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Basic sets of polynomials in Clifford analysis 

M.A.ABUL-EZ, D.CONSTALES* 

Abstract. This paper is concerned with the extension of the theory of basic sets of poly­
nomials in one complex variable, as introduced by J.M.Whittaker and B.Cannon, to the 
setting of Clifford analysis. This is the natural generalization of complex analysis to Eu­
clidean space of dimension larger than two, where the regular functions have values in a 
Clifford algebra and are null-solutions of a linear differential operator which linearizes the 
laplacian. An important subclass of the Clifford regular functions is considered, for which 
a Cannon theorem on the effectiveness in closed balls is proved. This result is consequently 
refined in terms of the order and type of entire functions in this subclass. 

Keywords: Basic sets of polynomials, cannon sum of basic sets, effectiveness, rate of in­
crease of basic sets, monogenic functions, Clifford algebra 

Classification: 41A10, 30G35 

1. Introduction. 
If m is a positive integer, the Clifford algebra Am can be defined as the ring exten­

sion of the field R with symbols e j , . . . , em satisfying the fundamental multiplication 
rule 

e,e* + ekej = -28jk. 

Clearly, Am is then a noncommutative algebra. There are two special cases: A\ is 
isomorphic to the complex field C and A2 is isomorphic to the quaternion skewfield 
H. If m > 2, Am contains zero divisors (for instance, (1 -f eie2e3)(l — eie2e3) = 0). 
A general element of Am can be written as 

Q== /2 &AeA, 
ACM 

where M stands for { 1 , . . . , m}, a A € R and if A = {i'i, t*2,..., **} with i\ <i% < 
— • < i*, eA stands for e^e^ ...eik. This expansion of a in terms of the eA is 

unique, so Am is a 2m-dimensional real vector space. An important involution • is 
defined on Am by the rules A = A i f A € R , a F / 3 = a F / 3 , a ^ = /?a and e*j = —e,* 
if t G M. A norm | • | can be defined on Am by 

н- / £ a\. 
V AQM 
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Some care must be taken when using this norm to estimate products: we will 
always use the formulas |a/3| < 2 m / 2 | a | | /3 | in general and |a/3| = \a\\(3\ if aa € R 
or 0 € R. 

The space R m + 1 is identified with a subset od Am by associating to 
(xQ,X\y... , x m ) the element XQ -f x\ex + j- x m e m of , 4 m . The elements of this 
subset will be referred to as vectors. One easily sees that x = XQ—x\e\ xmem 

and that xx = xx = |x|2 . As a consequence, one can divide through nonzero vectors, 
since x~l = x/ |x | 2 . 

Clifford analysis is a generalization of complex analysis to functions defined on 
open sets in R m + 1 . The generalized Cauchy-Riemann operator D is defined by 

„ d d d 
D= + e j + . . . + e — . 

OXQ OX\ oxm 

it can act both from the left and the right on functions in C1(Rm+1,w4m). The 
generalization of holomorphic functions in C are called monogenic functions. 

Definition. Let / be a smooth Am-valued function defined in an open set Q, C 
R m + 1 , then / is monogenic in Q if and only if Df = 0 holds in the whole of Q. 

For more details on Clifford algebra and analysis, the reader is referred to [1]. 

2. Special monogenic functions. 
The fundamental reference for special monogenic functions is [7]. For the purposes 

of this paper, we will give a different, less elaborate exposition of their properties. 
We start with polynomials : by definition, a polynomial P(x) is special monogenic 

if and only if DP(x) = 0 (so P(x) is monogenic) and there exist constants aij € .4 m 

for which 
P(x) = ^ T ' x V c t y , 

*,i 
where the primed sigma stands for a finite sum. 

Lemma 1. If Pn(x) is homogeneous special monogenic polynomial of degree n in 
x, then 

Pn(x) = Pn(x)<x, 

where the polynomials pn are defined as 

»•(«>- E ( (m-;: ) /2)' ( (m+: ) /2)'^, 

a is some constant in Am and for 6 € R, (b)i stands for 6(6 + 1) . . . (b -f / — 1). 

PROOF : Suppose 
P(x) ] T x'x'aij 

z+j=n 

for certain constants a^ € -4 m . The restriction of P(x) to the hyperplane xo = 0 is 

-" £ (-l)«ay. 
»+j=-r» 
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The Cauchy-Kowalewski extension (cf. [1]) of xn |Zo_o can be found by noticing 
that 

1 " * = (1 _ S)-<m-D/-(l _ x)-(m+l>/2 
| l - æ | m + 1 

= .^ ( (m- iy^qm + i y г ) , ^ , 
Z_ j ! ,! ' 

І,j=0 

where the series converges for \x\ < 1, is a monogenic function and that its restriction 
to x0 = 0 is 

1 + X = (1 + .r)-(m-1)/2(l - x ) - ( m + 1 ) / 2 

|1 - a : | m 

= -A n ^ ((m-l)/2)t((m + l)/2)i 1 ) t 

Z-/ Z_ jj j\ ^ 
n=0 i+jf=n ^ 

Splitting these sums in their homogeneous parts, the Cauchy-Kowalewski extension 
of x11 |x0=o is seen to be proportional to 

p „ ( x ) = E ((--DfflKmy^ 
i+j=n *' J > 

with a nonzero real proportionality factor. By the uniqueness of the Cauchy-
Kowalewski extension the lemma follows. • 

Lemma 2. 

sup \pn(x)\= [ * )r 
|x|=r \ n / 

PROOF : Obviously, sup^i..,. | p n ( * ) | = Pn(f)- This case be computed more explic­
itly: 

1 ~ r _ /I _ r\-"» Y^ ( m ) n „ n 

h _ r | m + l V- r; 2 _ n ! 
-r 

n! 
n=0 

soPn(r) = ifr-r;-y. 
Clearly, ( m +

n *" 1 ) being a polynomial in n, H m s u p . . ^ (™+«-i) 1 / n = 1. m 

Definition. Let Q be a connected open subset of R m + 1 containing 0 and let / be 
monogenic in ft, then / is called special monogenic in Q, if and only if its Taylor 
series near zero (which is known to exist) has the form 

oo 

(2.1) /(*) = £>n(s)c„ 
n=0 

for certain constants cn € Am. 
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3. The radius of regu lar i ty of a specia l monogenic function. 
There is a close link between the set on which a special monogenic function is 

defined and the asymptotic properties of its coefficients c n . 

Lemma 3. If f is special monogenic in a neighorhood of the closed ball B(r), the 
Taylor series (2.1) converges normally in B(r). 

PROOF : This is a well-known result of Clifford analysis, a proof can be found in 
[I], p.81. • 

Lemma 4. The series 
oo 

]___>n(*)c« 
„-=o 

converges in a neighborhood of B(r) if and only if 

H m в u p | c w | 1 / n < i . 

PROOF : If l i m s u p , , . ^ | c n | 1 ' n = l/R < 1/r and if l/R < l/r0 < 1/r for some r0, 

_ MxM1** <lh*mipir^"~*)rS\cn\k 

* | < r 0 

Hmsup sup |p n ( .T)c n | 1 / n < Hmsup ( ( j r j | c n | ] = r0/J? < 1 
n-*oo | . t |<r 0 n—>oo \ \ n / / 

and the series converges normally on the neighborhood B(r0) of B(r). 
On the other hand, if the series converges in a neighborhood of B(r), it still 

converges in B(r 0 ) for some rQ > r and its terms must be bounded there: 

|p«(x)cn | < Mx 

for every x € B(r0) and for every n. In particular, for x = r0> we see that 

• { < ^ r 0 

l n L r r K 
and deduce 

Hmsup \cn\^
n < ( lim fm + n ""lN) " | /r 0 = l /r 0 < 1/r. 

n—oo V »->oo \ n J I 

m 

These lemmas lead to the following 

Definition. The radius of regularity Rf of special monogenic function / is defined 
byt f / = l / (nm8up n _ c o | c„ | 1 /« ) . 
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4. Basic sets of polynomials and effectiveness. 
In complex analysis, a basic set of polynomials is a basis for the vector space 

of complex polynomials in one indeterminate; we refer to [6], [8] for this theory. 
This definition can be adapted to the setting of Clifford algebras by noticing that 
the set of special monogenic functions is a free module over the pn(x). A set 
{Pk(x) | k € N} of special monogenic polynomials is then called basic if and only 
if it is a basis for the set of special monogenic polynomials, i.e. if every pn can be 
expressed as a right ,4TO-lmear combination 

oo 

(4.1) pn(x) = ]T Pk(x)nnk, Wnk € Am 
fc=0 

where only a finite number of terms differ from zero, and for any sequence 
ao,ai, . . . ,ap € Am, 

p * 

^T Pk(x)ak = 0 => a0 = ai = • • = aF = 0. 
Jfe=0 

If degPfc = k for every k € N, the basic set is called simple. By Nn we denote the 
number of nonzero nnk. If limsupn^(X>./Vn

 n = 1, the basic set is called a Cannon 
basic set. 

Given a special monogenic function / such that 

oo 

f(x) = ^2Pn(x)cn 
n-=0 

near 0, we can formally express it in terms of the P* as 

(4-2) /(z) = f > t ( x ) ( f > n t c B ) . 
*=-0 \ n=-0 / 

Definition. If for all special monogenic functions / defined in_a neighborhood of 
B(r) this series in terms of the P* converges normally to / i n £(r), the basic set 
{Pk(x)} is called effective in B(r). 

5. A Cannon Theorem for Cannon basic sets of special monogenic poly­
nomials. 

The Cannon function A(r) of a Cannon basic set {Pfc(x)} is defined as 

A(r) = limsupAn(r)1/n, 
n-*oo 

where 
oo 

*"(r) = 52 SUP \P^(x)nnkl 

Notice that An and A are non-decreasing. 
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L e m m a 5. For all r > 0 we have 

A(r) > r. 

PROOF : Indeed, 

Kr) -._ -ŕmsup sup | УjPjfc(x)7rn*|1/n = limsгn sup | p n ( x ) | 1 / n = г. 
n-~oo |x |=-r fc=0 П-*Oo Jzj=г 

L e m m a 6. If the special monogenic function f(x) = Yln^o Pn(x)cn w such, that 

OO 

(5.1) ] T |c„|An(r) < + oo, 
• n = 0 

the basic series (4.2) represents f in B(r). 

PROOF : The convergence in (5.1) provides the justification for the rearrangement 
of terms needed to obtain (4.2) from (2.1) using (4.1) and proves its normal con­
vergence on B(r). m 

L e m m a 7. If the special monogenic function f(x) = ]C n t = 0 p n (x)c n is such that 

(5.2) limsup(|c„|A„(r)) 1/" > 1, 
n—*oo 

there exists a special monogenic function g(x) — $3nt_oP»(x)cn such that c'n = 0 if 
cn = 0 and 

(5.3) limsup ( j ^ i ) 1 / " < 1, 
n__ .O O (cn--0 l^nl 

that cannot be represented in B(r) by the basic set {P*(x)}. 

Remark. As a consequence of (5.3), Rg > Rf. 

PROOF : First remark that if a € Am, the number 

,7(a)=p/|Q| i f a^°' 
\ 1 otherwise, 

has the property that the real part of arj(a) is \a\, 
Now if for some k € N the series 

(5-4) V > „ | c n | | , г n / t | 
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diverges, we take 
oo 

g(x) = Y^Pn(x)Nn\cn\n(7rnk). 
n=0 

Then (5.3) is easily verified and in (4.2) applied to g the coefficient of P* diverges. 
If all series (5.4) converge, we define 

dn = Nn|cn|max sup IP*^)^* ) 
*=° |*|=r 

and x(n\ kn as the values for which dn is attained in this equation. We construct 
a sequence of integers n0 < n\ < ... by taking n0 = 0 and, having determined 
n0, n\,..., np_i, requiring np to satisfy 

--p|A..t(*)l E^„k„IKt„;i<-Í 
l*l=»- » « , ' 3 - , 

for q = 0 , 1 , . . . , p — 1 and 

P-Í 

dnp>max(p,3.2m'2^dn(). 
1=0 

The first requirement can be met because all series (5.4) converge, the second one 
because by (5.2) there exists an e > 0 such that dn > (1 -f e)n if n > n0(e). Then 
the special monogenic function 

oo 

g(x) = V;Pn,(I)^ni|cn,Wi'tn|(x('"»)ffn,fcn,) 
. = 0 

satisfies (5.3) but for every / > 0 the supremum over B(r) of the modulus of the term 
involving P*„ in (4.2) applied to g is larger than / - 1/3 - 1/3 > / /3 , contradicting 
its normal convergence. • 

Theorem 1. The Cannon basic set {Pjfe(x)} is effective in B(r) if and only if 
A(r) = r. 

PROOF : If A(r) = r and / is special monogenic in a neighborhood of B(r), 

l i m s u p ( | c n | A n ( r ) ) 1 / , t < r / i . / < l ) 

n—*oo 

implying the convergence of 2nLo lcnl^n(r) and the result follows from Lemma 6. 
If X(r) = R ^ r, then, by Lemma 5, R > r. Take r < Ri < R and consider 
f(x) = Hn^oPn(x)/Ru t h e i * clearly 

limsup(An(r)/Bn1/n = A(r)/1*i > 1, 
n—*oo 

so that by Lemma 7 there exists a special monogenic function g such that R9 > 
Rf s_ Rx > r that cannot be represented in B(r) by the basic set {Pk(x)}- • 
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6. Rate of increase. 

Definition. A monogenic function / defined on the whole of R m + 1 is called entire. 
The rate of increase of an entire special monogenic function can be defined in 

terms of its Taylor series near zero in analogy with complex analysis (cf. [5]): 

Definition. Let / = ]£jklo Pn(x)cn ke the power series expansion of an entire 
special monogenic function near zero. The order p of / is then defined by 

,. n logn 
p = hm sup -nr^iog(i/|cnir 

and, if 0 < p < oo, the type a of / by 

a = —l imsupn |c n | p / n . 
ep n—•oo 

We will try to refine our result on the effectiveness of Cannon basic sets by taking 
into account the rate of increase of the functions that are to be represented. This 
requires a notion of rate of increase for basic sets, defined as follows. 

Definition. Let {Pt(-p)} be a basic set of special monogenic polynomials. Its order 
uf is defined by 

r r l oS *n(r) 
u> = hm l i m s u p — , 

r—oo n-KX) n logn 
where An(r) = YlkLo 8uPjx|-=r IP*(:c)7rn*|- If 0 < w < oo we define the type 7 by 

r e An(r)V"" 
7 = hm —limsup , 

r-*oo u> n—>oo n 

Often we will need to express that the rate of increase of a function or of a basic 
set is 'less' than a given rate of increase. This means that either the order is smaller 
than the given order or that the orders are equal but that the type is smaller than 
the given type. 

Our aim is to link the order and type of a basic set to the order and type of the 
entire functions it represents. 

Theorem 2. A necessary and sufficient condition for a Cannon basic set {Pjfe(z)} 
to represent all entire special monogenic functions of increase less than order p type 
(T, where 0 < py cr < oo, is that 

(6.1) l i m s u p ( ^ ) 1 / , , A n ( r ) 1 ' n < 1 
n—>oo n 

for all r > 0. 

PROOF : If (6.1) does not hold for r = r i , there exists a &i < a such that 

U m s u p ( f £ f l ) i / ^ n ( r 1 ) 1 / n > l . 
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Then the function f(x) = £nt=oP»(x)c» w n e r e co = 0 and cn(epai/n)n/p for n > 0, 
is entire of order p type o\ and 

1imsup(|c„|A„(r))1/n > 1 
n—*oo 

for all r > r\. By Lemma 7 there exists a special monogenic entire function g 
of increase less than or equal to order p type <j\ (because of 5.3) that cannot be 
represented by {Pk(x)} in B(r\). 

On the other hand, if r < 0 and / = Y^LoP^i^n is of increase less than order 
p type c*i where 0 < a\ < <7, |c„| < (ep<Ti/n)n/p for all n > no(<7i), so 

Hmsup(|cn|An(r))1/" < limsup(-^^-)1^A„(r)1/n < l im sup( -^ ) 1 ^A n ( r ) 1 / n < 1 
n—*oo n—+oo n n—>oo n 

and, by Lemma 6, / can be represented in B(r) by {Pk(x)}. • 

Corollary. A necessary and sufficient condition for a Cannon set {Pjfc(x)} of spe­
cial monogenic polynomials to represent every entire special monogenic function of 
increase less than order p type o in any ball B(r) is that the set is of increase not 
exceeding order \/p type \/a. 

PROOF : This is easily verified using the definition of order and type for Cannon 
sets. • 
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