
Commentationes Mathematicae Universitatis
Carolinae

Aleksej Tralle
On 3-symmetric Riemannian spaces of solvable type

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4,
803--810

Persistent URL: http://dml.cz/dmlcz/106805

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic
provides access to digitized documents strictly for personal use. Each copy
of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/106805
http://project.dml.cz


Comment.Math.Univ.Carolinae 30,4(1989)803-810 803 

On 3 - symmetric Riemanuian spaces of solvable type 

ALEKSEI TRALLE 

Abstract. We prove, the existence of 3-symmctric Riemanuian spaces with solvable full 
isometry group. 

Keywords: Generalized symmetric space, Riemannian metric. 

Classification: 53C30, 53C25 

1.Introduction. 3-Symmetric Riemannian spaces constitute an important class 
of Riemannian manifolds (cf.[5]. In [5] the full classification of 3-symmetric spaces 
with semisimple groups of holomorphic isometries has been obtained. On the other 
hand, there exist Riemannian k-symmetric spaces with solvable isometry groups for 
all even k > 2 [2], and for all odd k > 3 [12]. Thus, it is still interesting to ask about 
the existence of 3-symmetric Riemannian spaces with solvable full isometry groups. 
In the present note we prove the existence of such spaces and obtain a description 
of them. All the necessary information about generalized symmetric spaces can be 
found in [9]. For the brevity we call a generalized symmetric Riemannian space 
of order k "^-symmetric Riemannian space". The symbol L(G) denotes the Lie 
algebra of a Lie group G. The subgroup of all the fixed points of the automorphism 
a : G —• G is denoted by Ga. Respectively, L(G)Vm is the subalgebra of all the fixed 
vectors of o* = (dcr)€. Everywhere Io(M,g) denotes the connected component of 
the full isometry group of a Riemannian manifold (M,g). 

Definition 1. A Lie group G is said to be of Frobenius type if it admits an auto
morphism o such that Ga is discrete. 

Theorem 1. There exist 3-symmetric Riemannian spaces (M,g) with solvable 
isometry group Io(M,g). In particular, the Riemannian manifold. 

(H6 {xi, x2, xz, tjx, t/2, Ste], g), 

g = dx\ -f dx\ + (x\ +y\ + \)dx\ - 2xtdx2dx3 - 2y\dxzdy2 4- x\yxdx^dyz+ 

(1) -rdy\ + dy\ + dy\ - 2xldy2dyi + (x\ -f l)dyj 

is a 3-symmetric Riemannian space with the above property. 

Theorem 2. Any simply connected 3-symmetric Riemannian space with solvable 
full isometry group is isometric to the space (U,gu) where U is a nilpotent Lie 
group of Frobenius type and of nilpotency class < 4 equipped with a left-invariant 
Riemannian metric g and a metric-preserving automorphism a of order 3. 

Remark. Definition 1 is a Lie group analogue of a definition in [7]. The case 
of algebraic groups has been considered in [7], [ 11]. Let G be a complex Lie 
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group. The symbol GR denotes the same group considered as a real Lie group (note 
that dim GR = 2dimG). Respectively, L(G)R is the algebra L(G) considered over 
R. Suppose that G is a connected simply connected Lie group endowed with a 
left-invariant Riemannian metric g and let K be the connected component of the 
isotropy subgroup at a fixed point in the isometry group Io(G,g). Let V be the 
Levi-Civitta connection corresponding to g. Then V defines for every X € L(G) a 
skew-symmetric linear operator Vx : L(G) —* L(G) by the classical formula 

(2) 2 (V X Y ,Z) = (IX,Y],Z) + (K ,[z ,Y]> + (Y>\Z,X]) 

Define the operator Cx : A2L(G) -> A2L(G) by the formula CX(L) = [L, V*] -
Vi (x ) . Denote Dr(L(G)) the subspace of (r,s)-tensors on L(G). We shall need the 
following 

Propos i t ion 1 (Azeneot t -Wi lson [1] ). There exists an isomorphism of Lie 
algebras 

(3) a : L(K) -> K 

where K. is the largest subalgebra in A2L(G) which is invariant under Cx for all 
X € L(G) and whose elements annihilate the curvature tensor R € D3(L(G)). 

2.Proof of theorem 1. Let U be the maximal unipotent subgroup in 5L3(C). It 
consists of all the matrices of the form 

U = {(a0-)k.- = M , ; = 0,« > j , a i j e C , k j,i,j = 1,2,3,} 

Evidently, L(U) is a nilpotent Lie algebra over C, consisting of the triangular ma
trices with zeros on the diagonal. 

Consider UR and L(UR) = L(U)R. Denote by r tJ(l) the matrix in L(U) with 
the elements a*a = Q((k,s) £ (ij)) and a,, = 1. Evidently, Tij(l),y/^lTij(l)(i < 
hi J = 1 A 3 , ) constitute the R-basis of the Lie algebra L(U)R. Introduce the 
notations 

Ki=r12(l), K2 = v / = : lr 1 2( l) , K3=r13(l), X4 = v^Tr-^ l ) , 

K5 = r 2 3 ( l ) ,K 6 = v / : :Tr2 3( l) 

Then the direct matrix calculation yields 

W [Xi%X,] = 0 

for adl { t , i ) except the cases 

{*) l * i , * i ] = -*i, [Xi,Xt) = Xi, [X2,X,] = Xt, [X2,X6] = -X3 

Define the scalar product in L(U)R by the conditions (Xi>Xj) = 6ij and let gu be 
t*he left-invariant Riemannian metric on UR corresponding to <, >. First, we shall 
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prove the solvability of Io(UR,gu)- For this purpose we shall calculate fC in the 
case G = UR. Using the formula (2) for V x : L(U)R -> L(U)R, then (4),(5) and 
the condition (Xi,Xj) = 8ij, one automatically obtains: 

(6) 

v*,=(ь,X„l, 635 = 2 ' ^ 6 = 2 ' Ь , 1 J = 0 forother»śi; 

Vx,=(Ь?Дi=1, 3̂6 = - j ' Ь45 = «> bЬ~° forothert<j; 

VXs = (6Î,)U„ ь?5 = v Ь.б = -õ> bl=° forothert<i; 

Vx. = (Ь.:)f,,=i, 6*5 = ,, bЬ = ° for o t h e r * 2 i; 

Vx. = (^)?,J=„ 6Ů = bľб = 5> Ь ' 4 = 5> ò 0 = ° forothert<j; 

Vx. = (Ь6j)U„ ' î » = | , Ьlз = - | . b%=0 for o t h e r » < j ; 

and the equalities h\- — —6^ hold for all indices. 

Now, we obtain R(Xt,Xj) using the formula 

R(X,Y) = V.vVy - V y V x - V l x,y,, 

and the expressions (6), as well as the commutator formulae (4), (5). After the long 
but direct calculations with matrices one has 

(7) 

pЗ _ pЗ _ p4 _ 1 p5 _ p l _ 1 p l 
л 4 i 2 — -^siг — -"-612 — ~ т » XŁбi2 — -"-зiз — л-> л б i з -

-я* - l 

• Л513 - - ^ 

p2 _ p2 _ - p2 _ p l _ 1 p l _ 3 
л 3 1 4 — л 5 1 6 ~ 4 ' ^ б H ~ / l316 — — J , -П-бlб ~ "~ J ' Ä 4 i б - - 2 > 

Л42З = B323 = B424 = B625 = î B325 = ~ » B525 = 
3 

= 4 ' 

•R426 = -^134 = B535 = B636 = B246 = LІ^Ъ = 1^656 = J> ř?" - X 

л 5 2 6 — л ' 

IЧ526 = — , 1*234 = -^235 = B635 = ^635 = ^546 ~ ^556 = ""T> 

jRJJib = 0 for t h e rest of t h e indices. 

According to proposition 1, K consists of the linear operators A : A2L(UR) t-* 

A2UUR) such that A(R) = 0 where I : Dr(L(UR)) -> Dr

a(L(UR)) is a derivation 

of the tensor algebra D(L(UR)) induced by A. The following formula is well-known 

(8) A(R(X, Y)) = A • R(X, Y) - R(AX, Y) - R(X, AY) - R(X, Y) • A 

Substituting R(Xi,Xj) from (7) to(8) and taking into consideration that A is 

necessarily skew-symmetric, one obtains after the long but direct matrix calculations 

/ o «„ Q \ 
~o?i 2 0 

0 a 3 4 

-0:34 0 
0 €*56 

- « 5 6 0 / 

л = 

V 0 
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and thus K is necessarily abelian (note that the condition Cx(K) C K need not be 
verified in that case). 

Observe that UR is a simply connected nilpotent Lie group endowed with the 
left^invariant Riemannian metric. According to Wilson's theorem [14] we have 

Io(UR,gu) = K*UR 

where the star * marks the semidirect product. Because K *UR is homeomorphic 
to K x UR,K must be connected and hence abelian (we have already proved that 
L(K) = K is abelian). Thus h(UR,<ju) is solvable as a semidirect product of 
solvable groups. 

Remark. In the latter argument we denoted by Ii the isotropy subgroup of 
h(UR,9v). 

Now it is sufficient to find the appropriate s-structure on (UR,gu)- Define the 
automorphism a : U —> U by the formula 

(8) a = Ad(diag(l,s,£2)) 

where e = y\ is a primitive root, and the symbol Ad(x) denotes as usual the 
automorphism Ad(x)(A) = xAx'l, x e T3 C SLs(C), A 6 L(UR) (T3 is a 
subgroup of all the upper triangular matrices in SL3(C)). The direct calculation 
shows that U° = {e}. Further, considering a* as an automorphism of L(U)R one 
obtains its matrix with respect to the basis {.Xi,K2 • • • »Ke} : 

— A' (( c o s ^ a sin 2a \ / cos a siná \ / cos 2a sin 2a \ 
* ~~ ° ^ - sin 2a cos 2a ) "\ — sin a cos a J ' y — sin 2a co^2a J 

where e = cos a F >/--T sin a. Thus a* is metric-preserving. For any left translation 
Lu(u € UR) one has 

a • Lu • cr'1 = La{u),u e UR 

and therefore (am)u • (1-,«)*e(o'~1)*e is an isometry. As far as a» = (<r*)e is metric-
preserving, (am)u is also an isometry and thus a € I(UR,gu)> Put 

se =a, su = Lu- s€- L"1, £ UR. 

It is easy to verify by the definition, that {su,u € UR} is a regular Riemannian 
s-structure on (UR,gu) of order 3. Now it is sufficient to mention that (UR,gu) 
is 3-symmetric because it admits no Riemannian s-structure of order 2 (otherwise 
(UR,gu) would be symmetric, which is impossible for the Riemannian manifold 
with solvable full isometry group [6]). 

To finish the proof, it is sufficient to notice that Riemannian metric (1) coin
cides with gu> To show the latter, consider the group UR in the following matrix 
representation: 

V* = {{-B I)' A+vC-Be-'}. 
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Then L(UR) consists of the matrices 

(10) L(UR) = {(-M ? ) ' L + S^MeL(U)} 

Introduce the coordinates x\ = o;i2,x2 = 0:13,0:3 = a23,yi = VYI-IVI = A3,y3 = 
/323, where a tJ + V^iPij are the elements of the matrix (10). Identify L(UR) with 
UR by means of the exponential mapping (observe that UR is a simply connected 
unipotent group and therefore exp: L(UR) —• UR is a diffeomorphism).Consider 
x\,..., y3 as local coordinates in UR. Then the left-invariant vector fields X\,..., Ke 
on UR generated by the vectors X\,..., Ke € L(UR) can be expressed as follows: 

(11) (*«)« = 4 I (u-exptK;) ,u€UR 

at lo 

Note that exp : L(UR) —* UR is expressed in our particular case by 

(12) expT = E + T + T2 

where E is a unit matrix, T is of the form (10). Using (12), one easily obtains that 
any element u EUR having the local coordinates (x\, x2,2:3, y\, y2, y3) is of the form 

. - ( * ; ) . -

/ I x\ x2+x\X3-y\y3\ 
A = 0 1 x3 

\0 0 1 / 
/ 0 yi y 2+ .r iy 3+ yix 3 \ 

B = 0 0 y3 

\ 0 0 0 / 

Using formula (11) one easily finds the expressions for the vector fields 

A JL 
aa;i' ay> 

- — as Ki, ~ — = K2, - — = ~-X\X2 - K3 ~ yiK5 
OX\ OX2 OX3 

(13) ^ — = K4» "H— = K5> « - - = ~*1K5 ~ K6 
dyi #y2 % * 

The scalar products (^fr, 3—), or (̂ f--, 3^-), or (^--, ^ ) are calculated taking into 

consideration the equalities (Xi,Xj) = 6ij. The result is given by (1). • 
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3.Proof of t h e o r e m 2. Before the proof we shall introduce Definition 2 [4]. Let 
G be connected Lie group and L(G) = Li + 1>2 be a decomposition of its Lie algebra 
in the sense of Oniscik (L(G) = L\ + L2, where L\ and L2 are the Lie subalgebras). 
A decomposition L(G) = Li + L2 is said to be global if G = G' • G" for the Lie 
subgroups G' and G" such that L(G') = Li,L(G") = L2. 

We shall use the notion "torus" in a usual sense and the notion "algebraic torus" 
for an abelian algebraic group isomorphic to (C*)n (here C* is a multiplicative group 
of the field C). 

Now start the proof. Let a : I0(M,g) —> Io(M,#) be the automorphism defined 
by the formula 

a(a) = s0as~l 

where s0 is a symmetry at a fixed point o of the 3-symmetric Riemannian space. 
Suppose that IQ(M,g) is solvable. Let G = Tr(M, {<$*}) be the transvection group 
(see [9]). Recall that G is cr-invariant Lie subgroup in Io(AI,(?) acting transitively 
on M. Then its isotropy subgroup S is compact and hence So is abelian. Thus So 
is a torus, or So = {e}. Then there are two possibilities: 1) G0 = So is a torus (see 
[9]), 2) GJ = {e}. Consider the former case. Let £>L(G) = [L(G),L(G)] be the 
subalgebra generated by all the commutators in L(G). As far as L(G) is solvable, 
VL(G) is its nil-radical and VL(G) C Li, where L\ is a maximal nilpotent ideal in 
L(G) [3] . According to [ 3] one has 

L, = {X € L(G)|adL(G)K is nilpotent}. 

Let L(S) = L(So) be the Lie algebra of S. Suppose that L(S) O L\ ^ {0}. Let 
Ni C G be the connected Lie subgroup in G corresponding to L\, Consider SoHiVi. 
Let exp : L(G) -+ G be the exponential mapping. For X € L(S)D L\ one has n = 
expX € So H Ni. Then Ad(n) = Ad(expX) = eadX and as far as adX = adL(G)X 
is nilpotent one easily obtains Ad(n) to be a unipotent element in GL(L(G)). On 
the other hand, n £ S0. Consider the complexification So(C) of the torus S0. 
Then So(C) is an algebraic torus [13] and therefore any complex representation of 
it is semisimple. In particular, ADL(G)(C)(n) is simultaneously a semisimple and 
unipotent linear transformation of a complex Lie algebra L(G)(C) = L(G) <8> C 
Therefore Adi(G)(n) = id and hence Int(7i) = id as far as G is connected. Thus 
n € Z(G). But G C I(Myg) and by the definition G acts effectively on M = G \ S . 
Hence n = e, because n € So C S. Thus for any X € Li fl L(S) one has expX = e 
and hence 

L\ fl L(S) = {0} => [L(G), L(G)] fl L(S) = {0}. 

Define any bilinear positively-definite am - invariant symmetric form on L(G) (it is 
possible because the group (<r*) is finite).Consider the decomposition relatively to 
that form 

(14) L(G) = (L(S) + VL(G)) e (L(S) + VL(G))X = (L(S) 4- VL(G)) © M 

The vector space L2 = VL(G) © M is in fact a subalgebra, as far as L2 D 
[L(G% L(G)) by the definition. Further, 

<r,(L(S)) C L(S), a.(VL(G)) C VL(G) 
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and (14) implies am(M) C M. Therefore a*(L2) C L2. Consider the connected Lie 
subgroup U C G corresponding to L2. Observe that the triple 

(15) ( L ( G ) , I 2 , I ( S ) ) 

is a decomposition in the sense of Oniscik. Further, 

L2 D [L(G),L(G)] => [L(5) ,L2] C [L(G),L(G)] C L2 

and hence L2 is an ideal in L(G). Then any inner automorphism a € Int(L(G)) 
has the property a(L2) C L2 (recall that G is always generated by the set exp 
(L(G)). Then the criterion of the decomposition being global [4] shows that (15) 
is global. Hence G = Ga • U\ where U' is a certain Lie subgroup in G acting 
transitively on M and such that L(U') = L2. Then U = UQ also acts transitively 
on M and U C h(M,g). Further, <r*(L2) C L2 => <f(U) C U. Thus (M,g) is 
isometric to U \ U 0 S.Evidently, Ua is discrete as far as its Lie algebra is L2 PI 
L(S) = {0} according to (14).Thus U is a Frobenius Lie group. Now consider 
the simply connected case. Then ll* fl 5 = {e} (otherwise M would not be simply 
connected). Moreover, as far as <73 = id and L(U)a = {0}, L(U) and consequently U 
are nilpotent according to the well-known Jacobson's theorem [8]. The nilpotency 
class is ^ 4 according to Kreknin's theorem [10], Recall now that G = Tr(M^ {sx}) 
is the minimal a - invariant Lie subgroup in Iv(M,g) acting transitively on M. It 
means, that necessarily G = U and in fact only the case Ga = {e} may occur. 
Thus, G = U satisfies all the conditions theorem 2. • 
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