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Non-convex perturbations of evolution 
equations with ra-dissipative operators in Banach spaces 

EVGENIOS P . AVGERINOS AND NlKOLAOS S. PAPAGEORGIOU* 

Abstract. In this paper we establish the existence of integral solutions for a nonlinear, 
multivalued evolution equation of the form x(t) € Ax(t) -f F(i,ar(t)), where A : X —• 
2 * is an m-dissipative operator and F(«, •) a nonconvex valued perturbation. Our result 
generalizes a recent existence theorem of Cellina-Marchi (Israel J.Math 46 (1983), pp. l~l l ) . 

Keywords: m-dissipative operator, compact semigroup, lower semicontinuous multifunc
tion, Arzela-Ascoli theorem, parabolic equation 

Classification: 34G20 

1. Introduction. 
Evolution equations of the form —x(t) € Ax(t) + / ( t ) in a Hilbert space, were first 

studied by Brezis [4], with A a maximal monotone operator and /(•) an integrable 
perturbation. The work of Brezis was extended by Attouch-Damlamian [1], to 
systems of the form — x(t) € Ax(t) + F(£,#(£)), with F(-,-) being a multivalued 
perturbation having convex values. Attouch-Damlamian [1] proved two existence 
results: one with A being a general maximal monotone operator, but with the 
underlying state space being Rn and the other with A being a subdifferential (i.e A = 
d(j>, with <t> being a proper, closed, convex function) and the underlying state space 
being any separable Hilbert space. Recently Cellina-Marchi [6] proved an existence 
theorem for the case where the multivalued perturbation has nonconvex values and 
the state space is Rn. The study of those evolution equations in general Banach 
spaces (not necessarily Hilbert), was initiated by Pazy [12], who considered the case 
of A being a densely defined, linear, m-accretive operator and the perturbation was 
single valued. A nonlinear version of Pazy's theorem was proved by Vrabie [14], who 
also considered the case of multivalued perturbations with convex values, extending 
this way the work of Attouch-Damlamian [lj. Other interesting works in these or 
related issues were done by Gutman [8], Haraux [9] and Schechter [13] (he studied 
the dependence of the solutions on variations of the initial data). 

In this note, we extend the result of Cellina-Marchi [6] to arbitrary separable 
Banach spaces, weakening also the hypotheses on the multivalued perturbation 
F(t, x). Instead of assuming joint Hausdorff continuity for F(£, ar), we only require 
lower semicontinuity in the variable x, a more natural hypothesis in the context 
of applications. 

•The second author was supported by NSF Grant DMS-8802688 



658 E.RAvgerinos, N.S.Papageorgiou 

2. Preliminaries. 
Let ( 0 , E) be a measurable space and X a separable Banach space. By Pf(X) 

we wiU denote the collection of all nonempty, closed subsets of X. A multifunction 
F : 0 —• Pf(X) is said to be graph measurable, if GrF = {(w,z) € Q x X : x € 
F(u>)} G E x B(K ) , where J5(X) is the Borel <r-field of X. Now let /i(-) be a cr-fmite 
measure on E. By SF we will denote the set of integrable selectors of F(-) i.e. 
SF = {/ G LX(X) : f(u>) G F(UJ) ,u-a.e.}. Using Aumann's selection theorem, it is 
easy to check that if u> —* |F(u>)| = sup{||x|| : x G F(^)} is in L\ (in which case we 
say that F(-) is integrably bounded), then SF 7- 0. If K, z are Hausdorff topological 
spaces and G : Y —> 2Z \ {0}, then we say that F() is lower semicontinuous (l.s.c), 
if for aU U C Z open, the set G~(U) = {y € Y : G(y) fl (7 ^ 0} is open in Y. If 
Y, z are metric spaces, then the above definition is equivalent to saying that for all 
yn -> y we have G(y) C limG(yn) = {z G Z : z = l imz n , z n € G(yn)}. 

Next let X be any Banach space. Let J : K —> 2X be the duality map of X 
i.e. / ( * ) = {x* € X* : (x\x) = ||x||2 = | |x*| |2}. Clearly the values of J(-) are 
closed, convex, bounded subsets of K*, which because of the Hahn-Banach theorem 
are also nonempty. Recall that if X* is strictly convex, then J() is single valued. 
Using J(«) we can define the upper semi-inner product (denoted by (•, •)+) and the 
lower semi-inner product (denoted by (-,•)-) bS follows: 

(*» y)+ = sup{(.r*,y) : x* G J(x)} 

and 
(x,y)_ = inf{ i* ,y) : x* G J(x)} 

for all ar, y G X. An operator A : X —.• 2X is said to be dissipative (see Barbu [2], if 
(x — x ' , y - y ' ) _ < 0 for any (#,y), (x',y') G GrA. We say that A is m-dissipative, if 
it is dissipative and in addition R(I—XA) = X for all A > 0. It* is well known that an 
m-dissipative operator generates a semigroup {5(<)}<>o of nonlinear contractions, 
via the Crandall-Liggett formula 

t 
S(t)x= lim (I - -~A)~nx, í > 0 , xЄD(A). 

n 

Now let A be an m-dissipative operator, / G Ll(X) and XQ G D(A). Consider 
the following Cauchy problem on T = [0, b): 

,« f*(.)e.4x(0+ /(*)! 
K) U(o)=x0 ; 

Following Benilan [3], we say that a function x G C(T, X) is an "integral solution" 
of (*), if x(0) = x0 and 

| |«W - yf < ll*W " y| | 2 + 2 j f (/(r) + », x(r) - y) + dr 

for all (y, *) G GrA and all 0 < s < t < b. 
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It is well known that under the above hypotheses Cauchy problem (*) has a unique 
integral solution. Moreover this unique integral solution depends continuously on 
the data of the problem. In fact if * i ( ) is the solution of (*) with data (a?oi> / i ) € 
D(A) x Ll(X) and *2(-) the solution of (*) with data (x02J2) € D(A) x LX(X), 
then we have 

IM<) - *2(<)||2 < ll*oi - *o2||2 + 2 / (h(r) - / 2(r) , xt(r) - *2(r))+dr, t € T, 
Jo 

or equivalently 

| |*i(0 - *2(t)|| < ||xoi ~ *02.i + f \\h(r) - f2(r)\\dr. 
Jo 

If A is densely defined, linear, m-accretive, then the notion of integral solution 
coincides with that of mild solution. 

Recall that a "strong solution" of (*) is a continuous function * : T —• X (i.e. 
*(•) 6 C(T,K)) , for which we have that x(t) € D(A), is diffierentiable a.e. on (0,6) 
and satisfies (*) a.e. with *(0) = *o € D(A). 

Every strong solution is an integral solution. The converse is true only if we 
impose additional hypotheses on K, A and / .We are not going to go into the details 
of that problem. We only mention that if X = Rn and A is maximal monotone or if 
X is a Hilbert space and A = d<t>, with ^ being a proper, closed, convex function on 
K, then every integral solution is also strong for any initial condition *o € D(A). 
For further details we refer to Barbu [2], Brezis [4] and Schechter [13]. 
3. The Theorem. 

In this section we will establish the existence of an integral solution for the fol
lowing multivalued evolution equation: 

(x(t)eAx(t) + F(t, x(tm 
( ' \ x ( 0 ) = x0 / 

By an integral solution of (**), we mean a function * € C (T ,X) , which is an 
integral solution (as defined in Section 2) of x(t) 6 Ax(t) + / ( t ) , *(0) = *o for some 

f € SF(M)V 
Let T = [0,6] and let X be a separable Banach space. We will need the following 

hypotheses: 
H(A): A : X —> 2X is an m-dissipative operator, which generates a semigroup 

of compact nonlinear contractions (i.e. S(t) : D(A) —> D(A) is compact 
for t > 0), 

H(F): F : T x X -> Pf(X) is a multifunction s.t. 
(1) (t,*) - • F(t,x) is graph measurable, 
(2) for every t€T,x -> F(t, *) is l.s.c, 
(3) |F(t, *) | = supflly|| : y € F(t, *)} < a(t) + 6(t)||*|| a.e. 

with <*(•)> K) € L\. 

H0: *0 € D(A). 

We have the following existence result concerning (**). 
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Theorem. If hypotheses H(A), H(F) and H0 hold, then (**) admits an integral 
solution. 

PROOF : We will start by determining an a priori bound for the integral solutions 
of (**). So suppose a?(«) € C(T,X) is such a solution of (**). Recalling that S(t)x0 

is the integral solution of y(t) € Ay(*),y(0) = x0 and using the inequalities of 
Section 2, we have: 

||-(.)-s(.>,n< A/(-)ll-» 
Jo 

for all* € T and some / 6 Sp(.iX(.)y Since t —* S(t)xo is continuous on T and using 
hypothesis H(F) (3), we have 

| K í ) | | < M , + í\a(s) + b(S)\\x(s)\\}ds 
Jo 

for some M\ > 0. Applying Gronwall's inequality, we get that 

where K = Mi + ||a||i. Then define a new multifunction F : T x X —> P/(X) as 
follows: 

' F(t,x) if N l < M 2 
F(t'X) S F(t,ff) if ||*|| > M 2 . 

Observe that F(t,x) = F(t,pM2(x)), where PM 2 ( ' ) -s the M2-radial retraction. 
We have GrF = {(t,x,y) € T x X x X : (*,PM2(*)>y) € GrF}. Let r : T x X x 
X - ~ * . T x X x X b e defined by r(t,x,y) = (t,PM2(*),y). Recalling that pM2(0 
is 2-Lipschitz, we have that r(•,•,•) is continuous, hence measurable. So, since 
GrF € E x B (X) x B(X), we have r-^GrF) = CrF € S x J5(X) x B (X) i.e. 
F(-,-) is graph measurable. Also since F(t,-) is the composition of the Lipschitz 
function PM3(') with the l.s.c. multifunction F(t, •), we have that F(t, •) is l.s.c. 
Finally note that \F(t,x)\ < a(t) + M2h(t) = 7 (0 a.e. with T(-) 6 2^ . 

In the sequel we will consider the following multivalued Cauchy problem: 

, , , y i i(t)eAx(t) + F(t,x(t)j\ 

l * ( 0 ) = -o J 

Let h € Ll(X) and consider the Cauchy problem 

,***, rx(t)€Ao:W + M01 
V lar(0)=.To / 

We know (see Section 2), that (***) has a unique integral solution. Let r : 
LX(X) ~+ C(T,X) be the map that to each I^X^perturbation h(-) assigns the 
corresponding unique integral solution r(h)(-) € C(T ,X) of (***). Let B(l) = 
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{h € Ll(X) : \\h(t)\\ < -y(t) a.e.}. Our claim is that K = r(£(7)) is relatively 
compact in C(T(X). 

To this end, first we will show that for every t € TyK(t) = r(B(y))(t) = {x(t) : 
x(*) = r(h)(-), h € B(7)} is compact in X. For t = 0, we have A'(0) = {xQ} and 
so the claim is automatically verified. Hence let t > 0, t € T. Note that B(y) is 
a uniformly integrable subset of L1(X). So given t € (0,6) and € > 0, we can find 
6(e) € (0,t) s.t. for B C T Lebesgue measurable with X(B) < 8, we have: 

/ . 
\\h(s)\\ds<e 

JB 

for all h € B(i). Now consider the following Cauchy problem; on [t — 6,t]: 

f i(*)(*) e A*(«)(s) 1 

U(«)( .-«) = r(/i)(.-*)J 

where h 6 B(7). From the inequalities of Section 2, we have: 

||-(*)(0-r(fc)(0ll< I* IIM«)ll«-»<e 
JtS 

for all h G £ (7 ) . Also recall that 

x(6)(t) = S(6)r(h)(t -6)C S(6)K(t - 6) 

and the latter is relatively compact in X, since K(t — 8) = {y(t — 8) : y(-) € K} 
is bounded and S(8) is a compact contraction (see hypothesis JEf(A)). Therefore 
S(8)K(t — 6) is compact. So for every t £ T, every e > 0 and every z € K(*)> there 
exists an element ze in the compact set S(8)K(t — 6) s.t. \\z — ze\\ < e = > K(t) is 
compact. 

Next, recall that since the semigroup S(t) is compact, for B C. X nonempty, 
bounded, we have that t —> {S(t)x : x 6 B] is equicontinuous on T. Hence given 
e > 0, we can find 61(e)* > 0 s.t. for \t' -t\ < 6 and for all a; 6 K(t - 6) we have: 

\\S(t' -t + 6)x-S(8)x\\<e 

=*\\S(t' - t + 6)r(h)(t - 8) - S(8)r(h)(t - 6)|| < e 

=> | |x (6) ( t ' )~x (6) ( t ) | |<e . 

So finally for 62 = min(6,6i) and for \t' - t\ < 62, we have 

\\r(h)(t')-r(h)(t)\\ 

<\\r(h)(f) - x(6)(t')\\ + \\x(S)(t') - x(6)(t)\\ + ||x(«)(0 - r(ft)(0|| < e + e + e - fe 

=i> K = r(B(7)) is equicontinious. 

Invoking the Arzela-Ascoli theorem, we conclude that K is compact in C(T, X). 
Thus by Mazur's theorem Kc = convK is compact. 
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Next let R : Kc ~> 2lHX) be defined by 

-*(*) = 4 ( ,*<•))• 
Since F(«, •) is graph measurable, it is easy to check as before, that t —> F(t, x(t)) 

is graph measurable and integrably bounded by 7(0 and so R(-) has nonempty 
values, in fact R(-) Pf(L1(X))-val\ied. Also since F(t, 0 is l.s.c. and using Theorem 
4.1 of [11], we have that if xn —> x in Kc, then R(x) C s - limR(g«), where s 
indicates the strong topology on Ll(X). So jR(0 is l.s.c. (see section 2). Hence we 
can apply "Eryszkowski's selection theorem [7], to get v : Kc —• Ll(X) continuous 
s.t. v(x) € R(x) for all x € K. Set p = r o v. Clearly p : Kc —• Kc is continuous. 
Apply Schauder's fixed point theorem to get x € Kc s.t. x = p(£) = r(v(x)). Hence 
we have that x(-) is an integral solution of 

í x(t)€Ax(t) + v(x)(tj\ 

\ x(0) = x0 J 

with u(x)(0 € 5 L ft( . So «(0 € C(T,X) is an integral solution of (**)'. From 

the definition of F(tyx) and hypothesis If(F)(3), we see easily that | F ( t , i ) | < 
a(<) + 6(t)||x|| a.e.. So as before, through GronwalPs inequality, we get ||x(<)|| < M2 , 
t € T = > F(t,x(t)) = F(t,x(t)), t £T = > x(0 is the desired integral solution of 
(**)• • 

As we mentioned in Section 2, when X = Rn, then every integral solution is a 
strong solution. So we can state as a corollary to our theorem, an extension of the 
existence result of Cellina-Marchi [6]. 

So let T = [0,6],X = Rn and make the following hypothesis about A: 

H(A)': A : D(A) C Rn —> 2R is a maximal monotone operator. 

Then we get as a corollary to our theorem, the following extension of the work of 
Cellina-Marchi [6]. • 

Corollary. If hypotheses H(A)', H(F) and H0 hold, then (**) admits a strong 
solution. 

Remarks. (1) In Celina-Marchi [6], the multivalued perturbation F(tyx) was as
sumed to be jointly Hausdorff continuous. 

(2) Hypotheses H(F) (I) and (2), cover the case where t —* F(t,x) is graph 
measurable and x —» F(t,x) is Hausdorff continuous (see Theorem 3.3 of [10]). 

4. A n example. 
Let ft be a bounded open domain in Rn with smooth boundary dCl = T. 
Let r > (n — 2)/n and consider the following multivalued, nonlinear, parabolic 

partial differential equation on T x ft: 
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/****\ 
^ ^ - Дx(t, z)|x(t, z)Гl Є F(t, z,x(t, z)) 

x(t, z) = 0 on T x Г 

x(0,z) = x o (z) on { 0 } x í î 

Here F : T x Q x R —> P/(R) is a multifunction which is l.s.c. in the third variable 
and (t,y) —• ^F(tt)y()) ls graph measurable on T x L1(Q). It is easy to check that 
this is the case if (t,z) -> F(t,z,r) is measurable and r --> F(t,z,r) is Hausdorff 
continuous. Also assume that | F ( t , z , r ) | = sup{||u|| : v € F(t,z,r)} < a(t,z) + 
b(t,z)\r\ a.e. with a ( v ) € L^.(T x ft) and 6(t,-) € L°°(0) while t -4 ||6('.-)lloo 
belongs in L\. Furthermore let x0 = x0(-) € Ll(Q). 

Take K = L1(Q). This is a separable Banach space. Consider the nonlinear 
operator A : D(A) C X -> K defined by Ax = Ax|a, | r-1 with D(A) = {x € 
K : x , x r - J e WQ

hl(Q), Axlxl7*"1 € I 1 ^ ) } - From Brezis [5] we know that the 
operator A defined above is m-dissipative and the nonlinear semigroup it generates 
is compact for t € (0,6]. Also let F : T x X -> Pf(L

l(X) be defined by F(t,x) = 
^F(«,.,x())- Then F(-,-) is graph measurable, F(t,-) is l.s.c. (see Theorem 4.1 of 
[11J j wad 

| F ( t , x ) < a ( t ) + 6(t)||x | |ia.e 

with 

a(t) = IK*, .)||, and 8(0 = UK*, OIU 
Rewrite the initial-boundary value problem (****) as the following abstract mul

tivalued evolution equation : 

(****y f x(t)6Ax(t)i-F(t,x(t)) 
\ x(Q) = x0 

We see all hypotheses of our theorem are satisfied and so we know that (****)' 
has an integral solution x(-) 6 C(T,L1(H)). Set x(t,z) = x(t)(z)z G 0 . This is a 
generalized solution of (****). 
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