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Cobalanced exact sequences 

ANTHONY GIOVANNITTI, H . P A T G O E T E R S , CLAUDIA METELLI 

Abstract. A sequence of abelian groups £*:0—*A—>B—>C—»0is said to be balanced 
exact if for every generalized height vector /., the induced sequence 0 —• A(h) —* B(h) —* 
C(h) —• 0 is exact. If C is torsion-free, then E is balanced if and only if every rank one 
torsion-free group is projective with respect to E. Dually, we consider sequences E with A 
torsion-free, and say that E is cobalanced :f the torsion-free rank ones are injuctive with 
respect to it. It is a well known result of Bican and Sake that for torsion-free finite rank 
groups C, the group of balanced exact sequences Bext(C, T) = 0 for all torsion groups T if 
and only if C is a Butler group. We will show that in the dual case that a countable torsion-
free group A satisfies that the group of cobalanced exact sequences Cobext(T, A) = 0 for 
all torsion groups T is and only if A is locally completely decomposable. 

Keywords: Cobalanced sequences, vector groups, locally completely decomposable groups 

Classification: Primary: 20K27, 20K40, Secondary: 20K15, 20K20 

I , Coba lanced Sequences . 
If / : A —• B is an epimorphism with kernel D, then the pull back of 

£ : f j ¥ D , A • B • 0 

is readily seen to be cobalanced if £ is cobalanced. Also, the pushout of a cobalanced 
monomorphism is cobalanced. One can then define Cobext(C, A) in the standard 
fashion and for any cobalanced £ : 0 —•A—+B—• C -H•Owe have the derived long 
exact sequence: 0 —• Hom(C,A) —• Hom(C,D) —• Hom(C,C) —• Cobext(C, A) —> 
Cobext(C, B) —• Cobext(C,C) by applying Hom(C, ) to £ together with the 
analogous sequence when one applies Hom( , C) to the sequence (cf, [9]). 

Let 7r be the set of primes. Given a type r , we let A[r] = n{Ker(/) : / : A —• XT} 
where XT is a torsion-free group of rank-1 and type r , and let 7r(r) = {p 6 TT : 
pXT f^ XT). For S C fl", a sequence 0 -~+ A —> B —*C-*0is said to be 5~pure if 
nA = nB C\ A for all n in the multiplicative closure of 5 in Z. 

Proposition 1.1. Let A,B} and X be countable torsion-free groups with A of finite 
rank and X a rank-1 of type r . Then X is injective with respect to 0 —• A —• B —• 
C -+ 0 if and only if A[T] = B[T] f) A and 0 -> A/A[T] -> B/B[T] is Tr(r)-pure. 

PROOF : =*•) Let x E A. Then x ^ A[T] implies there is an / : A —• X with 
f(x) f^ 0. This map can be extended to B. Thus x £ B[T] f\ A. Since generally 
A[T] C'B[T] n A, A[r] = B[T] n A. 
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Let A = A/A[T], B = B/B[T], and p € TT(T). If a_G A has p-height 0, then 

Proposition 2.1 in [5] implies that there is a map / : A —> X such that f(a) has 
p-height zero in X. This map is easily shown to lift to B. Thus a has p~height zero 
in B. __ __ 
<=) We must show that 0 —• A —• B is cobalanced with respect to X. The localizing 
at S = TT(T) produces a pure exact sequence € : 0 —• (A)s —• (B)s- with (A)s finite 
rank torsion-free and (B)s countable torsion-free. Since ( B ) S [ T ] = 0, X is injective 
with respect to E by Proposition 2.1 of [5]. • 

This proposition sheds light on Example 1.10 in [8] and generalizes Proposition 
4.2 in [1]. If F is a countably infinite ranked free group with F/K =* Q, then 
F[T] = K[T] = 0 for all types T, but no reduced rank-1 torsion-free group is injective 
with respect to 0 —> K —• F. Also, if B is not separable with B[type(Z)] = 0, then 
there is a finite rank free pure subgroup A of B which is not a summand of B. Thus 
we see that the hypotheses are necessary. 

Corollary 1.2. If B is a finite rank torsion-free r-homogeneous group, then 
B[T] = 0 if and only if B is completely decomposable. 

PROOF : (<=) Clear. 
(=>) Let B have rank-n and A be a pure rank-1 subgroup of B. Then the proposi
tion implies that B = A (£ B/A. Thus B/A satisfies the hypothesis of the corollary 
and so induction on rank will prove it. • 

Corollary 1.3. If B is a countable torsion-free r -homogeneous group, then 
B[T] = 0 if and only if B is completely decomposable. 

PROOF : («=) Clear. 
(=>) Let A be a pure finite rank subgroup of B. Then A satisfies the hypothesis 
of the previous corollary and thus is completely decomposable T-homogeneous. 
Hence Proposition 1.1 implies that A is a summand of B. Therefore, by Proposition 
87.2 in [3], B is separable and hence completely decomposable (Theorem 87.1, [3]). 

• 
The torsion-free vector groups are cobalanced injective. Given any torsion-free 

group G, the canonical embedding 

0 -+ G -» J[{G/K : G/K is rank-1 torsion-free} 

is cobalanced. It is not hard to see that the reduced cobalanced injectives are 
summands of (reduced) vector groups and are thus vector groups ([7]). 

Proposition 1.4. Let G be torsion-free. The following are equivalent: 

(a) G is a subgroup of a vector group V with V/G torsion-free (cotorsion-free). 
(b) Cobext(T,(y) = 0 for all torsion (cotorsion) groups T. 
(c) If 0 —• G - • H —• H/G - » 0 M cobalanced and H is torsion-free (cotorsion-

free), then H/G is torsion-free (cotorsion-free). 

PROOF : We will only prove the characterization of G when Cobext(T, G) = 0 for 
all cotorsion T , since the argument in the other case is similar. 
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(a)=>(b) Let i: G —> V be the inclusion map and q :V -* V/G be t!*£ quotient map. 

If T is cotorsion and £ : 0 — • G - + K - - + T — > 0 i s cobalanced, then there is a map 
i' : H —> V s.t. *'/ = A. Thus gt'/ = 0 and hence there is a unique | 'T —> V/G s.t. 
g'̂ r = qi'. Since V/G is cotorsion-free, q' = 0. Thus there it> a *u&qae / ' : H ~> G 
s.t. t / ' = A'. Thus t / ' / = i ' / = i. Hence / ' / = 1G , i.e., £ split*; '/*' / 
(b)=>(c) Let E : 0 —• G —> H —• If/G —• 0 be cobalanced withjif ^jtorsion-free. 
Then applying Hom(T, ) to E for a cotorsion group T, we get t||p ĵ toict sequence 
Hom(T,H) -> Hom(T,K/G) -> Cobext(T,G). Since the t w o ' ^ T ^ zero, the 
middle is zero and thus H/G is cotorsion-free. 
(c)=>(a) Clear. • 

II. Locally Comple te ly Decomposable Groups. 
The next result is the cobalanced analog to Theorem 1.4 on bajkaticed extensions 

in [2]. Let rp = type(Zp), where Zp is the group of integers localized at the prime p. 

Theorem II. 1. Let G be a countable torsion-free group. The foMfiving are equiv
alent: 

(a) G is locally completely decomposable. 
(b) (G/P»G){TP) = 0 for all p. 

(c) G is a pure subgroup of a vector group. 
(d) Cobext(T,G) = 0 for all torsion groups T. 

PROOF : (a)=>(c) Let A : G -> n { G / K : G/K is rank-1} = V* be % canonical 
cobalanced embedding of G into a vector group. Let x € G such. t|t*t $}ie p-height 
of OJ, denoted htp(x), is k. Since G is locally completely decomposable, there is 
an / : G —• Zp with f(x) = pk. Thus, because i is a cobalanced. embedding, there 
is a map / ' : V -> Zp such that ft = / . Hence ht^(i(x)) <. ht^(fU(x)) = k. 
Therefore, G is pure in V. 

(c)=->(b) Let A be as in the previous part, and 0 =£ x+p"G. Thus tl̂ e p~height of x in 
G is finite. Proposition 1.4 and (c) imply that G is pure in H{G/K : G/K is rank-1} 
and hence there is a corank-1 subgroup K C G with htp ' (x + K) finite. This 
implies that the type(G/K) < rp and so there is a map / : GfK „-*• Zp with 
f(x + K) £ 0. Let $f: G -> G/K and ^ : G -> G/pwG be the appropriate quotient 
maps. Then pwG must be contained in K and thus there is a map / ' : G/pwG —> Zp 

such that fg = / V Hence /'(a: + p"G) ^ 0. Then (b) follows imp*ali*tely. 
(b)=f>(a) Consider the split exact sequence 0 —> Zp<g>pwG —> ZP®G -» l^G/puG —> 
0. By Corollary 1.2, Zp <g) G/puG is a free Zp-module. Hence Zp 0 G is completely 
decomposable. 
(c)<=i>(d) This follows from Proposition 1.4. • 

The implications (a)=>(b), (c), or (d) do not require a cardinality restriction on 
G. The class of torsion-free locally completely decomposable grottpf is a strictly 
larger class than that of Butler groups (even in the finite rank ea^e), llence if G is 
a Butler group (possibly of infinite rank) Cobext(T, G) = 0 for jit^ $0f*ion groups 

If G is a Butler group, then Bext(G, T) = 0 for all torsion a&4 ctrtorsjoh groups 
T. A natural question to ask is: must Cobext(T, G) = 0 for all t#t<h*k*i T? 
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Proposition II .2. Let G be a reduced finite rank Butler group. Then 
Cobext(T, G) == 0 for all cotorsion T if and only if there is a cobalanced exact 
sequence of Butler groups 0—*G--*C—+A-~>0 where C is completely decompos
able and A is reduced. 

PROOF : By Theorem 1.4 in [1], there is a cobalanced exact sequence S : 0 —» G —• 
Q __» A —• o with C = ©JLiCt and each C, isomorphic to a rank-1 quotient of C, 
and with A a Butler group. Thus G is pure in C and so without loss of generality 
we can assume that C is reduced. 
(=>) If A is reduced, then it is cotorsion free. Thus by Proposition 1.4, 
Cobext(T, G) = 0 for all cotorsion T. 
(4=0 Applying Hom(Q, ) to £, we have that Hom(Q,A) =* Cobext(Q,C). Thus, 
if Cobext(T, G) = 0 for all cotorsion T, Hom(Q, A) = 0 and hence A is reduced. • 

This proposition clearly holds if OT(G) < type(Q). 
We conclude with an example of a large class of Butler groups for which the 

cotorsion groups are not injective with respect to cobalanced sequences. 

Examp le II .3. For each n > 3, there is a rank-n completely decomposable group 
C and a cobalanced exact sequence 0—> G —> C —*Q—• 0 that does not split. 
Consequently, Cobext(T, G) ^ 0 for all cotorsion groups T which are not torsion. 
PROOF : For n > 2, choose a set S = {pi , . . . ,p n } of distinct primes. For each 

m n n>-
1 < % < n, we let z, = lPi n lPi+l and Zn = lPn D lPl. Take G = ,=sl ' . 

( ( 1 , . . . , 1);* 
Then using the construction due to Lee [6] (since G has a corepresenting graph that 
is a cycle with edges labelled by lp. for 1 < i\ < n) or that found in Theorem 1.4 in 
[l], we can construct a cobalanced exact sequence S : 0 —• G —* ©JLjZp, —• Q —• 0. 
This sequence is readily seen not to split. 

Since ©JLjZp. is cotorsion-free, when one applies Hom(T, ) to S for cotorsion 
T, the result is that Cobext(T, C) = Hom(T, Q) which is not zero when T is not 
torsion. • 

It is interesting to note that for the groups G so constructed the sequence S in 
the proof is an injective resolution for these groups in the category of finite rank 
Butler groups with regular homomorphisms (cf., [4]). Hence this class of Butler 
groups has the property that if 0 —* G —> B —> C —>-0is exact in the category of 
Butler groups of finite rank, then the sequence is cobalanced. 
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