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Mathematical modelling of an electrolysis process

MiLosLAV FEISTAUER, HARIS KALIS, MIRKO ROKYTA

Dedicated to the memory of Svatopluk Fuéik

Abstract. The paper is devoted to the mathematical and numerical study of a problem
arising in the investigation of the electrolytical producing of aluminium. The electrolysis
process is described by the Poisson equation for the stream function to which we add
nonlinear Newton boundary and transmission conditions representing turbulent flows in
the boundary and anodes layers. The solvability is proved by the use of the monotone *
operator theory. The problem is discretized by conforming linear triangular elements and
the solvability of the discrete problem and the convergence of approximate solutions to the
exact solution is studied.
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Introduction.

The electrolysis belongs to modern technologies of obtaining aluminium. The
motion of the aluminium metal and the electrolyte induced by the electromagnetic
forces is described by the Navier-Stokes equations. In [1] it was shown that provided
the forces flux is in the range 200 - 250 kA and the thickness of the aluminium -
electrolyte layer (0.05 — 0.3 m) is small in comparison with the horizontal size of the
equipment (4 — 10 m), then the nonlinear terms can be neglected and the process
can be averaged in the vertical direction. Then we come to a two — dimensional
model problem in a domain Q C R2?. This domain consists of several subdomains
Qi,t = 1,...,N - for simplicity we shall suppose that N = 2 - which represent
electrolytical tanks and of the common boundary (92; N 8Q;) N § representing
the channel with anodes (see Fig.1). Let us assume that the flow is laminar in
Q4 and Q3. Then the so—called stream function satisfies a linear Poisson equation
in ©; U Q3. However, in thin layers near the boundary 9Q and in the channel
0Q; N 9N, of anodes we get turbulent flows (see [13]). These flows need not be
resolved and their contribution can be included into a boundary condition on 9§
and a transmission condition on 8€; N 9.

As a result we get a boundary value problem in the domain € for the stream
function, which is discontinuous across 9Q; N 8N in general, satisfies the Pois-
son equation in Q; (i = 1,2), nonlinear boundary condition on 6Q and nonlinear
transmission condition on 9 N 89,.
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Here we shall deal with the solvability and the finite element approximation of
this problem, provided the domains Q;(: = 1,2) are polygonal. (More general
situation with nonpolygonal domains will be studied in a forthcoming paper [4].)

1. Continuous problem.

Let Q,9Q,,9Q; C R? be bounded polygonal domains with their boundaries 8, 09,
89, and closures ©,1,,(1; satisfying the relations € =, US,, 2, NN, = 0. We
denote I's = 9§, N 9N, and T'; = 3N; —T's, i = 1,2 (see Fig. 1).

1

T2
I,

Q;
1"3 ;l

N
n

Fig.1

We consider the following boundary value problem: Find u; : @; — R}, i = 1,2,
such that

(1.1) Aui=divf in® i=1,2,

(1.2) %‘; + klui|%u; = fo = f.m  only, i=1,2,
du Ou - 3

(1.3) a—n% = —'a—n% = klug - ull"(uz - ul) + f . ﬂl on I‘3

Here f = (fi,f2) : @ = R? is a given vector field (determined from Maxwell’s
equations), © = (n1,nz) and n* = (ni,n}) denote a unit outer normal to IQ and
to 0Q;, respectively, k > 0 and a > 0 are given constants. (The case a =0ora >0
corresponds to linear or nonlinear turbulence law, respectively, in the neighbourhood
of 8Q and I'3.) 8/0n and 8/0n’ denote the derivative in the direction n and n*,
respectively. Of course, n! = -2 and 8/8n! = —8/? on Ty, n = n', 8/on =
8/nionTi,i=1,2
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1.4. Definition. Let f € [C}(S)]?. We say that u = (u;,u;) is a classical
solution of the problem (1.1) - (1.3), if u; € C3(%;)(i = 1,2) satisfy equations
(1.1), boundary conditions (1.2) and transmission condition (1.3).

Let us notice that provided u = (u;,u2) is a classical solution and we define
T: N UQ, — R by & | i = u;,i = 1,2, then in general, & has a discontinuity
acroes I'y defined together with u by equation (1.1) and conditions (1.2), (1.3). On
the other hand, the derivative £ is “continuous” across I'y.

Let u = (u;,u3) be a classical solution. If we multiply equation (1.1) by an
arbitrary v; € C°(;) (i = 1,2), integrate (1.1) over ;, apply Green’s theorem
and use conditions (1.2), (1.3), we get

Z Vu. Vv.dz+z / kju;|“uv; dS+

i=1 i=1

5) / klu — a|*(uz — uy)(vz — v1)dS = E / f - Vuids

=1

(v1,v2) € C(8) x C=(TT2).

(Here V = (8/0z,,8/0z;), * = (z1,%2).) Identity (1.5) leads us to the concept of
a weak solution of the problem.

We shall deal with the well - known Lebesgue and Sobolev spaces L’(ﬂ),
L2(9;), L*(89), WhP(Q), WE2?(Q,) (etc.) (1 < p< 00,1 £ k < oo, k is an in-

teger), equipped with the norms || - [lo».0, |- lopir Il lop.00, Il lep2s I+ it
(etc.), respectively. (See e.g. [10],{11}, [14].) By |- |x,p,0 We denote the seminorm
in Whe(Q):

*u
1.6 ulkp0 = —— 5,0 ue whr(Q).
( ) | ll,r,ﬂ (a_gik " 8zg'az;’ "o,p,n) Q)

Let us remind the completely continuous imbedding W'3(Q;) <+ L1(8%;) for

all g € {1,+00) - see [11], [14]. Hence, there exists a constant ¢; = ¢c;(¢g) > 0 such
that

.7 lullogson, < erllullizg, — ueWh Q)
and from each sequence {u,} bounded in W3(;) we can choose a subsequence

strongly convergent in Lf(9%;).
In the sequel we shall assume that

(18) 7 e[z @p
Let us define the Hilbert space H(Q) = W13(£,) x Wh3(Q,), equipped with the

norm

(1.9) lullizn = (luallf 2.0, + luall? 2,0,)'% v = (u1,u2) € H(Q),
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and define the forms
2
(1.10) Nu,v) = Z/ Vu; - Vv, dz,
i=1 Y
2
c(u,v) = Z/ klui|*u;v; dS,
i=1 /T4

d(u, 0) = '/r Huz - ull"(ug bt ul)(vz - v;)dS,

2 End
L(v) = Z‘[) f - Vvidz,

=1
a(u,v) = Hu,v) + c(u,v) + d(u,v),
u= (ul’uﬁ)v v= (vva) € H(Q)'

Let us notice that the forms ¢ and d are well-defined in virtue of (1.7).
In H(Q) we shall also use a seminorm |- |} 2,0:

(11) lul2,0 = (Ju1l} 5.0, + [u2l} 20,02 v =(u1,u2) € H().

1.12. Definition. We say that u = (u;,43) is a weak solution of problem (1.1) -
(1.3), if

(1.13) a) u€HQ),
b)  a(u,v)=L(v) VveH(Q).

1.14. Lemma. The form L is linear and continuous on H(Q). For each u €
H(Q) the forms a(u, ), ¥u,-), c(u,-) and d(u,) are linear and continuous on H(Q).
Moreover, b is a continuous bilinear form on H().

From the above considerations it follows that problems (1.1) - (1.3) and
(1.13, a-b) are formally equivalent in the following sense: If u = (u;, ;) is a classical
solution, then it is also a weak solution. On the other hand, provided u = (u;,u3)
is a weak solution and u; € C?(§};), i = 1,2, then u is a classical solution.

If a = 0, then the problem is linear; for & > 0 we have a nonlinear problem with
a similar structure as problems studied in [9] with the use of a variational approach.
Here we shall apply the monotone operator method.

2. Solvability.
First, let us prove some auxiliary assertions.

2.1. Lemma. Let g > 1. The there ezists a constant c; = ca(g) such that

2
lul} 20 + lulii 2% (Z luill§ g r, + s = uzll&,,,r.) >
(22) -

2 ealullf 20

Vu=(u1,ug)EH(Q), u#0.
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PROOF : a) Let us prove the existence of a constant c; > 0 such that

2
23) luliae+ D luilllgr, +lus ~wallf o, 2 2
=1

Yu = (“'h ug) € H(Q), Ilu“;'g‘n =1
If (2.3) is not valid, we get a sequence {u"} C H(S) such that
(24) a)  |wlh2e=1

b)) ut—u=(u;,uy) (weakly)in H(Q),
2

1
)  |Jufisat 2 Nufllg o, + luf — vz ll§ o, <
i=1
From the compact imbedding W2(Q;) <~ Lf(69;) and (2.4,b) it follows that
ul = u;  (strongly) in L9(09;),i =1,2. :

From this, the weak lower semicontinuity of the seminorm |- |;2,0 and (2.4,c) we
immediately get

2
lul? 2.0+ D Nuilld gr, + llus — wallf o, =0.
i=1
Thus, u; = k; = const for ¢ = 1,2. Of course, also the traces u; | Q; = k;. As

[luillo,q,r; = O we see that k; = 0 for i = 1,2 and thus u = 0. However, this is a
contradiction to (2.4,a).

b) Now, if u € H(R), u # 0, we put w = u/||ulj1,2,0 and, by (2.3), we have

[ul} ;0 1 2
lize Bl v, + s = wall ) 2 c2
Taliag ¥ Tollon (2 Ilbar, + o —uall o,

i=1

If we multiply this inequality by [[ul} ; o, we get (2.2). L]

2.5. Lemma. The form a is coercive in the following sense: there ezists a constant
¢c3 > 0 such that

(2.6) a(u,u) > c;||u||¥_,,n for all u € H(Q) with flull1,20 2 1.
PROOF : If u = (u;,u3) € H(Q), then by (1.10),

O1)  awu)=lullag+ kY [ witras vk [ o - witas 2

i=1

> min(1, k) [Iul’,z ot 3 ety

=1

Hos = e,
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Now let us assume that |julj; 2,0 > 1 and put ¢ = a+2(2> 2). Then, from (2.2) and
(2.7) we immediately get

a(u, u) 2 min(1, k)ezlull} 2,0,
which is (2.6). ]
2.8. Cort;llary. There ezists a constant ¢, = max(1, ||?||o,2.n /c3) such that
(2.9) lulla,z.0 < o
for each solution u of problem (1.183, a-b).
(We set [ Floza = (35 WfilEaa) )

PROOF : Let u € H(Q) be a solution of (1.13, a-b) and |lul1 30 > 1. Then, by
(2.6), (1.13, b), (1.10) and the Cauchy inequality,

esllulll 2,0 < a(u, ) = L(w) < | £ llo2.2 - lullo.2.0-
Hence, each solution of (1.13, a-b) satisfies (2.9). ]
2.10. Lemma. The form a is strictly monotone:
(2.11) a(u,u—v)—a(v,u—v)>0 forall u,v€H(R), u#v.

PROOF : By (1.10), for u,v € H(2) we get
(2.12) a(u,u—v) —a(v,u—v)=

2
=l =ollaa+ 3 [ (uftes = ifous — ) S+
i

i=1

+k /.~ [lua — wa (2 — u3) = foa = vs[*(vz = v2)] (42 — 1) = (v2 — va)] .

From this and the fact that the function “¢t € R! — |t|°t € R!” is increasing we see
that a(u,u — v) — a(v,u —v) 2 0.

If a(u,u~v)—a(v,u—v) =0, then all three terms in the right-hand side of (2.12)
are equal to zero. This implies that u; — v; = k; = const almost everywhere in Q;
and u; = v; on I'; a.e. for i = 1,2. Hence, k; = 0 and u = v almost everywhere. m

2.13. Lemma. There ezists a constant c5 > 0 such that
(2.14) |a(u,v) - a(w,v)] <

S a1 +lullfzn + lwlifae)llu — wihaallvlhe
Vu,v,w € H(Q).
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PROOF : From the definition of the form a we get
(2.15) la(u,v) — a(w,v)| < |u — whaalvh e+

2
+£Y° /r sl s — i) jos| dS+

i=1

+k /r lluz — ua|*(u2 — ) — 1wz — w1]*(ws — w1)] oz — v1] dS.
3

Let r,s € R and ¢(t) = |r + t(s — r)|*(r + t(s — 7)), t € [0,1]. By a simple
calculation we find out that -

¢'t)=(1+a)s —r)lr+t(s —r)*
and tl_ms,

1% = Il = ()~ () = [ (0t =
(2.16) o

1
=(1+a)s —-r)/o Ir 4+ t(s —r)|* dt.

From the properties of the function |z|* we can derive that |r + t(s — r)|* <
<|rl* +|s]* Vi€ [0,1], which together with (2.16) imply

(2.17) [181%s = |r|*r| < (1 +a)ls = r|(Ir|* + |s|*).
If we use (2.15) and (2.17), we get
(2.18) la(y,v) — a(w,v)| < |u — wh2,0lvhz0+

2
+k(1 + a) Z /r Jui — wil(Juil® + |wil*)|vi| dS+

i=1

+k(1 + a) /r Iz = 1) = (w3 — w3)] (jug = wa]® + [wg — w|*) oy = vy dS.
Further, let a/(a +2)+ 1/p = 1, ¢,¢ € L*(T;),9 € L**3(T;). Then
[ telorewlas <
T

(2.19) < ( /P oo dS)#’ ( fr ‘_ le"ds)* ( /P P ds)ﬁ =

= 193, a+2,r; - lelloap.x: - Hbllo,2p,r:

Now, in virtue of the continuous imbedding W3(;) — L9(89;) valid for
g € [1,00) (cf. (1.7)), for which we set the values o + 2 and 2p, we derive from
(2.18) and (2.19) (after some calculations) the estimate (2.14). ]
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In view of Lemma 1.14 let us define the mapping A : H(Q) — (H(R))* and the
functional ¢ € (H(S2))* by the identities

(2.20) (A(u), v) = a(u, v),
(¢,v) = L(v),
u,v € H(Q).

Here (H(2))* denotes the dual to H(R) and (-,-) is the duality between (H(R2))*
and H(R). Le. {¢,v) denotes the value of a continuous linear functional ¢ defined
on H(R) at a point v € H(R).

Under this notation problem (1.13, a-b) can be written as the operator equation

(2.21) A(u)=¢

for an unknown u € H(2). From Lemmas 2.5, 2.10 and 2.13 we immediately get

2.22. Lemma. The operator A is coercive, strictly monotone and locally Lipschitz-
continuous on H(2).

By the straightforward application of the well-known results from the monotone
operator theory ([8], [12], [15], [16]) we come to the following

2.23. Theorem. Problem (1.13, a-b) has ezactly one solution.

3. Discrete problem.

For the discretization of the continuous problem we use the finite element method
and proceed similarly as in [5], where a problem with discontinuous coefficients was
studied.

Let 7, and T;x denote triangulations of the domains Q and ; (i = 1, 2), respec-
tively, formed by finite numbers of closed triangules. (Let us remind that  and Q;
are supposed to be polygonal.) We assume that

(3.1) l) ﬁ = U?zl 7;&’
b) O=UrenT, U =Ures, T

(8.2) if I}, T3 € Ta, Tx # T2, then either Ty NT; = @ or T NT; is a common vertex
or T} NT; is a common side of Ty, T3;

(3.3) if T € Tia(i = 1,2), then at most two vertices of T are lying on 8.

We denote by o = {P1,...,Pn} and o = {P},..., P} (i = 1,2) the set of
all vertices of 7) and 7T;», réspectively. From the above it follows that

(34) a) o C ﬁ, an CQay 1=1,2
C 2
b an=oa,
i=1
c) TsNIi Cog, i=1,2,

d) oxNT3Con, i=12
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Let us notice that the vertices from o N T3 are considered twice: as elements of §;
By hr and 97 we shall denote the length of the maximal side and the magnitude
of the minimal angle of T € T}, respectively. We set

(3.5) h= ‘il‘len%: hr, = T!'lél‘ﬂ Ir.
Approximate solutions to problem (1.13, a-b) will be sought in a finite-dimensio-
nal space of triangular conforming piecewise linear elements Hy C H(2):

(3.6) H) = X1a X X,
Xin = {vir; vin € C(S%;), vip | T is affine for each
TeTa},i=1,2
Test functions v = (v;,v3) in (1.13, b) will be approximated by elements

vp = (via,v2n) € Hy. It is evident that Vv;, | T = const for each v, € X;x and
T € Ti.

Since the form of the vector field }. can be general, it i8 suitable to use numerical
integration for evaluating L(vs) for vy € Hy. Let us assume that

8.7) f e W@,

Then, of course, | € [C(R). We write
(3.8) a) Fdz = Fdz,
2 Tg’;‘. /

kr
b) / Fdz ~meas(T) Y wraF(zra), if F € C(T).
T k=1

Here zrx € T and wr € R!. Let us assume that

(3.9) the degree of precision of formula (3.8,b) is d > 1.

If we approximate L(va) by (3.8, a-b), we get

(3.10) La(n) = E Y VvalT- zwmf (z1.0)-
im1 TETia

Let us deal with the forms c and d: If up = (u1a, u3a), va = (v1a,v2z) € Ha, then
we can write

2 M;
(311)  c(up,m) = Z/ kluin|uiavin dS = kz: Z/ luin|*uinvin dS
[

=] i=] mm]
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where I'*, m = 1,..., M; denote all sides of triangles T adjacent to I'; such that
I C T'i. From the definition of the space Hj it follows that uia | '™ and vy, | T
are linear and hence, it is possible to calculate the integrals fr‘;» Juir|uipvin dS
exactly. Similar holds for the integrals in the form d. Therefore, we shall suppose
that the values c(up,va) and d(ua,va) are calculated ezactly. (Let us remark that
provided a = 0 or a = 1, the functions |uf} |u;, vis are on I'; piecewise quadratic or
cubic, respectively, and the integrals over I'; can be evaluated exactly with the use
of suitable numerical quadratures.)

Now, the discrete problem can be written quite analogously as continuous problem
(1.13, a-b): Find up = (u3a,u2s), tin : & — R! such that

(3.12) a)  u, € Hy,
b) a(up,vs) = Ly(va) Vv, € Hy.
3.13. Theorem. Discrete problem (5.12, a-b) has a unique solution uy.

PROOF is an easy consequence of Lemmas 1.14, 2.5, 2.10, 2.13 and [12, Chap.1,
Lemma 4.3]. ]

4. Convergence.

Let {Ta}ae(o,h0) be 8 regular system of triangulations of Q(hy > 0). Le., there
exists a constant 99 > 0 such that J) > 9y for all h € (0, hy). We shall study the
behaviour of approximate solutions u, if A — 0+. .

In virtue of results from [2, Chap. 4] (cf. also (6, Th.2.2.4]) we get the following

4.1. Lemma. Under assumptions (3.7) and (3.9) there ezists a constant c¢ > 0
such that

(42)  |L(va)— La(vs)| S cohllonllin,  Vor € Ha, VA € (0, ho).
4.3. Lemma. Solutions uy of discrete problems (3.12, a-b) satisfy the estimate
(4.4) lualize <& Vh € (0,ho),

where €, > 0 is a consiant independent of h.

PROOF : Let h € (0, hy) and u, be the solution of (3.12, a-b). If ||luall1 2.0 2 1,
then by (2.6), (3.12, b) and (4.2), similarly as in the proof of 2.8, we get

esllualllzn < a(un,un) = La(ua) <
< |La(ua) = L(ua)| + | L(ua)l <

< (ceh + [ fllo2.0)llualla,zn-

Hence, (4.4) is valid with & = max(1, (csho + || f llo,2,0)/c3)- .

The convergence of approximate solutions to the exact solution, if A — 0+, can
be proved with the use of the monotone operator theory. Here we give a very simple
proof based on the compactness method ([3}, [7]).
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Let {Am}X;1 C (0,ho), Am — 0+. On the basis of (4.4) and the reflexivity of
the space H(S2) we can choose a subsequence {hn} C {hm} such that

(4.5) un, = (V1a,,u2s,) = 4 = (u1,u3)
weakly in H(R2).

4.8. Theorem. If h, — 0+ and (4.5) is valid, then up, — u (strongly) in H(Q)
and u is a solution of (1.13, a-b).

PROOF : Let v = (v1,v3) € C°(f;) x C=(§;). By v, let us denote the Hj, -
interpolation of v. Le., vy = (r1av1, raava), where riy : WH23(Q;) N C(S%;) — Xip is
the Lagrange interpolation operator: if v; € W13(Q;) N C(8;), then

4.7 rinvi € Xaa,
(riwvi)(P}) = vi(P})  VP} € oin.

In virtue of the well-known approximation results ([2, Th.3.2.1])
(4.8) vy —v  (strongly) in H(Q).

From (4.5) and the compact imbedding W3(£);) <~ LI(I; UTs) (i = 1,2,¢ > 1)
we have

(4.9) Ui, — U; in LY(T; UT,).
Of course, also
(4.10) Vip — V; in LY(T; UT3).

Now, for each h := h, we shall use relation (3.12, b) with v, defined above and
write it in thé form

(411) b(us,,vr,) + c(ur,, va,) + d(un,,va,) =
= (L, (va,) = L(v,)) + L(va, )-

Let us study particular terms in (4.11), if h, — 0. As b is a continuous bilinear
form on the Hilbert space H({), from (4.5) and (4.8) we immediately get

(4.12) Hun,,v8,) = Hu,v).

It is evident that

(4.13) L(n,) = L(v)

and, in view of Lemma 4.1 and the boundedness of {v,,}

(4.14) |La, (vn,) = L(va, )| < challva, ll1,2,0 = 0.
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Further, using the same technique as in the proof of Lemma 2.13, we find out that

le(una,va,) = c(u,v)| < k Z / { lwine — wil(luina |* + il *)lviaa I(1 + @)+

=]

+uil®*vin, — vil} ds <

2
(4.15) < const {Il'm. = tillop,r:[[vina llo2p,r: (""i"g,a+2.l"i+

=]
+llwin, ua',m,n) + luillo i llvina, — v-'llo.g.n} -0,

« 1 a+1
(where ;—+-——1, P

as it follows from (4.9), (4.10) and the boundedness of the sequence {uy, }. Snmxla.rly
we prove that

(4.16) d(up,,va,) — d(u,v).

Summarizing (4.12) - (4.16), we see that a(u, v) = L(v). Since C®(8;)x C=(%;)
is dense in H(S2), the function u satisfies (1.13, b) and hence, it is a sought weak
solution.

Now let us prove the strong convergence up, — u in H(2). By (1.10) and
(3.12, b),

_"1))

(4.17) luan = ulf 20 < Bun, —u,un, —u) =
= Yun,,un,) — b(ua,,u) — bu,up, —u) =
= L(un,) = c(un,,ur,) — d(un,,ur,) — bua,,u) — b(u, ur, —u).
In virtue of (4.9) (¢ > 1), similarly as above, we find out that

C(“l-a ulu) s c(u’ ")
(4.18) d(us,, us,) = d(u,u)
Mhﬂ; \7)' (4‘5)’
@) b ) - B )

Mu,up, —u)— 0, L(ua,) = L(u).
As we have already proved, u is a solutioi of (1.13, a-b) and hence,
(4.20) 0= L(u) — c(u,u) — d(u,u) — ¥u,u).

Now, from (4.17) - (4 20) it follows that |ua, — u|1 3,0 — 0. Moreover, since
W12(Q;) —res L3(R;) (i = 1,2), we have u;x, — u; (strongly) in L?(£;) and thus,
up, — u in H(Q). =

If we take into account tha.t the solution u of problem (1.13, a-b) is unique, we
come to the following convergence result:
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4.21. Theorem. It holds:

hlim+ up=u in HQ).

4.22. Remark. Since the operator A is not strongly monotone we are not able to
prove the error estimate (even if u; € W2?(£2;), i = 1,2). In case of a nonpolygonal

domain we get similar results. However, the convergence proof is more technical.

This will be contained in a forthcoming paper [4], where also methods for the

solution of the discrete problem will be treated.
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