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On a distance of groups and latin squares 

ALEŠ DRÁPAL, TOMÁŠ K E P K A 

Abstract. A lower bound for the distances of the tables of finite cyclic groups and latin 
squares is found. 

Keywords: Group, latin square 

Classification: 05B15 

1. Introduction. 
A groupoid is a non-empty set together with a binary operation and a quasigroup 

is a groupoid with unique division, so that the multiplication tables of finite quasi-
groups are latin squares. We denote by Q and Q the classes of finite quasigroups 
and groups, resp. 

Now, if G — (A;o) and H = (A ,*) are two groupoids with the same finite 
underlying set A, card(A) = n, we put d = dist(G,H) = card({(a, b) £ A^\ 
a o 6 -̂  a * 6}). Clearly, 0 < d < n2 and d = 0 iff G = H. Further, it is easy 
to see that d ^ 4, provided G ^ H and G, H G Q. On the other hand, by [1, 
Theorem 3.2.5], for every n ^ 2, n ^ 3, there exist G,H £ Q with the same finite 
n-element underlying set such that dist (G, H) = 4. Therefore, the minimal possible 
distance of two different finite quasigroups is 4 for n >_ 2, n ^ 3, and (this may be 
checked easily) 6 for n = 3. In contrast to this simple result, the situation becomes 
more complicated if we consider the minimal possible distance of a quasigroup and 
a group. 

For every n > 2, let gdist(n) = mindist(G, K), where G€G,HeQ,G£H, and 
both G and H have the same finite n-element underlying set. One can show easily 
that gdist(n) < gdist(p) < 2p, p being the least prime dividing n. As gdist(2) = 4, 
we have gdist(n) = 4 for* every even n. To get a lower bound of gdist(n) for n 
odd does not seem to be so easy and it is the purpose of this note to prove that 
gdist(n) > e. lnp ~f 3 in this case. Finally, notice that the numbers gdist(n) were 
used in [2] for enumeration of associative triples in finite quasigroups. 

Throughout this paper, let N denote the set of positive integers, Z the ring of 
integers and, for a prime p, Zp the field of integers modulo p, 

2. Matrices of special type. 
In this section, let R be an integral domain and Q the quotient field of 1?. For 

m, n G N, let M(R, m, n) designate the set of m x n matrices over R. If A(B,...) 
is a matrix, then ai,j(bij,...) are the elements, a,(6,-,...) the rows and jd(jb,...) 
the columns of AB,.... 

Consider the following three conditions for a matrix A € M(R,m,n): 

(1) a t i £ {0,1} for all 1 ^ i < m, 1 < j ^ n; 
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(2) ja ^ 0 for every 1 < j ^ n; 
(3) if 1 < i < k < m, then a^ -/ 0 ^ a,v, for at most one 1 < j < n. 

FYurther, if 3 < n and a = (p, *?, o) € N*3) is such that Ea = p + g + o = n, then 
we define the following condition: 

(a) for every 1 < i < m there are exactly three indices t, k, I with 1 •£$ t < p < 
k<p + g < / < n and a tJ 7- 0 iff j G {*, k, / } . 

If A satisfies (1) and (2), then (a) may be fulfilled for at most one a £ N(3\ 
£ a = n. 

Let a = (p,q,o) £ N^z\ n = Y2a- Denote by R(a) the set of w £ R*n) such that 
Wi =-=•••= Wp, t i"p +i sac . . . as tt>.,+9, U? p + g + i = • • • = Wn and U>p + Wp+q + U>n = 0. 

Then JR(ot) is a submodule of R^ and it is a free H-module of dimension 2. Now, if 
A £ M(R, m,n) is a matrix satisfying (1) and (a), then Aw = 0 for every w G B(o?) 
and we shall say that A is (R, a)-flat if R(a) = {w € B(n); Au; = 0}. 

Lemma 2.1 . T^e following conditions are equivalent: 

(i) A is (R, a)-flat. 
(ii) A is(Q,a)-flat. 

(iii) T^c ranfc o/ A over Q w n — 2 t^ani /tence n < m + 2f 

PROOF : Clearly, A is (R, a)-flat iff it is (Q, a)-flat. Further, n = dim V + dim W, 
where V is the subspace of Q^ generated by the rows of A and W = {w £ Q ( n ) ; 
Aw = 0}; we have Q(a) C W, dimQ(«) = 2 and the rank of A is equal to dimV. 
Consequently, Q(a) = W iff dim W = 2 and iff the rank of A is n - 2. • 

3 . De terminan t s . ( 

In the sequel, let R be an integral domain and Q the quotient field of R. 

L e m m a 3 . 1 . Let n £ N, A £ M ( B , n + l , n ) and let At £ M(I2,n,n) 6e t/te matrix 
obtained from A by omission of the row a,-, 1 < i < n + 1. Let r\,... , r n + i £ R be 

n+l 
stic-i that j ) ribOit = 0. ITien r, de tA j = ( -1 ) , + * -det A.- for alll^i^j ^ n + 1. 

*=sl 

PROOF : Put B = Aj. Then the i-th row 6t of B is equal to a,. By substituting 
this row by the vector —rjaj = £3 r * a * we get a matrix C such that detC = 

**j 
r, • ( -1 ) ' "* • det Ai and det C = r t • det A,. • 

In the rest of this section, let a = (p,q,o) £ N^z\ J^a = n and let A £ 
M(R,m,n) be a matrix satisfying (1) and (a). For s £ N and 1 < &i < • • • < 
kB < n we denote by A[ki,..., k3] the matrix B G M(R,m + s,n) such that 
h = <-i> • • • 5 bm = am , bij = 0 and &»*,_„, = 1 for all m < i < m + s and j ^ k,_m. 

Lemma 3.2. Let n = m + 2 and l * ^ r < p < s < p + g < t < n . Then 
det A[r, s] = det A[s, t] = - det Afr, *]. 

PROOF : Consider the matrix B as A[r, s, t] £ M(R, n + 1 , n). The rows &i , . . . , 6n + i 
are not linearly independent in Q ( n ) , and hence ^rjt6-» = 0 for some r* G R such 
that at least one of them is not zero. If rankQ A < m, then all the determinants 
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in question are zero. Hence, assume that rankg A = m, so that either r n _i ^ 0 or 
r n + i -̂  0. Further, let v, w G R(a) be such that vp = wp = 1, v p + ? = wn = -~1 and 
vn = wp+q = 0. Then bkV = bkW = 0 for 1 < k ^ m and r n _i — r n = ( ] C r i M v = 
0 = (Ylri^i)w — r n - i ~ rn+i- Consequently, r r t_i = rn = r „ + i ^ 0 and the rest 
follows from 3.1. 

Let 1 < r < s < n. Omitting the columns ra and 5° of A we get a matrix from 
M(R,m,n — 2). This matrix will be denoted by A(r,s). • 

Let J(a) denote the set of (r, s) G N^2) such that either l < r < p < s ^ n o r 
l < r < p - f - # < . s < n . 

Lemma 3.3. Let n = m -f 2 and (r,s), (r',s') G J(a). ^ e n detA[r,.s] = 
± det A[r', s'] = ± det A(r, s) = ± det A(r', s'). 

PROOF : Easy (use 3.2). • 

Now, if R = Z and n = m + 2, then we put A(A) = | det A[r, s]\, (r, s) G J(a). 

Lemma 3.4 . Let n = m + 2. Then A w (R,a)-flat iff AetA[r,s) / 0 /or (r,s) 6 
J(a). 

PROOF : Suppose that r < p < s < p + tj and put B = A[r,.s]. If w G Q ( n ) , then 
Bw = 0 iff Ato = 0 and u>r = ws = 0. In such a case, w € Q(&) implies w = 0 
and so det A[r, 5] ^ 0, provided A is (R,a)-flat. Now, suppose that det A[r,.s] ^ 0 
and let v G R(n), Av = 0. Define u G B(n) by ux = • • • = up = -vr, u p + 1 = • • • = 
u p + g = —va and u p + g + i = •• • = un = v r -f vs. Then u G B(«), B(v — u) = 0, 
v — tt = 0 and v = u. • 

4. Some e n u m e r a t i o n s . 

Lemma 4.1 . Let n G N and let A G M(Z ,n ,n ) &e a matrix satisfying (1) such 
that there exists 1 < r < n with a , ; ^ = 0 whenever 1 < i,j, k ^ n and either 
j,k^r or r < j,k. Then det A G {0 ,1 , -1} . 

PROOF : For any 1 < t < n, let t(i) denote the number of indices 1 ^ j < n with 
ajj = 1; by the hypothesis, we have t(i) <. 2. Further, let v G z^n) be such that 
Vj = 1 for 1 ^ j ^ r and t>j = — 1 for r < j < n. Clearly, a,-v = 0 whenever t(i) = 2. 
Hence either det A = 0 or t(i) = 1 for some 1 <. i <. n. If 1 < j < n is such that 
ajj = 1, then det A = (—1)%~*~3 • detB, where B is obtained by deletion of the i-th 
row and the j - t h column from A; we have B G M(Z,n — l , n — 1) and the result 
follows by induction. • 

In the following three lemmas, let m G N, n = m -f-2, a = (p, q, o) G N^3), ]C a = 
n and let A G M(Z,m,n) be a matrix satisfying (1) and (a). For all 1 < j ^ n, 

m p p+q n 
put s(A, j ) = £ <-•;• Obviously, £ 5 ( 4 i ) = £ *(-4.i) = £ &(A,j) = m. 

t=i i = i i=P+i ;-=p+?+i 

Lemma 4 .2 . 

(i) I/p=l, then A ( A ) < 1 . 

(ii) I/p >-2-aiw*4 < fc<-p. *&en A(A) < £ 5(A,J). 
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PROOF : (i) We have (1,2) € J(a) and detA ( l ,2) € {0 ,1 , -1} by 4.1. 
(ii) The rows of the matrix A(k,p + 1) can de permuted in such a way that we 

obtain a matrix B with the following property: 
If 1 < t < t' < m, 1 < j,j' < p — 1 and 6^ = 1 = bi>y, then j < j 1 and if 

6, = 0, then h> = 0. Therefore, 6tJ = 1 iff s(B, 1) + • • • + s(B,j - 1) < i < s(B, 1) + 
• • • + s(B, j). Now, denote by K the set of ordered p — 1-tuples u = (u\,..., u p_i) 
such that 1 < it-. < • • • < i~p_i ^ m and by B(u) the submatrix of B induced 
by the intersection of the first p — 1 columns of B and of the rows bUl,..., bUp_x. 
Further, let B[u] denote the complement of B(u), i.e. the submatrix of B obtained 
be deletion of indicated rows and columns. Expanding det B along the first p — 1 
columns, we get the inequality | det B\ < £ I det B(u)|*| det B[u]\. However, by 4.1, 

u£K 
| det B[u]\ € {0,1} and it is easy to see that det B(u) ^ 0 (and then (det B(u)\ = 1) 
i ff3(B,l) + --- + s (B, j - 1 ) <UJ < s ( B , l ) + --- + s (B , j ) fo r any 1 < j < p - 1. 

The rest is clear, since the latter case occurs just f][ s(B,j) - times. • 
;=i 

Lemma 4 .3 . Put r = min(p, q, o). 

(i) I/r = l, thenA(A)^l. 
(ii) If m < 5, then A(A) < 2. 

(iii) I/m = 6, then A(A) < 3. 
(iv) If r > 2 and m > 5, then A(A) ^ ((m - 3)/(r - I))*""1. 

PROOF : We can assume without loss of generality that r = p. Now, (i) follows 
from 4.2(i). If m < 3, then p = 1. Hence, suppose for a moment that 4 < m < 6 
and p ^ 2. Then p = 2 and A(A) ^ m/2 by 4.2(h). Similarly, if m = 6, then 
A(A) < 3. Finally, let m ^ 5 and p ^ 2. Then 2p < m and hence there is 1 < k ^ p 

withs(A ,k ) > 3. We have £ s(A,j) < m - 3 a n d A(A) < ((m - 3) / (p -1))^1 

>=l,j¥* 
by 4.2(H). • 

Lemma 4.4. Ifm^6, then A(A) < e< ro-3)/e . 

PROOF : The result follows easily from 4.3 (iv). • 

For a prime n we define 6(ir) to be the least m € N such that there exists a 
matrix A 6 M(Z,m,m + 2) with the following properties: A satisfies (1), (3) and 
(a) for some a € N3 with J ^ a = m + 2, A(A) 7- 0 and IT divides A(A). Notice 
that A satisfies (2) since A(A) ^ 0. Further, although (3) does not follow from the 
remaining assumptions, the definition of 6(ir) is independent of it; dropping this 
condition we get the same numbers. The proof of this fact is easy and it is omited 
as the result will not be used in the sequel. 

Lemma 4.5. £(2) = 4 and 6(ir) >e.ki7r + 3 for any prime ?r ^ 3. 

PROOF : This is an easy consequence of 4.4. • 

Let 7T be a prime, m,n € N and let A E M(Z,m,n) be a matrix satisfying (1), 
(3) and (a) for some a 6 iV3, J ] o = n. Denote by / the natural projection of Z 
onto Zn. 
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Lemma 4.6. Suppose that n = m + 2. The following conditions are equivalent: 
(i) A(A) ^- 0 and ir divides A(A). 

(ii) A is (Z,a)-flat and f(A) is not (Zir,a)-flat 

P R O O F : Apply 3.4. • 

Lemma 4 .7. Suppose that A is (Z,a)-flat and f(A) is not (Zw,a)-flat. Then 
S(w) ^ m. 

PROOF : By 2.1, n < m + 2. Assume that n < m -f- 2. Then the rows of A are not 
linearly independent over Q and there are r i , . . . , rm 6 Z and 1 ^ k < m such that 
rk ^ 0, it does not divide rk and rxai -\ 1- rmam = 0. Denote by B the matrix 
obtained from A by omission of the row ak. Then B £ M(Z, m — 1, n) and it is easy 
to check that B satisfies (1), (3), (a), B is (z ,a)-flat and f(B) is not (ZK, a)-flai. 
Proceeding in this way we get a matrix C 6 M(Z,n — 2,n) satisfying (1), (3) and 
(a) such that C is (z ,a)-flat and / (C ) is not (Z, a)-flat. The rest follows from 
4.6. • 

5. Partial groupoids and matrices. 
A non-empty set K together with a partial binary operation is called a partial 

groupoid. We denote by M(K) the set of ordered pairs (a, b) € K^2^ such that the 
product ab is defined and we put B(K) = {a; (a, b) € M(K)}, C(K) = {b; (a, b) € 
M(K)} and D(K) = {ab;(a,b) € M(K)}. The cardinalities of the sets B(K), 
C(K) and D(K) are denoted by p(K), q(K) and o(K), resp. The partial groupoid 
K is said to be balanced if the sets B(K), C(K) and D(K) are pair-wise disjoint 
and it is said to be reduced if A' is the union of these sets. The partial groupoid 
A' is said to be cancellative if ab ^ ac and ed -j-= fd whenever (a, b), (a, c), (e, d), 
(/, d) € M(K) and 6 -j£ c, e ^ / . We denote by T the class of balanced reduced 
cancellative partial groupoids. 

Let K and L be partial groupoids. A mapping / of K into L is called a homo-
morphism if (f(a),f(b)) € M(L) and f(ab) = f(a)f(b) whenever (a, b) € M(K). 
The homomorphism / is called trivial if the sets f(B(K)), f(C(K)) and f(D(K)) 
contain each just one element. The partial groupoid K is said to be L-flat if every 
homomorphism of K into L is trivial. 

For each n *£ 2, let f (n) denote the minimum of all card (M(K)) where K € T is 
such that K is (Z, +)-flat but not G-flat for an n-element group G. By [4,Proposi
tion 4.1], f (n) < gdist(n). In the rest of this section we shall prove that S(n) = £(n) 
for every prime number n ^ 2. 

Fix three pair-wise disjoint infinite countable sets B = {bi,02,...}, 
C = {ci,C2,. . .} and D = {di,d2>---}- A finite partial groupoid K € T is said 
to be in a normalized form if B(K) = {h,.. .,bp(K)}, C(K) = {c i , . . . ,c , (x)} , 

i?( if) = R , . . . , <.„<*)}. 
Let K be a finite partial groupoid in a normalized form and let p be a linear order 

defined on M (K); M(K) = {x\, ...,xm} and (xi, Xj) € p iff i < j . We shall define 
a matrix E~ E(K,p) £ M(Z,m,n), n = p + q -fo, p = p(K), q = q(K), o = o(K) 
as follows : c t J = 1 iff there are r,s,t € N such that JC,- = (6r>ca), 6rc# = d< in K 
and either j = r or j = p -f s or j = p + q + <; e,-j; = 0 in all the remaining cases. 
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The matrix E satisfies (1) and (a) for a = (p,q,o). It satisfies (2) and (3) 
as well, since K is reduced and cancellative. If g is a mapping of K into Z and 
w € z*n* is such that ti>j = g(bi)1 Wj = g(cj-p) and Wk = —g(dit_p^q) for all 
l < i < p < j < p - f g < A : < n , then ^ is a homomorphism of K into (z , +) iff 
Ew = 0; in this case, g is trivial iff w € Z(a). Similarly, if w is a prime, / is the 
natural projection of Z onto Zn, g is a mapping of K into z and t> € z ^ is defined 
similarly as w above, then g is a homomorphism of K into (z*,-!-) iff f(E)v = 0; 
again, g is trivial iff v € £*•(<*)• 

Theorem 5.1. e.lnir + 3 ^ ^(TT) = £(7r) for every prime IT ̂  3. 

PROOF : First, let K € T be such that K is (Z,+)-flat, not (z*,+)-flat and 
m = card(M(K)) = f(fl"). We can assume that K is in a normalized form. Then 
the matrix E = E(K, p) is (z , a)-flat and / (E) is not (Zny <*)-flat. By 4.7, S(ir) < m 
and ^(w) < f (vr). The inverse inequality is clear. • 

Corollary 5.2. Let n ^ 3 be an odd integer and let w be the least prime dividing 
n. Then e.lnw + 3 < gdist(n). 

PROOF : By [4,Proposition 4.2], f(A) < gdist(n) for a prime A dividing n. The 
result now follows from 5.1. • 
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