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Boundedness of global solutions for the heat equation 
with nonlinear boundary conditions 

MAREK FILA 

Dedicated to the memory of Svatopluk Fu£fk 

Abstract. Global solutions of the heat equation with nonlinear boundary conditions (which 
describe an absorption law) are shown to be bounded in Hl(D) and in C(D) uniformly 
for t > 0. 

Keywords: global solutions, heat equation, nonlinear boundary conditions 

Classification: 35K60.35B40 

In this paper we study the problem 

(1) ttt = Ati for x € D, t > 0, 
<v 

(2) ^ = /(u) for x€dD,t>0, 

(3) u(,0) = u0 € C2(B), 

where D is a smoothly domain in RN and / is superlinear. As an example we may 
consider f(u) = |a|'~1tt, p > 1. 

For this problem the blow up phenomenon may occur (cf. [LP]). 
Our mam aim is to show that any global classical solution is bounded in H*(D) 

and in C(D) (uniformly for t> 0), provided 

P < i v T 2 *N>2-

By a global solution we mean a solution which exists on D x [0, oo). 
Similar results for problems like 

ttt = Ati + f(u) for x € D, t > 0, 
« = 0 for x € dD, t > 0, 

were established in [NST], [CL], [G], [Fl], [F2). The (sharp) condition on p in 
[CL], [G], [Fl] was : p < (N + 2)/(N - 2) if N > 2. In [Fl] degenerate problems 
and problems with rapidly growing nonlinearities were treated. In [F2] also an 
equation with a gradient term was considered. 
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The proof of the present result is a new illustration of the main idea from [Fl]. 
We shall proceed by contradiction. There are two possible types of behaviour of a 
global solution u(t,uo) which is not bounded in Hl(D). Either 

(4) Mt,tt0)||ff-(£>) -+ oo as t -> oo 

or 

Umsup||tt(!,tt0)||tf-(.D) = oo, 
(5) '--*00 

KmM\\u(t,uo)\\HHD) = * < oo. 

(4) can be excluded using an appropriate modification of the classical concavity 
method. (5) leads to a contradiction with an a priori bound of every equilibrium 
lying in the w-limit set of tt(t, t*o). 

Our assumptions on / will be 

(HI) i/(tt) - f(v)\ < c(\uri+i„rl+1) i« - v\ 

for ti,v € R and some C > 0, p > 1, p < N/(N - 2) if N > 2. 

(H2) ti/(tt) > (q + 1) T f(v)dv-Ct> C2M<+1 - C3 
Jo 

for tt € R and some q > 1, C» > 0, C3 > C\. 
It is known (cf. e.g. [Al, Theorem 6.1]) that Problem (l)-(3) possesses a unique 

maximal classical solution u(t, UQ) provided duo/du = /(tt0) on dD and / is regular 
enough. 

Let Wx(tto) denote the existence time of the maximal solution emanating from 
tto. The following known energy equality will play an important role in our consid­
erations. 

П (u,)2 + V(u(ť)) = V(щ) for 0 < ť < W ( U o ) , 
Jo JD 

where 
V(u) := 5 / |Vtt|2 - / F(u), F(u):« / f(v)dv. 

* JD JdD Jo 
Lemma 1. Let (Hi) hold. .-/||u(<,tto)||H-(D) -* oo as t —> im**(tto)> then tmMX(uo) 
<oo. 

PROOF : We shall use the classical concavity method (see e.g. [PS], [LP]) similarly 
as in the proofs of corresponding results in [Fl], [F2]. 

Suppose tmMX as oo and denote M(t) := fQ JD u2. Then 

"WĽ-Űo^ + Ĺ* 
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and if we choose Q <e < q — 1, we obtain from (H2), (6) 

iM"(.) = - / | V u | ' + / u/(u) = 
-- JD JSD 

_ - (2 + e)V(u) + | / | Vu|2 + / (u/(u) - (q + l)*-(u)) + ( f - 1 - e) / F(u) 
« JD JdD J 3D 

(7) > ( 2 + e ) / ' / ( « . ) * + ! / | V u | ' + fc./ M ^ - f c . . 
Jo ./D * JD JdD 

Here and in what follows positive constants which depend only on the data f,uo>D 
will be denoted by .fy. Rrom (7) it follows 

M"(t)>k3\\u(t)\\]tHD)-kA, 

hence M'(t) —• co as t —• oo. On the other hand, (7) yields 

M"(t) > 2 ((2 + e) jf' ^ ( u , ) 2 + *5M'(*) - k8) , 

therefore 

M M " - ( 1 + | ) ( M ' ) > 

>2(2 + e)(f f «2 f f(ut)
2-(f ( uut)

2) + 
\Jo JD JO JD JO JD J 

+2M(*5M' - ib«) - *7M'. 

The first term on the right hand side is nonnegative according to the Schwarz 
inequality and the second one tends to infinity as t —> oo. Thus, there is a to > 0 
such that the right hand side is positive for t > to. This implies that (M~~el2)" < 0 
for t>to. Since M""*/2 is decreasing, it must have a root t\ > 0 - a contradiction. 

• 
The next lemma is based on the theory of parabolic equations with nonlinear 

boundary conditions developed by Amann in [A2]. It follows from this theory that 
(1), (2) define a local semifibw in Hl(D) (in a way which will be made precise 
below) if the mapping u »~> /(«) is locally Lipschitz from Hl(D) into OW"1*2** := 
Wla~*i2(BD) where we choose a such that 

1 < 2 a < 1 + _ z " _ z 2 ( < | ) . 
p + 1 2 p + l v 2 ' 

This Lipschitz continuity is guaranteed by (HI). Indeed, with our choice of a 
(8) L<*+lV*(dD) C dW'^2a. 



482 M.Fila 

By this imbedding and the Holder inequality 

!!/(«) - /MIW-»+- < -WW ~ fWlwwm s 
< K'||u - t ^ + i ^ H i ^ O T ) + IMU'+M^) + ly"1-

The claim follows, since 

(9) Hl(D) C If+l(dD) 

under our restriction on p. 
Now, if u(t,u0) is weak solution of (l)-(3) on (0,T), i.e. u € C([Q,T);Hl(D)) 

and 

/ / ( - ^ u - h V ^ V u ) = / / +f(u)+ / * ( 0 ) u 0 
JO «/D JO «/0l> -li-1 

for all 4 € C^dO-T); (.flr1 (*>))') H C((0,T); #*(#)) vanishing near T, then u(-, •) is 
a local semiflow on Hl(D) (cf. [A2, Theorem 12.3]). Moreover, u(t,uo) satisfies 
certain integral equation - the variation of constants formula. We shall not sate 
this formula here because its consequence - the inequality (10) below (cf. [A2, (9) 
p.248 and Theorem 8.1]) will be sufficient for our purposes. 

Lemma 2. Let (HI) hold. j /u( i ,u 0 ) is a global solution which satisfies (5), then 
for every number B large enough there is an equilibrium w € <*>(uo) (— the w-limit 
set ofuo) such that ||u;|||rfi(£>) = B. 

PROOF : Similarly as in the proof of Lemma 2.2 in [Fl], choose a sequence 
{*n},*n -* oo, satisfying the following three conditions: 

(a) ||u(<n,Uo)||H-<D) = £ , 
(b) ||u(*,uo)||Hi<D) < B for t € (WaiM-i), 
(c) there is a sequence^} such that sn €(<2n,*2n+i)IK^n,tto)IU»(D) < * + l. 

The variation of constants formula yields 

M W O I H ^ O , < £(Wi - r„)1l2-''-'(,'"+'-r")||u(r„)||H,(D) 

(10) /•*»"+> 
+L (t2n+l-T)°->-1e«t"+^\\f(u(T))\\BW-,+,.dT 

Jrn 

for 7 € [1/2, a), where H2t(D) is the usual Sobolev-Slobodeckii space W%
2l(D\ <r 

is an arbitrary positive number, L is a positive constant depending only on JD, a. 
Notice that fj/(ti(r))|f.9w~-+»« is bounded by a constant depending on B for r € 
[*n,*2n+i] according to (8), (HI) and (9). Rrom (10) with rn = snt 7 = 1/2 we 
obtain that *2n+i - *n > 6 > 0 if we take B > (k + 1)L. 

Now the compact imbedding of H2y(D) into Hl(D) for 7 € (1/2, a) and (10) 
with rn as *2»+i -.£> 7 € (1/2,a) imply the existence of a w € Hl(D)> such that 
u(in,uo) -+ t0 in Hl(D) through a subsequence. Obviously ||u>||/f-(D) = B and 
standard arguments enable us to conclude that it; is an equilibrium since our local 
semiflow admits a continuous Lyapunov functional (the functional V from (6)). • 
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Lemma 3. Assume (H2). Let u(t,u0) be a global solution with u(uo) ^ 0. If 
w € u(uo), w is an equilibrium, then \\w\\Hi^o) £ J for some positive constant J 
depending on u0. 

PROOF : Since w is an equilibrium, we have fD \Vw\2 = fdD wf(w)y therefore for 
0 < e < g - 1 

(2 + e)V(w) = | / | VH2 + / (wf(w) - (q + l)F(w)) + (q - 1 - *) f F(w) > 
* JD J&D J&D 

> \ l |V^|2 + *l / |u»|«+1 - *, > MMIiP(D) - k< 
* JD JdD 

ki are positive constants. The assertion follows from (6). » 
Lemmas 1-3 yield now the main result. 

Theorem. Let (HI), (H2) hold. Ifu(t,u0) is a global classical solution of (l)+(8), 
then 

sup||u(t,uo)||tf-(£>) <oo. 
t>o 

It is shown in [Fo] that for solutions of a problem which includes (l)-(3) with / 
satisfying (HI), (H2) it holds 

\H^uo)\\c(D) ^ K(Wuo\\c(D)> SUP h(*,»o)h'(dD)) 

for 0 < t < f m „ ( u 0 ) if r > ( p - l ) ( N - l ) , N > 1. 

From this estimate with r = p + 1 (together with (9)) we obtain 

Corollary. Let the assumptions of the theorem be satisfied. Then 

aup\\u(t,uQ)\\c{D) < oo. 

Remark. The method of proof of the theorem works also for systems of the form 

uj = Au," + 0 , (u\ . . . ,u m ) , 

£r-/V «m>' 
where (g1,... ,gm) = grad (7, (/*,... , / m ) = grad F for some G,F and g\ /• sat­
isfy 

(i) Lipschitz and growth conditions (like (HI)) under which the problem gener­
ates a local semiflow in (.ff1(.D))m, an imbedding like (8) holds, 

(ii) structure conditions (like (H2)) which ensure the applicability of the concav­
ity method. 

We finish with an application of the theorem. 
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Example. Consider the problem (l)-(3) with f(u) = |tir
p~1u, p > 1, p < -$5 if 

N > 1. If ti0 > 0, t*0 •£ 0, du0/du = tig then tmax(t<0) < 00. 
PROOF : Suppose tmax(t40) = 00. Choose t0 > 0. According to the maximum 
principle there is a number e > 0 such that u(t,t*0) > e for t > t0. By the theorem 
||u(',«0)|||f»(D) -8 bounded, hence {tt(t,u0) : t > t0} is relatively compact in Hl(D) 
(cf. [A2]) and the u>-limit set consists of equilibria. But it is easily seen that there 
are no positive equilibria - a contradiction. • 

Acknowledgement. The author is indebted to Pavol Quittner whose critical com­
ments led to a significant improvement of the original version of this paper. 
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