we get a sequence {un} C H(Cl) such that 

(2.4) a) | « - | l i l l 0 « 1 
6) un - . u = (ui.ti.) (weakly) in H(tt), 

c) |u"|!,2,0 + JTIKIU fXi + ||„» - u-IIJ,,,, < I . 
t = l 

From the compact imbedding W1,2(ft<) *-+<--> L9(d&i) and (2.4,b) it follows that 

un -> u, (strongly) in L9(dQi), t = 1,2. 

Rrom this, the weak lower semicontinuity of the seminorm | • 11,2,0 and (2A,c) we 
immediately get 

2 

Mi.2,0 + JT) Hu«Ho,f,rf + IN - ^HS,f,r, = 0. 
t-5-l 

Thus, Ui = ki = const for t = 1,2. Of course, also the traces u, | dQi = fc|. As 
llu*llo,f,ri = 0 we see that ki = 0 for t = 1,2 and thus u = 0. However, this is a 
contradiction to (2.4,a). 

b) Now, if u G JET(n), u ^ 0, we put w = u/||u||i,2,o and, by (2.3), we have 

HL 3,4 
jiT— f Ěll^HS^r, + ll«i - «.IIS,.,r,>) > «* n«ii...(o' H I 

If we multiply this inequality by | |u| | 2
 2 Q ,weget (2.2). • 

2.5. Lemma. The form a is coercive in tht following sense: there exists a constant 
c3 > 0 such that 

(2.6) a(t-,u)>c3 |Mli,2,o for all u€H(Q) with ||u||i,2,o > 1-

PROOF : If u = (ui, u2) € H(to), then by (1.10), 

(2.7) a(u,u) = |u|?f2|n + fc£ / |uf-r2dS + fc / \ut - u2\"+*dS > 
i , i JTi Jr, 

> mi.a(l,fc)f|u|f>2,Q + ElM||?tt
2

+2|r<+ 

+ll«i-« . lC+ . .r . ] . 
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Now let us assume that |M|i,2,o - * an<^ Put 9 = « -1-2 (> 2). Then, from (2.2) and 
(2.7) we immediately get 

a(ti,ti) > min(l,fc)c2||tt||Jt2>ft, 

which is (2.6). • 

2.8. Corollary. There exisU a constant c+ = max(l, ||/||0,2,0/^3) suck that 

(2.9) | |t4|| i ,2 ,o<c4 

for each solution u of problem (i.iS, a-h). 

r^e,cHl7lk2,o = (EII/ill2,2,n)1/2.; 
i « l 

PROOF : Let t< € H(Q) be a solution of (1.13, a-b) and IMI-,2,0 --- *• Then, by 
(2.6), (1.13, b), (1.10) and the Cauchy inequality, 

c3.Mli,2,o ^ a(M>w) = L(u) £ H/llo.2,0 • Nlo.2,0. 

Hence, each solution of (1.13, a-b) satisfies (2.9). • 

2.10. Lemma. The form a is strictly monotone: 

(2.11) a(n,« - v) - a(v, u - v) > 0 for all tt, v € # (0 ) , ti # v. 

PROOF : By (1.10), for tt,v € H(U) we get 

(2.12) a(ti, ti - v) - a(v, u - v) = 

- I« - <2,o + k J2 I (M"«i - Mat*X«< - v«)^+ 
t« l ^ i 

+* / 11*2 - tii|°(u2 - tii) - |t* - vi|a(v2 - vi)] [(ti2 - tti) - (t^ - vi)] dS. 
Jr* 

From this and the fact that the function ut € R1 -* \t\at € Rl" is increasing we see 
that a(ti, ti — v) — a(v, u - v) > 0. 

If a(tt, ti—v)—a(v, t«—v) = 0, then all three terms in the right-hand side of (2.12) 
are equal to zero. This implies that t*,- — v,- = lfe» = const almost everywhere in ft,-
and u, = Vi on T, a.e. for t = 1,2. Hence, k,; = 0 and u = v almost everywhere. • 

2.13. Lemma. There exisU a constant c5 > 0 such that 

(2.14) |a(tt,v)-a(tt,,v)|< 

< <*(1 + IMIf,2,o + M ? A Q ) I « - tv||i,2,o||v||i,2,o 
Vtt,v,tt»€F(Q). 
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PROOF : From the definition of the form a we get 

(2A5) |a(u,t>) - a(w,v)\ < \u - u;|i,2|n|v|i,2,n+ 

+*£ / l|ui|aui~Kru;i|M|d5+ 

+* / ||U2 ~ Ui|a(u2 - Ui) - |u>2 - U»i|tt(u»2 ~ U*i)| |«2 ~ t>i|dS. 

Let r,5 e R1 and <p(t) = \r + t(s - r)|tt(r + t(s - r)), t € [0,1]. By a simple 
calculation we find out that 

Vp'(t) = (l+aX*-r)|r + .(*-r)r 

and thus, 

(2.16) 
M", - |г|»г = ф) - ^(0) . f <fi'(t)dt = 

= (l + Q ) ( S - г ) f |r + .(5-r)|ad.. 

FVom the properties of the function |x|a we can derive that \r + t(s — r)\a < 
< \r\a + \s\a Vt 6 [0,1], which together with (2.16) imply 

(2.17) \\s\as - \r\ar\ < (1 + a)\s - r|(|rr + M°). 

If we use (2.15) and (2.17), we get 

(2A8) |a(u,v) - a(w,v)\ < \u - ui|i,2,ftMi,2,ft+ 

+*(1 + a) ]T / |ui - u^uil* + M ° ) M <*S+ 
i=l Jj%i 

+*(! + <*) / |(u2--Ui)-(u;2--u;i)|(|u2--ui|a + |ui2-u;iH|t^--t;i|d5. 
Jr, 

Further, let a/(a + 2) + 1/p = 1, <p,tl> € 2.2*(rt),0 € I"+ 2(r t). Then 

jf \<p\\#\a\1>\dS< 

<*-> -a"*-)*a^-)*a^-)*-
= l|tf||o>.„+2.r(-llv!lo.w,-|l^llo..,.rl. 

Now, in virtue of the continuous imbedding W1,2(Qi) «-• L*(dQi) valid for 
q € [lfOo) (cf. (1.7)), for which we set the values a + 2 and 2p, we derive from 
(2.18) and (2.19) (after some calculations) the estimate (2.14). • 
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In view of Lemma 1.14 let us define the mapping A : H(to) —> (A(to))* and the 
functional (p £ (H(Q))m by the identities 

(2.20) <A(«)ft>)«fl(«,tOf 

(9, v) =-£(«), 
ti,v £H(Q). 

Here (H(Q))* denotes the dual to H(Q) and (•, •} is the duality between (H(Q))* 
and JET(O). I.e. (v?, v) denotes the value of a continuous linear functional <p defined 
on H(Q) at a point v £ H(U). 

Under this notation problem (1.13, a-b) can be written as the operator equation 

(2.21) A(u) = tp 

for an unknown u £ H(Q). From Lemmas 2.5, 2.10 and 2.13 we immediately get 

2.22. Lemma. The operator A is coercive, strictly monotone and locally Lipschitz-
continuous on H(Q). 

By the straightforward application of the well-known results from the monotone 
operator theory ([8], [12], [15], [16]) we come to the following 

2.23. Theorem. Problem (LIS, a-b) has exactly one solution. 

3. Discrete problem. 
For the discretization of the continuous problem we use the finite element method 

and proceed similarly as in [5], where a problem with discontinuous coefficients was 
studied. 

Let Tk and %k denote triangulations of the domains 0 and ft* (i = 1,2), respec­
tively, formed by finite numbers of closed triangules. (Let us remind that ft and ft,-
are supposed to be polygonal.) We assume that 

(3.1) a) 5-Ul.i**, 
b) 0 = U T € T » ^ B - * « U . w t t T ; 

(3.2) if Tu T2 £ Tk, Ti £ r2 , then either Tx f\T2 = 0 or Txf\T2 is a common vertex 
or T\ n r 2 is a common side of T\, T2\ 

(3.3) if r € %k(i = 1,2), then at most two vertices of T are lying on dft*. 
We denote by ak = {Pi,...,Piv} and aih = {P(,..., P'Ni} (i = 1,2) the set of 

all vertices of Tk and %K, respectively. From the above it follows that 

(3.4) a) <7fccS, <r»cfi<*, i = 1,2; 

. = 1,2. 

«) <ràCÏÏ, 

«) 
<0 

2 
вråз= [Jcгik, 

t»l 

ГзПГ,C<7*, 

04ПГ3 Cøik, 
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Let us notice that the vertices fгom ah П Г3 are considered twice: as elements of ľïi 
andof ľì2. 

By hт and ůт we shall denote the length of the maэámal side and the magnitude 
of the minimał angle of Г € Thi respectively. We set 

(3.5) h = max ҺT) ůh = min дт. 
TfîTh T€Tk 

Approximate solutions to problem (1.13, a-b) will be sought in a řЫte-dimensio-
nal space of triangular conforming piecewise linear elements Hh C H(ӣ): 

(3.6) Hh=XlhxX2hì 

XІҺ = {vih; vih € C(Џi)t vih | T І8 affine for each 

TєTJfc}, t = l,2. 

Test шnctions v = (v\yv2) in (1.13, b) wШ be approodmated by elements 
vh = (v\h,v2h) Є Hh. It is evident that Vvih | T = const for each vih Є XІҺ an<! 
T€TІҺ. 

Since the form of the vector field / can be general, it is suitable to use numerical 
integration for evaluating L(vh) for vh Є Hh. Let us assume that 

(3.7) / Є [Wl>°°(U)]2. 

Then, of course, / Є [C(Щ2. We write 

(3.8) a) f Fdx~ T f Fdx, 
Jӣi Tţftk Jт 

b) f Fdxъ meas(Г) f\шTtkF(xTtk), if F Є C(T). 

Jт rг. 
Here xTfk € T and wTtk € Rl> Let us assume that 

(3.9) the degree of precision of formula (3.8,b) is d > 1. 

If we approximate L(vh) by (3.8, a-b), we get 

(3A0) Lh(vh) = E E Vvik I T' £<•*.*/(***>• 
m l T€Tik * - l 

Let us deal with the forms c and d: If uh = (uu, t«2i*), t>* = (vu, V2*) € #*, then 
we can write 

(3.11) c(u*, vh) = £ / *|«»r«<**«fc <*$ = * E E / l««*la W » *5 

•»1 , / r' .=1 t»»i •'-T 
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where Tf, m = 1, . . . , M< denote all sides of triangles T adjacent to T, such that 
r f C Tj. Rom the definition of the space Hh it follows that Uih \ -?!» and v{h \ Tf* 
are linear and hence, it is possible to calculate the integrals frm \uih\aUihVihdS 
exactly. Similar holds for the integrals in the form d. Therefore, we shall suppose 
that the values c(uhyvh) and d(uh,vh) are calculated exactly. (Let us remark that 
provided a = 0 or a = 1, the functions |tt&|tttfc Vih are on I\ piecewise quadratic or 
cubic, respectively, and the integrals over T, can be evaluated exactly with the use 
of suitable numerical quadratures.) 

Now, the discrete problem can be written quite analogously as continuous problem 
(1.13, a-b): Find uh = (uit%,«2fc)» «ifc ' &i -» Rl such that 

(3.12) a) uh € Hk, 
b) a(uh,Vh) = Lh(vh) Vvh € Hk. 

3.13. Theorem. Discrete problem (S.1B, a-b) has a unique solution Uh. 

PROOF is an easy consequence of Lemmas 1.14, 2.5, 2.10, 2.13 and [12, Chap A, 
Lemma 4.3). • 

4. Convergence. 
Let {Th}h^(oM) ^ a re0tt'flr system of triangulations of Q(h0 > 0). I.e., there 

exists a constant i?0 > 0 such that dh > i?0 for all h € (0, h0). We shall study the 
behaviour of approximate solutions uh, if h —• 0-f. 

In virtue of results from [2, Chap. 4] (cf. also [6, Th.2.2.4]) we get the following 

4.1. Lemma. Under assumptions (S.7) and (S.9) there exists a constant c* > 0 
such that 

(4.2) \L(vh) - Lh(vh)\ < <*%*||i,n* Vt» € Hhl V/i € (0, h0). 

4*3. Lemma. Solutions uh of discrete problems (S.lft, a-b) satisfy the estimate 

(4.4) IM| 1 | 2 ,n<c 4 V/i€(0,/io), 

where c\> 0 is a constant independent of h. 

PROOF : Let h € (0, h0) and uh be the solution of (3.12, a-b). If ||ufc||i,2.n > 1, 
then by (2.6), (3.12, b) and (4.2), similarly as in the proof of 2.8, we get 

C3||tu||i,2,n < a(uhluh) = Lh(uh) < 
<\Lh(uh)~L(uh)\ + \L(uh)\< 

^(c^h + yha^Mi^ 

Hence, (4.4) is valid with c* = max(l, (c«fc0 4-1|/ ||o,2,n )/<*)• • 
The convergence of approximate solutions to the exact solution, if h —• 0+, can 

be proved with the use of the monotone operator theory. Here we give a very simple 
proof based on the compactness method ([3], [7]). 
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k * {hm)mmi C (0, h0)> hm ~> 0+. On the basis of (4.4) and the reflexivity of 
the space H(U) we can choose a subsequence {hn} C {hm} such that 

(4.5) uhn = (u i f tw,u2f tJ -* u = (ui,u2) 
weakly in H(Q). 

4*6. Theorem. If hn —• 0+ and (4.5) is valid, then uhn —> u (strongly) in #(ft) 
and u is a solution of (1.18, a-b). 

PROOF : Let v = (vi,v2) € C°°(Jii) x C 0 0 ^ ) . By vft let us denote the # f t -
interpolation of v. I.e., vft -= (nf tvi, r2ftV2), where r,-ft : Wl*2(Ui) f\ C(ST,) —> X,-ft is 
the Lagrange interpolation operator: if v,* € Wl*2(Qi) f\ C(H,), then 

(4.7) rihVi € X,ft, 

(rikVi)(P})~Vi(PJ) VP/€<rift. 

In virtue of the well-known approximation results ([2, Th.3.2.1]) 

(4.8) vft -> v (strongly) in # (0 ) . 

PVom (4.5) and the compact imbedding Wl>2(fli) «-•«-• L«(r< UTs)(t -= 1,2, « > 1) 
we have 

(4.9) u,-ftw-*u,. in £«(.?< U.T3). 

Of course, also 

(4.10) v,-ft -» Vi in .T,*(r, U T3). 

Now, for each h := lin we shall use relation (3.12, b) with vftn defined above and 
write it in the form 

(4.H) K*kn, vhn ) + c(uhn, vftB ) + d(uhn, vftw) = 

» ( I * . ( ^ ) - X ( i ' * . ) ) + -C(ti*,). 

Let us study particular terms in (4.11), if hn -4 0. As 6 is a continuous bilinear 
form on the Hilbert space #(&), from (4.5) and (4.8) we immediately get 

(4.12) Kuhn,vhn)-*b(u,v). 

It is evident that 

(4.13) £(«».) -*L(v) 

and, in view of Lemma 4.1 and the boundedness of {vft„ } 

(4.14) | i % > 0 - 2->OI < ck»||v4.||ll2|l. -+ 0. 
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Further, using the same technique as in the proof of Lemma 2.13, we find out that 

w«.*.,»».)-c(u,»)i< * £ j f {i"<-»-«.i(i-<*.r+i».i<>.*.i(i+<*)+ 

+i«..r+v.*,.-t>.i}<.s< 

(4.15) < const 5 3 {IK*. ~ «.||o,3..,r. ||».». Ik.,,,-, f l|w.|lo,a+»,r.+ 

+ll-.*.llo><.+2,r.) + IMIo",t+.,r>.*. -» . lk , , r . } -* 0, 

, , Of I * o +1 1 - v 

( w h e x e — + - = 1, ^ 2 + - = D, 

as it follows from (4.9), (4.10) and the boundedness of the sequence {uhn }. Similarly 
we prove that 

(4.16) d(uhnJvhn)-+d(utv). 

Summarizing (4.12) - (4.16), we see that a(uy v) = L(v). Since C°°(0i) x C°°(Q2) 
is dense in # (0) , the function u satisfies (1.13, b) and hence, it is a sought weak 
solution. 

Now let us prove the strong convergence uhn —> u in #(Q). By (1.10) and 
(3.12, b), 

(4.17) \uhn - u\2
h2tQ < b(uhn - u, uhn - u) = 

= Kuhmiuhn) - b(uhnl)u) - b(u,uhn - u) = 

= L(Uhn) - <<«&» »«*-.)- <*("*»,«**)- KUkm, W) - K"» "*» ~ «)• 

In virtue of (4.9) (q > 1), similarly as above, we find out that 

(41g) <Uhn,Ukn)-> c(u,u) 
{' ' d(uhn1uhn)-+d(u,u) 

Ftether, by (4.5), 

u m b(uhntu)-*b(u,u) 
K' ' K « , t i * B - u ) ^ 0 , L(uhn)-+L(u). 

As we have already proved, u is a solution of (1.13, a-b) and hence, 

(4.20) 0 m L(u) - ciu, u) - d(u, u) - b(u, u). 
Now, from (4.17) - (4.20) it follows that \uhn — ufo^n —• 0. Moreover, since 
Wl>2(toi) *-•*-> L2(Qi)(i = 1,2), we have uihn -> Ui (strongly) in L2(Qi) and thus, 
uhn -> ti in # (0 ) . • 

If we take into account that the solution u of problem (1.13, a-b) is unique, we 
come to the following convergence result: 
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4.21. Theorem. It holds: 

lim Uk = u in JET(ft). 

4.22. Remark. Since the operator A is not strongly monotone we are not able to 
prove the error estimate (even if u,* € W2,2(Qi), i = l,2). In case of a nonpolygonal 
domain we get similar results. However, the convergence proof is more technical. 
This will be contained in a forthcoming paper [4], where also methods for the 
solution of the discrete problem will be treated. 
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