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Cartesian closed hull for metric spaces 

J I Ř Í ADÁMEK, JAN REITERMAN 

D e d i c a t e d t o t h e m e m o r y of Zdeněk Frolík 

Abstract. The cartesian closed topological hull of Metn , the category of metric spaces 
and nonexpansive maps, is shown to consist of those distance spaces whose pseudometric 
modification is positive and makes the distance lower-semicontinuos. 
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Classification: 18D15, 18B99, 54C35 

Our aim is to describe the cartesian closed topological (shortly CCT) hull of 
the category Met„ of metric spaces and nonexpansive maps. Recall that a CCT 
category is a concrete category over Set which is topological, i.e., 

(a) each structured source has initial lift, 
(b) every set carries only a set of structures, 

and 

(c) every constant function between two objects is a morphism, 

and cartesian closed, i.e., 
(d) for arbitrary objects A and B there exists an object [A, B] on the hom(A, B) 

such that, for each object C, morphism h : C x A —> B are precisely the 
functions for which h : C —*• [A,B], defined by c t-* h(c, —), is a morphism. 

The CCT hull of a concrete category K is defined as the smallest CCT category L 
in which K is a full subcategory closed under finite products, see [HN]. A general 
construction of CCT hulls, covering all known examples, has been presented in 
[ARS]; for example, the CCT hull of the category of metric spaces and continuous 
mops is the category of functionally sequential topological spaces ( = completely 
regular spaces in which every sequentially continuous real function is continuous). 
The CCT hull of the category of metric spaces and uniformly continuous maps has 
been described in [AR] as the category of bornological metrically generated uniform 
spaces. 

We are going to describe the CCT hull of Met n as a subcategory of the cate
gory of distance spaces (i.e., pseudometric spaces without the triangle inequality). 
A distance space is a set X together with a function d : X x X —• [0, +00] sat
isfying d(x,x) = 0 and d(x,y) = d(y,x). The category of distance spaces and 
non-expansive maps (i.e., maps / : A —• B with d>i(x,y^^ ds(f(x), f(y)) is de
noted by Dist. Observe that the full subcategory of pseudometric spaces is reflective 
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in Pist: the reflection of (K, d) is obtained by the pseudometric modification d* of 
the distance function d : 

: i n Ҷ 5^rf(tij,t (1) d*(x,y) = inf< 2 ^ d ( u t , w t + 1 ) | u o , . . . , u n + 1 G X, uo = *, t- n + i = y) 

The category I M is CCT: 

(a) each structured source (X —• (y%>di))i£i has an initial lift given by the 
following distance function on X : d(x,x') = sup i e J d t ( / t (x ) , / t (x ' ) ) , 

(b) every set carries only a set of distance functions, 

(c) constant functions are nonexpansive, 

and 
(d) for arbitrary distance spaces A = (X^A) and B = (Yyds) the power object 

[A, B] is hom(A, B) with the following distance function : 

(2) 
d(fj') = sup{dB(f(x))J'(x')) | x,z' € A with dA(x,x') < dB(f(x)J'(x'))}. 

[In fact, given C = ( z , d c ) , a function h : C x A —> B is non-expansive iff for all 
(c,a),(c\a!) G C x A, dfl(h(c,a),h(c',a')) < nrf{d c(c ,c ' ) ,dA(a ,a ' )} , and this is 
equivalent to d(h(c, —), h(c\ —)) < d<7(c,c').] 

Moreover, Dist is the quasitopos huU of Met.,, see [H]. 
Recatt from [HN] that given a CCT category L and its full, concrete, finally dense 

subcategory K (i.e., each L-object is a final lift of some structured sink in K), then 
the CCT hull of K is the foUowing full subcategory 

(3) CCT(K) = {L € L | there exist an initial source (L —-• [At, B t ] ) t € / 

with Ai,Bi£K for aU t} 

of L. Since Met-, is a fuU, concrete, finally dense subcategory of Dist (in fact, two-
element pseudometric spaces are finally dense in Dist), we see that the CCT hull of 
Met** is the category of aU distance spaces which are initial Ufts of power-objects 
of metric spaces. We are going to describe those distance spaces explicitly : 

Definition. A distance space (X, d) is called a demi-metric space provided that 
its pseudometric reflection (1) has the foUowing properties : 

(i) positivity: d(x,y) > 0 imphes d*(x,y) > 0, 
(ii) lower semi-continuity: for arbitrary x, y € X and K < d(x, y) there exists 

6 > 0 such that K < d(x',y') for aU x ' ,y ' 6 X with d*(x,x') < 6 and 

«*W)<(*. 
Theorem. The CCT hull of the category Me&n w the category of demi-metric 
spaces and non-czpaiv,v * maps. 

PROOF : We are to show that a distance space (K, d) is an initial lift of objects 
[A, B],A,B € Met* ,iff it is a demi-metric space. 
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I. Necessity. 
(a) We first prove that for metric spaces A and B, the power-object (2) is a 

demi-metric space. 
Positivity follows from the fact that the distance function (2) majorizes the pseu-

dometric p(fj') = supx€AdB(f(x),f(x)) : if d(f,f) > 0 then / ^ / ' and thus 
p(fj') > 0 , which implies d*(f,f) > 0 . 

To verify the lower semi-continuity, let / , / ' : A —> B be non-expansive maps, 
and let K < d(f, f) be given. Then, by (2), there exist x, x' € A with 

K < dB(f(x)J'(x')) and dB(f(x),f(x') > dA(x,x'). 

Choose any number S > 0 with 28 < dB(f(x), f(x')) - K and 
26 < dB(f(x), f(x')) - dA(x, x'). Then we have the desired implication : 

d*(f,g) < S and d*(f,g') < S imply K < d(g,g'). 

Indeed, since p *s d implies dB(f(x),g(x)) < S and dB(f(x'),g'(x')) < S and since 
dB is a metric, we can make use of the triangle inequality to get 

dB(g(x), g'(x')) > dB(f(x), f'(x')) - dB(f(x), g(x)) - dB(f'(x'), g'(x')) 

ZdB(f(x),f'(x'))-26 
>dA(x,x'). 

It follows that the pair (x, x') "counts" in the computation of d(g, g'), see (2). Thus, 

d(g,g') > dB(g(x),g'(x')) > dB(f(x),f'(x'))-2S > K. 

(b) It remains to show that for each initial source (C —• Ci)i in Dist such that ev
ery Ci is a demi-metric space, so is C. We have dc(x, y) = sup i6 /dc ((fi(x), fi(y)). 
For each i observe that pi(x,y) = dc.(fi(x),fi(y)) is a pseudometric on C, and 
hence pi < dc implies pi ^dc. 

The positivity of d*c is obvious : dc(x, y) = 0 implies pi(x, y) = 0 for each t, and 
hence dc.(fi(x),fi(y)) = 0 (by the positivity of dc.). 

For the lower semi-continuity, let K < dc(x, y) be given. Then there is i with 
K < dc.(fi(x),fi(y)). By the lower semi-continuity of dc. there exists S > 0 such 
that whenever dc(x, x') < S [which, by pi < dc, implies d^c.*fi(x),fi(x')) < S] and 
dC(v>y') < * [which implies d*Ci(fi(y),fi(y')) < 6), then K < dCi(fi(x')Ji(y')) < 
dc(x',y'\ 

II. Sufficiency. 
Let A = (X, dA) be a demi-metric space. For each pair x, y € X with dA(x, y) ^ 

0 and for each positive number K < d(x,y) we will find a number e > 0 and 
nonexpansive map 

/ : A - [De,R)(R = real line,De = {0, l}w ithd(0,1) = e) 
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such that the distance of f(x) and f(y) in [De,R] is larger or equal to K. It is then 
obvious that all those morphisms / form an initial source. 

We can suppose that dA(x, y) > dA(x, y) (since otherwise we can simply use the 
non-expansive map from A to R given by u t—> mm{d*A(x, u ) ,K}) . It follows (from 
the positivity) that dA(x, y) > 0. By the lower semi-continuity there exists S > 0 
such that d*A(x,x') < S and dA(y,y') < S imply K < rf>i(«',y'). We can assume 
without loss of generality that 

tf<mmfo(-,y),J.72}. 

The following pseudometric 

p(u, v) = mm{d^(u, v), S} (u, v G X) 

fulfils p(x, y) = S. Define 

f:A->[DK-6,R] 

by the following rule: 

(/(u))(0) = p(u,x) and ( / (u))( l ) = K - p(u,y); 

denote by d the distance in [DK-6,R], see (2). 
We have to verify that (a) f(u) € hom(DK-6,R) for each u € X, (b) / is non-
expansive, i.e., dA(u,v) > d(f(u),f(v)) for all u,v e A, pud (c) K < d(f(x),f(y)). 

(a) Since p < S < y we have 

| / (u) ( l ) - / (u)(0) | = K - p(tt,y) - p(u,x) 

<:K-p(x,y) 
= K-S 

and thus, / (u ) is non-expansive. 

(b) We are to show that 

\f(u)(i) - f(v)(i)\ g dA(u, v) for i = 0,1 

and that 

| / (u)( l ) - f(v)(0)\ >K~p implies | / (u)(l) - f(v)(0)\ = dA(u,V). 
(By symmetry, the last holds with 1 and 0 switched too.) The first inequality 
is obvious : for t = 0 we have 

|/(u)(0) - /(t,)(0)| = \p(u,x) - p(v,x)\ = p(u,v) = dA(u,v), 

and analogously for t = 1. For the latter, observe that p < K implies that 
the expression 

/ («) ( ! ) - /(«)(0) = K - rf«,v) - p(u,x) 
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is non-negative, and then, assuming then it is larger than K — 8, we have 
p(u,y) < 8 and p(v,x) < 8. Consequently, dA(u,y) < 8 and dA(v,x) < 8, 
which implies K < dA(u, v) by the choice of 8. It follows that 

(c) Since 

we have 

/(«)(1) - f(v)(0)\ = K - p(u, y) - p(v, x)<K< dA(u, v). 

\f(y)(l)-f(x)(0)\ = K>K-S, 

<*(/(*), /(!/)) S |/(y)(i) - /(*X0)| = K. 

Examples . 

(1) For each real number e > 0 we have the following demi-metric space i_J: 
elements are pairs (x,y) of real numbers satisfying \x — y\ < e, and the 
distance of (x, y) and (x',y') is maximum of 

\x-x'\ 

I*-VI 
|x — y'| counted only if \x — y'\ > e, and 

\xf - y\ counted only if \x* - y\ > e. 

In fact R2

e __ [De,R], where R is the real line and De = {0,1} with d(0,1) = e. 
(2) Each subspace of a product Jlig/ -̂ c* ( w ^ h * n e supremum distance) is a 

demi-metric space. 

Conversely, each demi-metric T\ -space [i.e., such that d(x, y) = 0 implies x = y] 
is a subspace of a product of R% 's. This follows from the fact that R is initially 
dense in Met-, and De , e > 0, are finally dense. 

Remark. The semi-continuity in the definition of demi-metric cannot be consid
ered w.r.t.d; i.e., there is a distance space A whose distance d is lower-semicontinu-
ous w.r.t. itself but not w.r.t. d* (and d* is positive). In fact, consider the following 
space : 

l/ni 

1/n 

1/2 

1/n 

xn y„ n = 1,2,3,... 

1/n 

Уn 
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in which some distances are indicated and all the others are equal to 1. Here 
d is not lower-semicontinuous w.r.t. d* since for the points x,y and for K = 
| ( < 1 = d(x,y)) the points xniyn fulfil d*(xtxn) < d(x,x'n) + d(x'n,xn) = | and 
^(t/iVn) 2 n and yet, d(xn,yn) < K. However, d* is positive, and d is lower-
semicontinuous w.r.t. itself. 
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