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Topological multidimensional van der Waerden theorem 

ALEKSANDER BLASZCZYK, SZYMON PLEWIK, SLAWOMIR TUREK 

Abstract. We give a topological proof of the multidimensional van der Waeren theorem. 

Keywords: multidimensional van der Waerden theorem, minimal dynamical system, 

Classification: 54H20, 05A17 

Responding to Furstenberg [4] we describe a direct proof of the topological version 
of multidimensional van der Waerden theorem. This theorem says that if X is a 
compact space and (K, G) is a minimal dynamical system, where G is a commutative 
group of homeomorphisms, then for each non-empty open set U C X and T\,... T* € 
G there exists a natural number n > 1 such that Tf(V) n • • • n T£(U) / 0. 

Furstenberg and Weiss [6] gave a direct proof of this theorem in the metric case 
(cf. also [5] and [7] ) and derived the multidimensional van der Waerden theorem 
from it. We give a proof valid for all compact spaces and describe another way 
for obtaining the multidimensional van der Waerden theorem from its topological 
version. 

If X is a topological space and G a group of its homeomorphisms, then the pair 
(X, G) is called a minimal dymamical system if there is no proper closed subset 
F C X such that T(F) = F for each T € G. If X is compact, then (X, G) is 
minimal iff for each non-empty open set U C X there exist Si,..., Sn € G such 
thatX = 5 1 (rJ )U.--USn ( t / ) . 

Theorem 1. (Topological Multidimensional van der Waerden Theorem) 
Let X be a compact topological space and G a commutative group of its homeomor

phisms such that the dynamical system (X, G) is minimal. Then for each non-empty 
open setVcX and each finite set {Ti , . . . T*} C G there exists a natural number 
n > 1 such that V (1 T?(V) • • • n T£(V) ± 0 

PROOF : We proceed by the induction on k. 
1. Assume k = 1. Fix T € G and let V C X be a non-empty open set. Since 

(K ,(?) is minimal, there exists Si,...,Sp € G such that Si(V) U • • • U SP(V) = X. 
We construct a sequence Wb, W\,... of non-empty open sets such that: 

(a) W0 = V, 
(b) T~\Wn) C Wn_, for n > 1, 
(c) for every n there exists t, 1 < t < p, such that Wn C St(V). 

For the definition of Wn+i we choose a natural number t such that 1 < t < p and 
Wn+l = T{Wn)nSt(V)*9. 

If the sequence Wo. W\,... is defined, then we choose natural numbers t, j and 
t such that t < j and Wi U W, C St(V). We set U = S^x(Wj) and n = j - t. By 
(b) we get 
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T-*(U) = T-n(srHWj)) = srl(T-n(Wj)) c srHT-^HWj-i)) c ... C 
Srl(Wi) C V. Therefore U C Tn(V) , U C V and V n Tn(V) ^ 0. 

2. Assume the theorem is true for every collection of k elements of G. Fix a non
empty open set V C X and Tj,. . . ,Tjt+i € G. Since the choice of transformations 
is free ( we can set Tf1 instead T* ) it suffices to show that there exists an open 
non-empty set W C X such that W U T?(W) U • • • U T£+X(W) C V holds for some 
n > 1 

By the minimality of (K, G) there exists Si,..., Sp € G such that Si(V) U • • • U 
SP(V) = X. 

Inductively we construct a sequence Wo, Wi,... of non-empty open sets and a 
sequence po, Pi, • • • of natural numbers such that : 

(A) W0 = V and po = 0, 
(B) T f " ( W n ) U . . . U T ^ 1 ( W n ) C ( W n _ i ) for every n, 
(C) for every n there exists t, 1 < t < p, such that Wn C St(V). 

If Wn_i and p n _i are defined, then we apply induction assumption for Wn_i and 
homeomorphisms T*+i o T j - 1 , . • . , T/t+1 o T^1. There exists a natural number p n 

such that 

Wn-X n ( iTWi-Tf ' /"(W,,- . , ) n • • • n (Tk+i.T^)'"(Wn-s) ? I 

For some t, 1 < t < p, we get 

w- = -i;';(w«-i) n T^"{wn-i) n • • • n V ^ n - i ) n st(V) -t- 0. 

It is easy to see that conditions (B) and (C) hold for Wn and p n . 
If the sequence Wo, Wi,... is defined, then we choose natural numbers t, j and 

t such that i < j , 1 < t < p and W; U W, C St(V). We set n = p t+i + • • • + py 

For 1 < r < k + 1 we get T?(Wj) C W{. Indeed, T?(Wj) = 2 ? ' + t + ' " + w ( W i ) C 
2* '+-+-+w-»(W i . 1 ) c T* + l (W ,+ i ) C W,-. 

Let W = S r ^ W i ) . We have Wj C St(V) and W C V. For 1 < r < Jb + 1 , by the 
commutativity of G, we get 

T?(W) = T?{STl{Wj)) = Srl(T?(Wi)) C Sr\Wi) C V, 

which finishes the proof. • 

Corollary 1. Let T\,..., T* be a commuting family of one-to-one continuous func
tions of a compact space X into itself and P be an open cover of X. Then there 
exists a natural number n > 1 such that Tfn(U)n- • -nT^n(U) / 0 for some U € P. 

PROOF : Consider minimal closed set Y C X such that T{(Z)cZ for every t < k\ 
one has to use Zorn Lemma to obtain such a set. The minimality of Z follows that 
Ti(Z) = Z for any I < k. Indeed, suppose T,(z) = Y £ Z for some t < k. Then 
for every j < fc, 

Tj(Y) = Tj(Ti(Z)) = Ti(Tj(Z)) C T{(Z) = Y 
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Since Y ^ z, we get a contradiction. 
Set Gi = Ti/Z for all i < k. Then the family {G\,..., Gk} is a commuting family 

of homeomorphisms of Z into itself. The choice of the set Z follows that the system 
(z , JET), where H is the group of homeomorphisms of Z induced by {G i , . . . ,Gk} is 
a minimal dynamical system. Now it suffices to choose U € P such that U 0 Z ^ 0 
and apply the Theorem 1. 

Let fiS denotes the Cech-Stone compactification of a (Tychonoff) space 5. If S 
is a discreet space, /35 is just the set of all ultrafilters over the set 5; see [2] for 
details. In this case the topology on 0S is generated by the family {U* : U C 5 } , 
where U* = {t; € 0S : U € v}. Clearly (U H V)* = U* H V* and if {Uu..., Un} is 
a partition of 5 , then {f/*,..., (/*} is an open partition of /35. For every mapping 
/ from S into 5 , the formula f(v) = {U C S : f~l(U) € v} defines the unique 
continuous extension of / over /3S. One can easily check that /*"1(C/*) = (f~~l(U))* 
for every U C S. Also, if g : 5 —• S is another function, then / o g = / o g. In 
particular, if / and g commutes, then / and g commutes as well. Clearly, / is 
one-to-one whenever / is one-to-one. * 

Let N denotes the set of natural numbers and Nr = { (k i , . . . , kr)}: fct- € N for 
1 < i• .£ r. If a = ( a i , . . . , ar) and b = ( 6 i , . . . , 6r) and n € N, then 6 -f- na = 
(6i + n a i , . . . , 6 r + n a r ) . • 

Theorem 2. (Multidimensional van der Waerden Theorem) If {(7i, . . . ,UP} is 
a partition of Nr then one the sets £/, has the property, that for every finite set 
F cNr there exists n € N and b e Nr such that b + nae U{ for all a € F. 

PROOF : Clearly, every finite set F C Nr is contained in a cube { l , . . . , k } r = 
{ a i , . . . , a * } , t = kr, for some k e N. Since the partition is finite, it suffices to show 
that there exists 6 € Nr and q < p such that for some n € N, { 6 + n a i , . . . , 6+na«} C 
Uq. To do this let us consider functions / ; : Nr —• Nr defined by fj(x) = x +aj for 
j < t. Clearly, {/i , . . . , ft} is a commuting family of one-to-one continuous functions 
of /3Nr into itself. By the Corollary there «xist q < p and a natural number n > 1 
such that 

fr(u;)n . . .n/f n(U'q) ^0 

Then, by the remarks preceding the theorem, we get 

/f"(rj,)n--n/f(r/,) #0 

Take a point 6 belonging to this set. Then for every j <t we have 

6 - f n a i = / j l ( 6 ) € * 7 g ; 

which completes the proof. • 

Theorem 1 and Theorem 2 are in fact equivalent. The lacking implication can be 
obtained by use of the trick from Balcar, Kalasek and Williams [1]. 

The next Proposition unable us to formulate Theorem 1 in a slight stronger from. 
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Proposition. If X is a compact space and G is a commutative semigroup of contin
uous mappings of X onto itself, then there exist a compact space X and a continuous 
mapping ir : X —• X such that w(X) < w(X) + |G | + w and for every g € G there 
exists a unique homeomorphism g : X —• X satisfying condition nog = goir. More
over, if (X, G) is a minimal dynamical system, then (X, {g - 9 € G}) is a minimal 
system as well. 

PROOF : We define a partial ordering on G : we say that / i < / 2 whenever there 
exists h 6 G such that f\ o h = / 2 , By cominutativity of G, h is unique. Indeed,if 
ft o h = / 2 and f\og = / 2 , then g o fx = h o / j . Hence h = g, because / j is 
"onto". Observe that the ordering is directed, e.i. for any / , <7 € G there exists 
h € G satisfying f < h and g < h. To do this it suffices to set h = / o g and use 
the commutativity of G. 

Now consider the inversive system £ = {K / ,7iJ ,G}, where Xf = X for every 
/ € G and 7T1 = h, where h is the unique element of G such that g o h = / ; see 
Engelking [3] for the notions not explained here. Let X = lim— (, e.i. X = {x £ 
f[{Xf : / 6 G} : for every f,g €G,g < f implies xg = 7rI(x/)}. For every f eG, 
irf : X —+ Xf is the canonical projection, e.i. 7T/(.r) = Xf. Clearly, the weight of X 
is not greater than the weight of the product [1{K/ : / € G} and so it is not than 
the greatest cardinal among ti>(.Y), |G| and w. 

Every mapping g € G appoints a morphism of the system f into itself. This 
morphism is the identity in the set of indexes and for every / € G the mapping of Xf 
onto Xf equals g. This is indeed a morphism of inverse system since g o 7r£ = 7rj[ og 
whenever h < f and f,g&G. Thus we get a unique continuous mapping g : X —+ X 
such that Kf og = g ovf holds true for every f € G. We set w = Wf, where / is an 
arbitrary element of G. Since X is compact and g is "onto" (all bonding mappings 
are "onto"), it suffices to show that g is one-to-one. To do this fix different elements 
x, y € X. There exists / € G such that Xf ^ y/ . We set h = g o / , Since 
/ < h, Wf = 7r{ o ith. But -Khf = g. Thus g(nh{z)) ¥" 9(nh(y)), which means that 

g(x) ± g(y)-
It remains to show that the minimality of the systems (X, G) implies the mini

mality of (K , {g : g € G}). Fix x € X and open non-empty set U C X. Since X 
is an inverse limit over a directed set, there exist / € G and a non-empty open set 
W C Xf such that itJl(W) C U. By the minimality of (X,G), there exists g eG 
such that g(wf(x)) € W. Thus nf(g(x)) € W and therefore g(x) € KJ1(W), which 
completes the proof. • 

Corollary 2. If (X, G) is a minimal dynamical system, where X is a compact space 
and G is a commutative semigroup of continuous functions mapping X into itself, 
then for every non-empty open set U C X and every T\,...,Tk € G, there exists 
n€N such that U H Tfn(U) n • • • n T^n(U) ^ 0. 

PROOF : First observe that, by the minimality of (X, G). all mappings from G 
have to be "onto". Then we use the Proposition. The family {T :T € G} generate 
a group of homeomorphisms of X into itself. By Theorem 1, there exist n € N such 
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that 

TT-^U) n f-l(ir-\u)) n • • • n f^n(w-l(U)) ^ 0. 

Since for every T € G there is f -n(v~l(U)) = *~X(U)) = 7r(T~n(C/)), we get 

ir-1(C lnTfn(C l)n...nTp(C l))?-0, 

which completes the proof. • 
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