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Boundedness of global solutions for the heat equation 
with nonlinear boundary conditions 

MAREK FILA 

Dedicated to the memory of Svatopluk Fu£fk 

Abstract. Global solutions of the heat equation with nonlinear boundary conditions (which 
describe an absorption law) are shown to be bounded in Hl(D) and in C(D) uniformly 
for t > 0. 

Keywords: global solutions, heat equation, nonlinear boundary conditions 

Classification: 35K60.35B40 

In this paper we study the problem 

(1) ttt = Ati for x € D, t > 0, 
<v 

(2) ^ = /(u) for x€dD,t>0, 

(3) u(,0) = u0 € C2(B), 

where D is a smoothly domain in RN and / is superlinear. As an example we may 
consider f(u) = |a|'~1tt, p > 1. 

For this problem the blow up phenomenon may occur (cf. [LP]). 
Our mam aim is to show that any global classical solution is bounded in H*(D) 

and in C(D) (uniformly for t> 0), provided 

P < i v T 2 *N>2-

By a global solution we mean a solution which exists on D x [0, oo). 
Similar results for problems like 

ttt = Ati + f(u) for x € D, t > 0, 
« = 0 for x € dD, t > 0, 

were established in [NST], [CL], [G], [Fl], [F2). The (sharp) condition on p in 
[CL], [G], [Fl] was : p < (N + 2)/(N - 2) if N > 2. In [Fl] degenerate problems 
and problems with rapidly growing nonlinearities were treated. In [F2] also an 
equation with a gradient term was considered. 
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The proof of the present result is a new illustration of the main idea from [Fl]. 
We shall proceed by contradiction. There are two possible types of behaviour of a 
global solution u(t,uo) which is not bounded in Hl(D). Either 

(4) Mt,tt0)||ff-(£>) -+ oo as t -> oo 

or 

Umsup||tt(!,tt0)||tf-(.D) = oo, 
(5) '--*00 

KmM\\u(t,uo)\\HHD) = * < oo. 

(4) can be excluded using an appropriate modification of the classical concavity 
method. (5) leads to a contradiction with an a priori bound of every equilibrium 
lying in the w-limit set of tt(t, t*o). 

Our assumptions on / will be 

(HI) i/(tt) - f(v)\ < c(\uri+i„rl+1) i« - v\ 

for ti,v € R and some C > 0, p > 1, p < N/(N - 2) if N > 2. 

(H2) ti/(tt) > (q + 1) T f(v)dv-Ct> C2M<+1 - C3 
Jo 

for tt € R and some q > 1, C» > 0, C3 > C\. 
It is known (cf. e.g. [Al, Theorem 6.1]) that Problem (l)-(3) possesses a unique 

maximal classical solution u(t, UQ) provided duo/du = /(tt0) on dD and / is regular 
enough. 

Let Wx(tto) denote the existence time of the maximal solution emanating from 
tto. The following known energy equality will play an important role in our consid
erations. 

П (u,)2 + V(u(ť)) = V(щ) for 0 < ť < W ( U o ) , 
Jo JD 

where 
V(u) := 5 / |Vtt|2 - / F(u), F(u):« / f(v)dv. 

* JD JdD Jo 
Lemma 1. Let (Hi) hold. .-/||u(<,tto)||H-(D) -* oo as t —> im**(tto)> then tmMX(uo) 
<oo. 

PROOF : We shall use the classical concavity method (see e.g. [PS], [LP]) similarly 
as in the proofs of corresponding results in [Fl], [F2]. 

Suppose tmMX as oo and denote M(t) := fQ JD u2. Then 

"WĽ-Űo^ + Ĺ* 
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and if we choose Q <e < q — 1, we obtain from (H2), (6) 

iM"(.) = - / | V u | ' + / u/(u) = 
-- JD JSD 

_ - (2 + e)V(u) + | / | Vu|2 + / (u/(u) - (q + l)*-(u)) + ( f - 1 - e) / F(u) 
« JD JdD J 3D 

(7) > ( 2 + e ) / ' / ( « . ) * + ! / | V u | ' + fc./ M ^ - f c . . 
Jo ./D * JD JdD 

Here and in what follows positive constants which depend only on the data f,uo>D 
will be denoted by .fy. Rrom (7) it follows 

M"(t)>k3\\u(t)\\]tHD)-kA, 

hence M'(t) —• co as t —• oo. On the other hand, (7) yields 

M"(t) > 2 ((2 + e) jf' ^ ( u , ) 2 + *5M'(*) - k8) , 

therefore 

M M " - ( 1 + | ) ( M ' ) > 

>2(2 + e)(f f «2 f f(ut)
2-(f ( uut)

2) + 
\Jo JD JO JD JO JD J 

+2M(*5M' - ib«) - *7M'. 

The first term on the right hand side is nonnegative according to the Schwarz 
inequality and the second one tends to infinity as t —> oo. Thus, there is a to > 0 
such that the right hand side is positive for t > to. This implies that (M~~el2)" < 0 
for t>to. Since M""*/2 is decreasing, it must have a root t\ > 0 - a contradiction. 

• 
The next lemma is based on the theory of parabolic equations with nonlinear 

boundary conditions developed by Amann in [A2]. It follows from this theory that 
(1), (2) define a local semifibw in Hl(D) (in a way which will be made precise 
below) if the mapping u »~> /(«) is locally Lipschitz from Hl(D) into OW"1*2** := 
Wla~*i2(BD) where we choose a such that 

1 < 2 a < 1 + _ z " _ z 2 ( < | ) . 
p + 1 2 p + l v 2 ' 

This Lipschitz continuity is guaranteed by (HI). Indeed, with our choice of a 
(8) L<*+lV*(dD) C dW'^2a. 
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By this imbedding and the Holder inequality 

!!/(«) - /MIW-»+- < -WW ~ fWlwwm s 
< K'||u - t ^ + i ^ H i ^ O T ) + IMU'+M^) + ly"1-

The claim follows, since 

(9) Hl(D) C If+l(dD) 

under our restriction on p. 
Now, if u(t,u0) is weak solution of (l)-(3) on (0,T), i.e. u € C([Q,T);Hl(D)) 

and 

/ / ( - ^ u - h V ^ V u ) = / / +f(u)+ / * ( 0 ) u 0 
JO «/D JO «/0l> -li-1 

for all 4 € C^dO-T); (.flr1 (*>))') H C((0,T); #*(#)) vanishing near T, then u(-, •) is 
a local semiflow on Hl(D) (cf. [A2, Theorem 12.3]). Moreover, u(t,uo) satisfies 
certain integral equation - the variation of constants formula. We shall not sate 
this formula here because its consequence - the inequality (10) below (cf. [A2, (9) 
p.248 and Theorem 8.1]) will be sufficient for our purposes. 

Lemma 2. Let (HI) hold. j /u( i ,u 0 ) is a global solution which satisfies (5), then 
for every number B large enough there is an equilibrium w € <*>(uo) (— the w-limit 
set ofuo) such that ||u;|||rfi(£>) = B. 

PROOF : Similarly as in the proof of Lemma 2.2 in [Fl], choose a sequence 
{*n},*n -* oo, satisfying the following three conditions: 

(a) ||u(<n,Uo)||H-<D) = £ , 
(b) ||u(*,uo)||Hi<D) < B for t € (WaiM-i), 
(c) there is a sequence^} such that sn €(<2n,*2n+i)IK^n,tto)IU»(D) < * + l. 

The variation of constants formula yields 

M W O I H ^ O , < £(Wi - r„)1l2-''-'(,'"+'-r")||u(r„)||H,(D) 

(10) /•*»"+> 
+L (t2n+l-T)°->-1e«t"+^\\f(u(T))\\BW-,+,.dT 

Jrn 

for 7 € [1/2, a), where H2t(D) is the usual Sobolev-Slobodeckii space W%
2l(D\ <r 

is an arbitrary positive number, L is a positive constant depending only on JD, a. 
Notice that fj/(ti(r))|f.9w~-+»« is bounded by a constant depending on B for r € 
[*n,*2n+i] according to (8), (HI) and (9). Rrom (10) with rn = snt 7 = 1/2 we 
obtain that *2n+i - *n > 6 > 0 if we take B > (k + 1)L. 

Now the compact imbedding of H2y(D) into Hl(D) for 7 € (1/2, a) and (10) 
with rn as *2»+i -.£> 7 € (1/2,a) imply the existence of a w € Hl(D)> such that 
u(in,uo) -+ t0 in Hl(D) through a subsequence. Obviously ||u>||/f-(D) = B and 
standard arguments enable us to conclude that it; is an equilibrium since our local 
semiflow admits a continuous Lyapunov functional (the functional V from (6)). • 
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Lemma 3. Assume (H2). Let u(t,u0) be a global solution with u(uo) ^ 0. If 
w € u(uo), w is an equilibrium, then \\w\\Hi^o) £ J for some positive constant J 
depending on u0. 

PROOF : Since w is an equilibrium, we have fD \Vw\2 = fdD wf(w)y therefore for 
0 < e < g - 1 

(2 + e)V(w) = | / | VH2 + / (wf(w) - (q + l)F(w)) + (q - 1 - *) f F(w) > 
* JD J&D J&D 

> \ l |V^|2 + *l / |u»|«+1 - *, > MMIiP(D) - k< 
* JD JdD 

ki are positive constants. The assertion follows from (6). » 
Lemmas 1-3 yield now the main result. 

Theorem. Let (HI), (H2) hold. Ifu(t,u0) is a global classical solution of (l)+(8), 
then 

sup||u(t,uo)||tf-(£>) <oo. 
t>o 

It is shown in [Fo] that for solutions of a problem which includes (l)-(3) with / 
satisfying (HI), (H2) it holds 

\H^uo)\\c(D) ^ K(Wuo\\c(D)> SUP h(*,»o)h'(dD)) 

for 0 < t < f m „ ( u 0 ) if r > ( p - l ) ( N - l ) , N > 1. 

From this estimate with r = p + 1 (together with (9)) we obtain 

Corollary. Let the assumptions of the theorem be satisfied. Then 

aup\\u(t,uQ)\\c{D) < oo. 

Remark. The method of proof of the theorem works also for systems of the form 

uj = Au," + 0 , (u\ . . . ,u m ) , 

£r-/V «m>' 
where (g1,... ,gm) = grad (7, (/*,... , / m ) = grad F for some G,F and g\ /• sat
isfy 

(i) Lipschitz and growth conditions (like (HI)) under which the problem gener
ates a local semiflow in (.ff1(.D))m, an imbedding like (8) holds, 

(ii) structure conditions (like (H2)) which ensure the applicability of the concav
ity method. 

We finish with an application of the theorem. 
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Example. Consider the problem (l)-(3) with f(u) = |tir
p~1u, p > 1, p < -$5 if 

N > 1. If ti0 > 0, t*0 •£ 0, du0/du = tig then tmax(t<0) < 00. 
PROOF : Suppose tmax(t40) = 00. Choose t0 > 0. According to the maximum 
principle there is a number e > 0 such that u(t,t*0) > e for t > t0. By the theorem 
||u(',«0)|||f»(D) -8 bounded, hence {tt(t,u0) : t > t0} is relatively compact in Hl(D) 
(cf. [A2]) and the u>-limit set consists of equilibria. But it is easily seen that there 
are no positive equilibria - a contradiction. • 

Acknowledgement. The author is indebted to Pavol Quittner whose critical com
ments led to a significant improvement of the original version of this paper. 
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