Commentationes Mathematicae Universitatis Carolinas

Evgenii Viktorovich Voskresenskii
Asymptotic equivalence and homeomorphism of the families of endomorphisms and surjection of the metrizable vector fibering

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 737--741

Persistent URL: http://dml.cz/dmlcz/106795

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Asymptotic equivalence and homeomorphism of the families of endomorphisms and surjections of the metrizable vector fibering

E.V.Voskresensky

Abstract

By means of the notion of abstract vector fibering of V.M.Millionshikov, the generalization of some theorems - classifiers playing an important role in the theory of asymptotic integration, is carried out.

Keywords: Metrizable vector fibering, surjection, bijection, homeomorphism.
Classification: 34A10

The perturbed differential equations may be classified on the basis of the notion of asymptotic equivalence $[1-3]$. Many theorems - classifiers playing animportant role in the theory of asymptotic integration have appeared in mathematical literature lately. What kind of interpretation ensures such level of community that unites some of the results and liquidates numerous repetitions?

Evidently such interpretation is possible by means of the notion of abstract vector fibering of V.M.Millionshikov [4].

1. Let (E, p, B) be an abstract metrizable vector fibering, [4]. The surjection (E, p, B) is to be called the pair of mappings $\left(Y, X^{1}\right), Y: E \rightarrow E, X^{1}: B \rightarrow B$ where $p Y=X^{1} p$, and for any $b \in B$ the restriction $Y[b] \stackrel{\text { def }}{=} Y \mid p^{-1}(b)$ of the mapping Y on the stratum over the point b is the surjection $p^{-1}(b) \rightarrow p^{-1}\left(X^{1} b\right)$.

Let $M \subset \mathcal{R}$ and $+\infty$ be the accumulation point of the set M. The mapping F_{0} of the set M into the set $\left\{\left(Y, X^{1}\right)\right\}$ of all surjections (E, p, B) is called the family of the surjections of abstract vector fibering.

Let us suppose that there are defined families of endomorphisms, [4], $F_{1}: M \rightarrow$ $\{(X, X)\}$ and surjections $F_{2}: M \rightarrow\left\{\left(Y, X^{1}\right)\right\}$ of the vector fibering (E, p, B), where for some $b \in B p^{-1}\left(X_{t} b\right) \subseteq p^{-1}\left(X_{t}^{-1} b\right)$ and $\left\|X_{t} z\right\| \leqslant K\left(t_{0}, z\right) Q(t)$ on these strata. $X_{t} y$ and $Y\left(t: t_{0}, z\right)$ are accordingly the family of endomorphisms F_{1} and the family of surjections F_{2} in the point $(t, z) \in M \times p^{-1}(b), K\left(t_{0}, z\right)$ is a nonnegative number, $t \geqslant t_{0}, Q: M \rightarrow(0,+\infty), X_{t_{0}} z=z, Y\left(t: t_{0}, z\right)=y, z \in p^{-1}(b)$. Henceforth $X . z$ and $Y\left(\cdot: t_{0}, z\right)$ will be called the values of these families in the point $z \in p^{-1}(b)$. Suppose that $\Phi_{1}=\left\{X . z: z \in p^{-1}(b)\right\}, \Phi_{2}=\left\{Y\left(\cdot: t_{0}, z\right)\right.$, $\left.z \in p^{-1}(b)\right\}, \Phi_{3}$ is the set of all values of all families of surjections F_{3} such that $F_{3}: M \rightarrow\left\{\left(Z, X^{2}\right)\right\}, p^{-1}\left(X_{t}^{2} b\right)=p^{-1}\left(X_{t}^{-1} b\right)$, and if $Z\left(\cdot: t_{0}, z\right) \in \Phi_{3}$, then $z \in p^{-1}(b),\left\|Z\left(t: t_{0}, z\right)\right\| \leqslant K_{3} Q(t)$, where the positive number K_{3} depends on the family of surjections and on the point $\left(t_{0}, z\right) \in M \times p^{-1}(b)$. Obviously, $\Phi_{1} \subset \Phi_{2}$.

Let us assume that the linear operations are defined into $\Phi_{\mathbf{3}}$ in natural way and

$$
\|Z\|_{\phi_{3}}=\sup _{t \geqslant t_{0}} \frac{\left\|Z\left(t: t_{0}, z\right)\right\|}{Q(t)}, \quad Z \in \Phi_{3} .
$$

Then $\boldsymbol{\Phi}_{3}$ is the known Banach space.
Definition 1. The families F_{1} and F_{2} are called asymptotically equivalent according to Levinson on the stratum $p^{1}(b)$ with respect to the function Q, if there exist the bijection $P: p^{-1}(b) \rightarrow p^{-1}(b)$ such that $X_{t} z=Y\left(t: t_{0}, P z\right)+o(Q(t))$ for $t \rightarrow+\infty$ and for any $z \in p^{-1}(b)$. The families F_{1} and F_{2} are called homeomorphic on the stratum $p^{-1}(b)$, if Φ_{1} and Φ_{2} are homeomorphic in the topology of the space $\boldsymbol{\Phi}_{3}$.

Definition 2. The families F_{1} and F_{2} are called asymptotically equivalent according to Nemitsky on the stratum $p^{-1}(b)$ with respect to the function Q, if they are asymptotically equivalent according to Levinson on this stratum and P is a homeomorphism.

Theorem 1. Let us assume that

$$
\begin{equation*}
Y\left(t: t_{0}, z\right)=X_{t} z+X_{t} T_{t} Y\left(\cdot: t_{0}, z\right) \tag{1}
\end{equation*}
$$

and, on the contrary, if the surjection $\varphi(t)$ satisfies the equation (1), then $\varphi(t) \equiv$ $Y\left(t: t_{0}, z\right)$ for $t \geqslant t_{0}$ and $\forall z \in p^{-1}(b)$, where:
a) $T_{i}: \Phi_{3} \rightarrow p^{-1}(b)$ for $t \geqslant t_{0}$,
b) $T_{t} Z\left(\cdot: t_{0}, z\right)=\alpha+H_{t} Z\left(\cdot: t_{0}, z\right), \quad \alpha \in p^{-1}(b)$ and depends on $Z\left(\cdot: t_{0}, z\right) \in$ $\Phi_{3}, \quad H_{t} 0=0$,
c) $\left\|H_{t} Z_{1}\left(\cdot: t_{0}, z_{1}\right)-H_{t} Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\| \leqslant\left\|g_{t}\right\|\left\|Z_{1}\left(\cdot: t_{0}, z_{1}\right)-Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\|$ for $\forall z_{1}, z_{2} \in p^{-1}(b), \quad g_{t} \in p^{-1}(b)$ for any $t \geqslant t_{0}, \quad\left\|g_{t}\right\| \rightarrow 0$ for $t \rightarrow+\infty$
Then the families F_{1} and F_{2} are asymptotically equivalent according to Levinson on the stratum $p^{-1}(b)$ with respect to the function Q.

Proof : We consider the operator

$$
\begin{equation*}
L: \Phi_{3} \rightarrow \Phi_{3} \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
L Z_{2}\left(\cdot: t_{0}, z_{2}\right)=Z_{1}\left(\cdot: t_{0}, z_{1}\right) \\
Z_{1}\left(t: t_{0}^{\prime}, z_{1}\right)=X_{t} z+X_{t} H_{t} Z_{2}\left(\cdot: t_{0}, z_{2}\right)
\end{gathered}
$$

Then L is the contracting operator in Φ_{3} and, consequently, for any $y \in p^{-1}(b)$ there exists a fixed point of L in Φ_{3}, that is

$$
Z\left(t: t_{0}, z_{0}\right)=X_{t} z+X_{t} H_{t} Z\left(\cdot: t_{0}, z_{0}\right), \quad Z\left(\cdot: t_{0}, z_{0}\right) \in \Phi_{3}
$$

Then on the basis of b) we have

$$
Z\left(t: t_{0}, z_{0}\right)=X z_{0}+X_{t} T_{t} Z\left(\cdot: t_{0}, z_{0}\right), \quad z_{0} \in p^{-1}(b)
$$

Taking into consideration (1), hence, it follows $Z\left(\cdot: t_{0}, z 0\right) \in \Phi_{2}$. Here $P z=z_{0}$, where P is the bijection $p^{-1}(b)$ on $p^{-1}(b), T_{t} Z\left(\cdot: t_{0}, z+\alpha\right)=\alpha+H_{t} Z\left(\cdot: t_{0}, z+\alpha\right)$ and $Z\left(t: t_{0}, P z\right)=X_{t} z+o(Q(t))$ for $t \rightarrow+\infty$.

Lemma 2. Let D be a Banach space and $f: D \rightarrow D$ be a contracting operator, U and V non-empty subsets of D such that $(I-f) V \subset U$ (I is an identity operator). If $S: U \rightarrow V$ satisfies the correlation

$$
S y=y+f S y
$$

then S is the homeomorphism of U on V.
Proof : Since f is a contracting operator, then for any $y S y$ is a unique solution of the equation

$$
\begin{equation*}
S y=y+f S y, \quad y \in V \tag{3}
\end{equation*}
$$

Suppose that $y_{1} \neq y_{2}$. Let us show that $S y_{1} \neq S y_{2}$. If we assume the contrary, then

$$
S y_{1}=y_{1}+f S y_{1}, \quad S y_{2}=y_{2}+f S y_{2}
$$

and $y_{1}-y_{2}=0$. Hence, $S y_{2} \neq S y_{1}$. Let x be a fixed element. Let us consider the equation

$$
\begin{equation*}
x=y+f x \tag{4}
\end{equation*}
$$

In this case $y=x-f x$, that is the equation (4) has the unique solution. Hence, there exists S^{-1}. Let us prove the continuity of S and S^{-1}. Let $y_{n} \rightarrow y_{0}$ for $n \rightarrow+\infty$. Then

$$
S y_{n}-S y_{0}=y_{n}-y_{0}+f S y_{n}-f S y_{0}
$$

and

$$
\left\|S y_{n}-S y_{0}\right\| \leqslant\left\|y_{n}-y_{0}\right\|+q\left\|S y_{n}-S y_{0}\right\|, \quad 0<q<1 .
$$

Hence, it follows

$$
\left\|S y_{n}-S y_{0}\right\| \leqslant \frac{1}{1-q}\left\|y_{n}-y_{0}\right\|
$$

that is

$$
S y_{n} \rightarrow S y_{0} \text { for } y_{n} \rightarrow y_{0}
$$

Let us prove the continuity of S^{-1}. It is easy to notice that $S^{-1} y$ satisfies the correlation

$$
y=S^{-1} y+f y, \quad y \in V
$$

Then, if $y_{n} \rightarrow y_{0}$ for $n \rightarrow+\infty$, then

$$
\left\|S^{-1} y_{n}-S^{-1} y_{0}\right\| \leqslant\left\|y_{n}-y_{0}\right\|+q\left\|y_{n}-y_{0}\right\|
$$

that is $S^{-1} y_{n} \rightarrow S^{-1} y_{0}$. The lemma is proved.

Theorem 2. Let us assume that the conditions a) and b) of Theorem 1 are fulfilled. If
$\left\|H_{t} Z_{1}\left(\cdot: t_{0}, z_{1}\right)-H_{t} Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\| \leqslant q\left\|Z_{1}\left(\cdot: t_{0}, z_{1}\right)-Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\|_{\Phi_{3}}, \quad 0<q<1$ then the sets Φ_{1} and Φ_{2} are homeomorphic in the topology of the space Φ_{3}.

Proof : On the basis of (2) we consider the operator

$$
\begin{array}{r}
L_{X} Z=X+F Z, \quad X=X . z \in \Phi_{1}, \quad Z \in \Phi_{3}, \quad F Z=Z_{1} \tag{5}\\
Z_{1}\left(t: t_{0}, z_{1}\right)=X_{t} H_{t} Z\left(\cdot: t_{0}, z\right)
\end{array}
$$

F is a contracting operator here. We define the operator $S: \Phi_{1} \rightarrow \Phi_{2}$ as follows: for any $X \in \Phi_{1} S X$ is the fixed point of the contracting operator L_{X}. Then

$$
S X=L_{X} S X
$$

If we assume that $U=\Phi_{1}, V=\Phi_{2}$, then, on the basis of the Lemma, S is a homeomorphism of Φ_{1} on Φ_{2}.

Corollary. From Theorem 2 it follows that the families F_{1} and F_{2} are homeomorphic on the stratum $p^{-1}(b)$. Moreover, they are asymptotically equivalent according to Nemitsky on this stratum.
3. Now we consider the case, when on each stratum $p^{-1}\left(X_{t}, b\right)$

$$
\begin{equation*}
\left\|X_{t} z\right\| \leqslant K_{i}\left(t_{0}, z\right) Q_{\imath}(t) \tag{6}
\end{equation*}
$$

where

$$
z \in \Xi_{i}, \bigcup_{i} \Xi=p^{-1}(b), K_{i}: M \times \Xi_{i} \rightarrow(0,+\infty), Q_{2}: M \rightarrow(0+\infty), i=\overline{1, n}
$$

Suppose that $\Phi_{1}^{(i)}=\left\{X_{0} z: z \in \Xi_{i}\right\}, \Phi_{3}^{(i)}$ is the set of all values of all families of surjections $F_{3}^{(i)}$ such that $F_{3}^{(2)}: M \rightarrow\left\{\left(Z, X^{2}\right)\right\}, p^{-1}\left(X_{t}^{2} b\right)=p^{-1}\left(X_{t}^{1} b\right)$ and if $Z(\cdot:$ $\left.t_{0}, z\right) \in \Phi_{3}^{(i)}$, then $z \in p^{-1}(b),\left\|Z\left(t: t_{0}, z\right)\right\| \leqslant K_{3}^{(i)} Q_{2}(t)$, where the positive number $K_{3}^{(i)}$ depends on the family of surjections and on the point $\left(t_{0}, z\right) \in M \times p^{-1}(b)$, $\Phi_{1}^{(i)} \in \Phi_{3}^{(i)}, i=\overline{1, n}$.

Theorem 3. Assume that

$$
\begin{equation*}
Y\left(t: t_{0}, z\right)=X_{t} z+X_{t} T_{t}^{(z)} y\left(\cdot: t_{0}, z\right), \quad i=\overline{1, n} \tag{7}
\end{equation*}
$$

and, on the contrary, if $\phi(t)$ satisfies the equation (7), then $\phi(t) \equiv Y\left(t: t_{0}, z\right)$ for $t \geqslant t_{0}$ and $\forall z \in \Xi_{i}$, where
a) $T_{t}^{(i)}: \Phi_{3}^{(i)} \rightarrow p^{-1}(b)$ for $t \rightarrow t_{0}$,
b) $T_{t}^{(i)} Z\left(\cdot: t_{0}, z\right)=\alpha+H_{t}^{(i)} Z\left(\cdot: t_{0}, z\right), \alpha \in p^{-1}(b)$ and depends on $Z\left(\cdot: t_{0}, z\right) \in \Phi_{3}^{(i)}, H_{t}^{(i)} 0=0$
c) $\left\|H_{t}^{(i)} Z_{1}\left(\cdot: t_{0}, z_{1}\right)-H_{t}^{(i)} Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\| \leqslant\|g t\|\left\|Z_{1}\left(\cdot: t_{0}, z_{1}\right)-Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\|_{\Phi_{3}^{(i)}}$ for $z_{1}, z_{2} \in p^{-1}(b), \quad g_{i} \in p^{-1}(b)$ for any $t \geqslant t_{0}, \quad\left\|g_{t}\right\| \rightarrow 0$ for $t \rightarrow+\infty$.

Then there exist the sets $\bar{\Xi}_{i} \subset p^{-1}(b), \bigcup \bar{\Xi}_{i}=p^{-1}(b)$ and the bijections $P_{i}: \Xi_{i} \rightarrow$ $\bar{\Xi}_{i}$ such that $X_{t} z=Y\left(t: t_{0}, P_{i} z\right)+o\left(\dot{Q}_{i}(t)\right)$ for $t \rightarrow+\infty$ and for any $z \in \Xi_{i}$, $i=\overline{1, n}$.

The proof of Theorem 3 is analogous to the proof of Theorem 1.
Theorem 4. Let us assume that $\Phi_{2}^{(\mathbf{r})}=\left\{Y\left(\cdot: t_{0}, z\right): z \in \bar{\Xi}_{8}\right\}$ and the conditions a) and b) of Theorem 3 are fulfilled. Then, if

$$
\begin{gathered}
\left\|H_{t}^{(1)} Z_{1}\left(\cdot: t_{0}, z_{1}\right)-H_{t}^{(1)} Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\| \leqslant \\
\leqslant q_{2}\left\|Z_{1}\left(\cdot: t_{0}, z_{1}\right)-Z_{2}\left(\cdot: t_{0}, z_{2}\right)\right\|_{\Phi_{3}^{(1)}}, \quad 0<q_{i}<1, \quad i=\overline{1, n}
\end{gathered}
$$

then the sets $\Phi_{1}^{(i)}$ and $\Phi_{2}^{(i)}$ are homeomorphic in the topology of the space $\Phi_{3}^{(2)}$ for any $1 \leqslant i \leqslant n$.

The proof of Theorem 4 does not differ from the proof of Theorem 2.
Theorem 1 is the transference of the notion of asymptotic equivalence of the differential equations according to Levinson [3],[5], when one of them is a linear homogeneous equation, onto metrizable abstract vector fiberings. Specifically the known Levinson theorem follows from Theorem 1. Theorem 2 is a new theorem. From the Lemma it follows that in the conditions of the Levinson theorem for the considered differential equations to be fulfilled the asymptotical equivalence to Nemitsky take place.

References

[1] Onuchic N., Cassago H., Asymptotic behavzor on infinzty between the solutions of two systems of ordinary differential equations,, J.Math. Anal. and Appl. 102 (1984), 348-362.
[2] Воскресенскии Е.В., Покомпонентная асимптотика и гомеоморфизм дифферен циальных уравнении на многообразиях, Czech. Math. J. 35 (100) (1985), 455-456.
[3] Воскресенскии Е.В., Асимптотическая еквивалентность семеиств ди фференциальных уравнении, Успехи мат. наук 40,5(245) (1985), 249-250.
[4] Миллионщиков В.М., Показатели Ляпунова семеиства ендоморпфизмов метри зованного векторного расслоения, Матем. заметки 38,1, 82-109.
[5] Levinson N., The asymptotic behavior of systems of linear differential equations, Amer. J.Math. 68 (1946), 1-6.
[6] Гробман Д.М., Системы дифференциальных уравнении, аналогичные линеиным, ДАН СССР 136 (1952), 19-22.

Mordovian State University, Bolshevistskaya Street 68, 430000 Saransk, USSR

