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On entropy-like functionals and codes
for metrized probability spaces I

MIROSLAV KATETOV

Dedicated to the memory of Zdenék Frolik

Abstract. By means of a suitable modification of the concept of code, we introduce certain
entropy-like functionals on the class 20 of semimetric spaces equipped with a bounded
measure. For finite spaces P € 2, (1) we prove that these functionals can be characterized
in terms not involving codes, (2) we establish some analogues of the well-known connection
between the Shannon entropy of a finite probability space P and the average length of the
“best” code for P™, n — oco.

Keywords: Hamming space, code, regular code, entropic content, pre-entropy, entropy,
final entropy

Classification: 94A17

In the author’s articles [2] and [3], it has been shown, among other, that the
concept of entropy can be extended from finite probability spaces to the class of all
probability spaces equipped with a measurable metric. It has also been shown (see
[3]) that there are very many different extensions of this kind. At least one of these
“extended entropies” (namely that denoted by E in, e.g., [4] and [5]) has certain
applications.

The case of E offers a new approach (see [6]) to the differential entropy; with
this approach, the conception of entropies as certain measures of information (hence
non-negative) is fully compatible with the fact, seemingly contraintuitive, that the
differential entropy can assume negative values. The entropy E (and some other
entropies) also make possible a fairly broad approach to the concept of dimension
of a metrized probability space; the Rényi dimension, i.e. the dimension introduced
in [1] and investigated by A. Rényi in [9] and [10], is included as a special case.

However, in the author’s papers, no attention has been given to questions con-
cerning the relationship between coding and “extended entropies” or, at least, the
entropy E. In particular, it has not been examined whether it is possible to extend
to E the well-known basic theorem asserting that the Shannon entropy of a finite
probability space P can be obtained from the average length of words of the “best”
code for P™ by a certain passage to the limit for n — oco.

In the present article, we aim at establishing a theorem (see 4.21 and 4.22) of this
kind on the basis of an appropriate modification (see 1.14 and 2.4) of the concept
of a code. Namely, code words are allowed to consist of “letters” of various length
and certain conditions involving the distance, suitably defined, of code words are
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imposed. It seems plausible that some analogues of other coding theorems can be
obtained in a similar way; however, we do not go into these matters here.

Another aim, connected with that just mentioned, consists in investigating certain
entropy-like functionals ¢ defined on the class 6 of semimetric spaces and/or on
class 20 of sets equipped with a finite measure and a measurable semimetric (in fact,
the investigation is meaningful for totally bounded spaces P € & U 20 only, since
if P is not totally bounded, then ¢(P) = oo for all ¢ under consideration). These
functionals are introduced on the basis of codewords and their length, but it turns
out that each of them (including E') can be fully characterized without reference to
codes.

The article is divided into two parts. In the present Part I, we are mainly con-
cerned with finite spaces. whereas the general case will be examined in the Part
II, in preparation. Results concerning the general case are often obtaihed from the
finite case by a certain kind of passage to the limit; this is the main reason for first
examining the finite case.

Part I is organized as follows. Section 1 contains preliminaries, the concept of
Hamming space and that of a code f (approximative or exact) of a semimetric
space. For every code f, §(f) and A(f), the maximal and the weighted (average)
length of codewords of f, are introduced. In Section 2, regular codes are considered.
By means of these codes, we define §(P) and A(P), the entropic content and the
pre—entropy of P. In the finite case, §( P) and A\(P) are, respectively, the minimal
value of §(f) and A(f) for a regular exact code f of P in a certain fixed Hamming
space, denoted by Ko.. In addition, we introduce a functional E(P), which is shown
to coincide, for finite space, with E(P) and E*(P) introduced in previous articles
(2], [3], [4]) by the author.

The main results are presented in Sections 3 and 4. Section 3 contains character-
ization theorems for §, A and E on finite spaces, as well as a lower estimate for E,
which turns out to give the exact value in the ultrametric case. In Section 4, the
functionals A and A, the final entropic content and the final entropy, are introduced:
A(P) is defined as inf(6(P")/n), and A(P) is defined on the basis of A(P) in an anal-
ogous way. Characterization theorems (finite case) for A and A are proved and the
inequality §(P) - wP > A(P) > E(P) > A(P) = lim(E(P")/n) is established. It is
shown that, in the ultrametric case, we have A(P) > E(P) = A(P) = lim(E(P")/n)
in full agreement with the case of a finite probability space P.

1.
1.1. Notation. A) The symbols N, R, R, R, have their usual meaning. The

letters i, j, k, m, n denote non-negative integers; ¢ denotes a non-negative real.
If S is a set, |S| denotes its cardinality. The first infinite cardinal is denoted by
w. —B) Let <bean orderon aset S. f M C S, we put [M] = [M]s = {z €
S:z < yforsomey € M}. If z,y € S, then z A y denotes the meet of z and y,
i.e., the element (provided it exists) 2 € S such that 2 < z, 2 < y, and if 2’ < z,
z' <y, then 2’ < z; £ V y denotes the join of z and y. - C) If B is a set, we put
B* =n(B":n € N}. For any u = (u;: i < n) € B* we put |u| = n and, for any
keN,ulk=(u;i:i<nAk). fu,v€ B* then u < v means that u = v | k for



On entropy-like functionals and codes for metrized probability spaces I

some k. The concatenation u - v of u and v is defined in the usual way. We often

write uv instead of u - v, u - a or ua instead of u - (a), etc. If k > 1 and u; € B* for

t < k, then the concatenation of u;, ¢ < k, is denoted by H u;. Weput [Ju; =0
<0

(the void sequence). - D) The completion of a measure ﬂ 1s denoted by & (or, for

typographical reasons, by [u]). The product of measures y; and u, is denoted by

H1 X p2.

1.2. Conventions. A) We often omit parentheses provided there is no danger of
confusion; e.g., if f is a mapping, we write fz instead of f(z), f~!M instead of
f~Y(M), etc. On the other hand, the symbol for multiplication is often retained to
avoid confusion; e.g., if f is a function and ¢ € R, we write.c - fz instead of cf(z).
- B) A singleton {a} is often denoted merely by a. Thus, e.g., if u is a measure
and {z} € dompu, we write uz or u(z) or else u{z} instead of u({z}).

1.3. Notation and conventions. We put 0-co = 0-(—o0) = 0, 0/0 = 0. We
write log instead of log, and put L(z) = —zlogz for z € Ry. If z; € Ry, we put

H(z,,.. z,.)—‘g!Lx. L(Zz.)

1.4. A semimetric on a set Q is, by definition, a function p: @ xQ — Ry such that
p(z,z) =0, p(z,y) = p(y, z) for all z, y € Q. The set of all semimetrics on Q will be
denoted by S(Q)- If p € S(Q) and T C @, then p | (T x T) € S(T) will be denoted
by p | T. - If p € S(Q), then (Q, p) is called a semimetric space or an SM-space (an
FSM-space if |Q| < w). The class of all SM-spaces (all FSM-spaces) will be denoted
by & (by SF). ¥ P =(Q,p) € 6, T C Q, then the subspace (T, p | T) will often
be denoted by (T, p) or by T.P. - If t € R4 and Q is a set, we put (Q,t) = (Q, p)
where p(z,y) = t for z # y, p(z,z) = 0. — The product of SM-spaces is defined
in the usual way. Namely, we put (Q)’ pl) X (QZ: pﬁ) = (Ql X Qh 1 X p?) where
(p1 % p2)((21,22), (v1,¥2)) = p1(21,31) V p2(22, y2)-

1.5. A semimetrized measure space or a W—space is, by definition, a triple (Q, p, )
where Q # 8, (Q, p) € S, p is a finite measure on Q and p: @ xQ — Ry is [ux p}-
measurable. — Cf. [2], 1.17.

1.8. Let P = (Q, p, ) be a W-space. We put wP = u@Q. If wP =1, P is called
a semimetrized probability space or a PW-space. If, for all z, y € Q, z # y, there
is an M € domp such that z € M, y € Q \ M, we say that P is separated. A
finite separated W-space is called an FW-space. The class of all W-spaces (all
FW-spaces) will be denoted by 20 (by F). - Cf. [2], 1.17.

1.7. A) fP = (Q,p,p) € 1,0 # T € dom, put »(X) = g(XNT) for X € dompu.
Then (Q, p,v) will be denoted by T.P and called a subspace of P. - Cf. [2], 1.22
(where the terminology is different). — B) The product of W-spaces is defined in
the usual way: (Q1,p1,p1) X {Q2, P2, 2) = (Q1 x Q3,p1 X p2, 11 X p2).

1.8. IfQ is aset, (Q1,...,Qn) is called a partition of Q if UQ; = Q and QiNQ; =0

fori #j. If P € U, we call (P,...,P,) a partition of P if P; are subspaces
of P and there is a partition (Q1,---» Qn) of Q such that P; = = Q; - P (observe that
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if P € 20, then Q; are necessarily non-void i-measurable). — Cf. [2], 1.30; observe
that we use a terminology different from that used in [2].

1.9. f P = (Q, p) € S or, respectively, P = (Q, p,s) € 20, then the infimum of all
b € Ry such that {(z,y) € Q x Q: p(z,y) > b} = 0 (respectively, [u x ul{(z,y) €
Q x Q: p(z,y) > b} = 0) is called the diameter of P and is denoted by d(P). If
M C Q and M - P is a subspace of P, then d(M..P), the diameter of M in P, is
denoted by dp(M) or simply by d(M).

1.10. Definition. If A is a set, 7 is a mapping of A onto 7(A), |7(A)| =m, 2 <
m < w, A is a mapping of A into R, A(A) # {0} and a — (7a, Aa) is a bijection
of A onto 7(A) x A(A), then K = (A*,m, A) will be called an m-ary (binary if m = 2
Hamming space. For every u = (ui: 1 < n) € A* we put Au) = 3 (Au;: ¢ < n); if
u=(ui:t <m),v=_(v;:i<n)€ A*, weput 7(u,v) = 7x(u,v) = L (Au;Adv;: i <
mAn, u; # v;). — Evidently, 7, € S(A‘); however, 7, is not a metric (observe that
Te(u,v) =0 if u < v).

1.11. Notation. If P = (Q,p) € & or P = (Q,p,u) € 2, we put |P| =
a.nd in accordance with 1.1A, for the cardinality |Q| of Q we have |Q| = ||P||. If
= (A*,, ) is a Hamming space, we put |K| =

1.12. Notation. We put K; = (A*,7,)) where A = {0,1}, n(¢) =1, A(t) = 1;
Ko = (A*,m,)) where A = {0,1} x Ry, n(i,t) =1, A(3,t) =1t.

Remark. If K = K, then, for every n € N, 7 | {0,1}" is a metric, namely the
well-known Hamming distance on {0,1}".

1.13. Convention. In that follows, the letter P, possibly with subscripts, etc.,
will always denote an SM-space or a W-space, and the letter K, possibly with
subscripts, will denote a Hamming space.

1.14. Definition. Let ¢ > 0. A mapping f: |P| — |K| will be called an e-code
of P in K = (A*,n, ) if the following conditions are satisfied: (1) |fP| < w, (2) if
P ={(Q,p,p) € 2, then all f~'u, u € fP, are y-measurable, (3) if u, v € fP, then
d(f~{u,v}) < 7u(u,v) Ve, (4) if u- (a), u- (b) € [fP], ma = nb, then a = b. Every
e-code, € € Ry, will be called an approximative code; a 0-code will also be called
an exact code (or simply a code).

1.15. Notation. If P € S U 20 and ¢ > 0, then cod(e, P) will denote the class of
all e-codes f: P — K where K is an arbitrary Hamming space.

1.16. Clearly, the condition (3) in 1.14 is equivalent to the following one: if P € 6,
then p(z,y) < 7e(fz,fy) Ve for all z,y € P, and if P € 20, then there is a
set Z C |P| x |P| such that [z x p](Z) = 0 and p(z,y) < 7«(fz, fy) V € for all
(=) € 1P| x |P|\ Z.

1.17. Notation. Ife,t € R, weput (1) e*xt =0ift <¢,ext =1ift > ¢, (2)
€Ot = (exp)-t. If p € S(Q), we put (e*p)(z,y) = e*p(z,y), (€0p)(2,y) = €Op(2,y)
forallz,ye Q. f P =(Q,p) € S, weput exP = (Q,c*p), e OP =(Q,c Op). I
P=(Q,p,u) €W, weput e+ P=(Q,e*p,u), cOP =(Q,e0p,p).
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1.18. Fact. A mapping f: |P| — |K] is an £-code iff it is an exact code of ¢ © P
in K.

1.19. Facts. A) The following properties of a space P € & U 20 are equivalent:
(1) for every € > 0 and every K there is a regular (see 2.4 below) e-code of P in K,
(2) for every € > 0, P has an e-code in some K; (3) P is totally bounded. —~ B) The
following properties of P € &U 2D are equivalent: (1) for every K there is a regular
(see 2.4) exact code of P in K, (2) P has an exact code in some K, (3) d(P) < o
and there is a partition (P,...,Ps) of P such that d(P;) =0,i=1,...,n.

The proofs of these facts are easy and can be omitted.

1.20. Notation. A) If f is an e-code of P in K, we put (1) §(f) = max{\(u): u €
fP}if P € 6, §(f) = max{\u): u € fP, a(f~'u) > 0} if P € 2V (the letter §
stands for Greek §odcxds=long); (2) A(f) = [(Ao f)du if P =(Q, p,p) € 2. - B)
Let K be a class of approximative codes. If € > 0, P € & U 20, we put é(¢, P,K) =
inf{6(f): f € KNcod(e,P)}. If ¢ >0, P € W, we put A, P,K) =inf{\(f): f €
K Ncod(e, P)}. If P € 6U 2, we put §(P,K) =sup{d(c, P,K): € > 0}; if P € 23,
we put A(P,K) = sup{A(e, P,X): € > 0}.

1.21. Fact. Let P € SU20; let ¢ > 0, and let € < d(.S) whenever S is a subspace
of P, d(S) > 0. Then every e-code of P in K is an exact code.

PROOF : Let f be an e-code of P in P. For every u, v € fP wehave d(f~'{u,v}) <
d{u,v} Ve. Put a=d(f~{u,v}). f a =0, then a < d{u,v};if a > 0, then a > ¢,
hence a < d{u,v}. Therefore, f is a 0-code. ]

1.22. Remark. Assume that P is not totally bounded. Then, by 1.19 A, for all
sufficiently small ¢ > 0, we have cod(e, P) = @, hence §(¢, P,K) = ¢, P,X) = 0o
for every class K of approximative codes. Thus, the theory developed below has a
real sense for totally bounded spaces only (though it is formally meaningful for all
Pe 6uW).

1.23. Notation. The class of all approximative codes in Ko, (in K;) will be
denoted by Ko (by Ky).

1.24. The functionals §(¢, P,Ko), 6(P,K), etc., are of little interest. E.g., it
can be shown that if P = (Q,1,u) € Wr, then A(P",Ks)/n —+ 0, whereas we
would expect something like A(P",Koo)/n — H(ug: ¢ € Q), in accordance with
the classical result.

1.25. The functionals é(¢, P,K,), 6(P,K}), etc., behave better, in some aspects.
For instance, if P € &, d(P) < 1 and P is totally bounded, then M.(P) <
8(e, P,K1) < H.(P) + 1 where H.(P) is (a version of) the Kolmogorov &-entropy
(see, e.g. [7] and [8]), namely H.(P) = log Ne(P), N(P) being the minimal
cardinality of a partition of P into sets of diameter < €. — On the other hand,
for any P = (Q,p) € Sp, we have §(P",K,)/n — log|Q|; thus, for large n,
5((Q, p)™,K1)/n “depends only slightly” on the semimetric p.

2

2.1. The facts mentioned in 1.24 and 1.25 lead to the conclusion that the class of
codes considered must be restricted if we want to get entropy-like functionals con-
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nected with the properties of codes and depending (for W-spaces P =< @, ¢, 4 >)
both on the semimetric ¢ and the measure p of the space. — To this end, we need
some auxiliary concepts introduced below.

2.2. Notation. Let M be a set, S C M*, z € [S]. Then (I) br(z, S) will denote
the set of all b € M such that z.(8) € [S]; (II) Br(z,S) will denote the set of all
z € M* such that (1) |z| 2 1, z.z € [S], (2) |br(z.2',S)| = 1 whenever z' < z,
0 # 2' # z, (3) |br(z.2,5)] = 1; (III) for every u € S such that u < z, u # z,
B(z,u,S) will denote the (unique) z € M* such that (1) |z] > 1, z.2 < u, (2)
|br(z.2', S)| = 1 whenever 2’ < z,  # 2’ < z, (3) either |br(z.2,5)|# 1 or 7.2 = u.
If u = z, we put f(z,u,S) = @ (the void sequence)). — Thus, A(z,u,S) is, roughly
speaking, the "non-branching part” of the sequence # defined by z.ii = u.

2.3. Definition. Let M be a set, S C M*, ¢p € S(M*). We denote by [g]s or o
or simply o' the semimetric on S defined as follows: if u,v € S, we put o'(u,v) =
o(u',v') where u' = B(uAv,u,S), v' = B(uAv,v,S). The semimetric o' will be called
the reduction of ¢ with respect to S. If X C S, we put d'(X) = dg(X) = d(X, ¢').
- In the sequel, we shall have ¢ = 7 = T for some Hamming space K and S = fP
for some e—code of P in K.

2.4. Definition. An e-code of P in K will be called regular if the following con-
dition is satisfied: (R) if u,v € fP, s < u A v, |br(s, fP)| # 1, then d(f " {u,v}) <
d'(Br(s,fP)) Ve. - Observe that the condition (R) implies d(f~'u) < ¢ for all
u € fP.

2.5. Remark. Let f be an e—code of P in K. Then each of the following condi-
tions is equivalent to (R) introduced above: (1) if u € [fP], |br(u, fP)] # 1, then
d{z € |P|: u < fz} < d'(Br(u,fP)) Ve, (2) if u,v,t € fP,uAv < uAt, then
d(f~{u,v}) < d'{y,t} ve.

2.6. Fact. A mapping f of P into K is a regular e~code of P in K iff it is a regular
0-code of ¢ ® P in K.

2.7. Notation. The class of all f: P — K, (all f: P — K)) such that
P € SUD and f is a regular approximative code of P in K, (in K;) will be
denoted by K7, (by K7). ’

2.8. Notation. For every P € 6 U 20, we put (1) for every ¢ > 0, §(¢, P) =
8(e, P,KT,), (2) 8(P) = 8(P,KL,). For every P € 20, we put (1) for every ¢ > 0,
Me, P) = Me, P,KY), (2) MP) = MP,KL,). Thus, §(P) is the supremum of
all inf{6(f) : f € K5, Ncod(c,P)}, € 2 0, and A(P) is the supremum of all
inf{\(f) : f € K, Ncod(e, P)}, & > 0.— Observe that, e.g., if P is the interval
[0,1] with the usual metric, then §(P) < 2 whereas 6(0, P) = oo since there exist
no O-codes of P.

2.9. Definition. For every P € & U Z(respectively, P € 20), §(P) and A(P) will
be called the entropic content and the pre-entropy of P, respectively.

2.10. Fact. f P € Sp U 2y then §(P) = inf(5(f) : f € K7, N cod(0, P)}. K
P € Wr, then A(P) = inf{\(f) : f € KT, N cod(0, P)}. This follows from 1.21.
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2.11. Notation. If f € cod(e, P), then B(f) will denote the set of all u € [fP]
such that |br(u, fP)| = 2.

2.12. Notation. If f is an e-code of P = (@, p, urangle € 20 in a binary K, then
E(f) is defined as follows: for every u € B(f), we put Br(u, fP) = {s,t}, S =
{z€P:us=<fz}, T={z€P:ut< fz}, E(u,f) = H@S,gT).7'(s,1); we
put E(f) = Y (E(y, f) : u € B(f)).

2.13. Definition. For every P € 20, we put (1) for every ¢ > 0, E(¢,P) =
inf{E(f) : f € K%, Ncod(e, P)}, (2) E(P) = sup{E(e,P) : ¢ > 0}, and we call
E(P) the coding entropy of P (or simply the entropy of P).-

Remark. In 2.22-2.31 the relationship between E(P) and some entropies introduced
in [2] will be considered.

2.14. Fact. If P € %, then B(P) = inf{E(f) : f € K%, N cod(0,P)}. This

follows from 1.21.

2.15. Fact. Let P € 20. Then (1) for every approximative code f of P in a binary
K, §(f)wP 2 X(f) 2 B(f), (2) PwP 2 AP 2 E(P).

2.16. We are going to show (see 2.20) that every regular e-code in Ko can be,
roughly speaking, replaced by a regular e-code with certain useful properties (in-
troduced below).

2.17. Definition. An e—code f of P € 6 U W in a binary K will be called (1)

strongly branching if B(f) = [fP]\ fP, (2) well-fitting if, for every u € B(f), d{z €
P:u < fz} = d'(Br(u, fP)) = A(s) for each s € Br(u, fP).

2.18. Fact. Every strongly branching well-fitting eé—code is regular exact.

2.19. Fact. If f is an approximative code of P in K and u € [fP], then there is
exactly one sequence (z; : i < m) such that z; € |K|, the concatenation [];,, zi is
equal to u, zp € Br(0, fP) and z; € B’(H.‘(,‘ zi,fP)for 1< j <m.

2.20. Lemma. If f is a regular e-code of P € S U2 in K, then there ezists
a strongly branching regular e-code g of P in K, such that (i) 6(g) < 6(f), (ii) ¢f
P €20, then A(g) < A(f), E(g9) < E(f), (iii) if € =0, then g is well-fitting.

Proor : I Clearly, it is sufficient to consider the case P € 2. The proof is
technically somewhat involved, though the underlying idea is quite simple. It will
be performed in two steps: we prove the statements (A) and (B), from which the
assertion of the lemma will follow immediately.

Statement (A). For every regular e-code f of P in Kooh, there is a regular e-code
h of P in K such that

(A1) 8 € B(h); ifu € B(h), Br(u,hP) = {s,t}, s=(s; :t <m), t =(t; : i < m),
then (a) m = n and, for all i < m, s; # t;, As; = At;, (b) As = At = 7(s,t) =
d'(Br(u,hP));

(A2) the collections {h~'u : u € hP} and {f'v : v € fP} coincide, A(hz) =
A(fz) for all = € P, 6(k) < 6(f), A(h) < M), E(h) < B(f);

i<m
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(A3) there is a bijection ¥ : B(h) — B(f) such that (a) for all u,v € B(h), u < v
iff Yu < v, (b) p(hz) = fz whenever hz € B(h), (c) if u € B(h), Br(u,hP) =
{s,t}, Br(yu, fP) = {s1,t1}, then A(s) = A(t) < As; A Aty, 7(s,2) < 7(s1,11).

Statement (B). For every regular e~code h of P in K, satisfying (A1)-(A3) with
respect to a given f, there is a strongly branching regular e~code g of P in Ko, such
that (1) the conditions (A1)-(A3) are satisfied for g with respect to h, (2) for every
u € gP, d{z € P: u < gz} = d'(Br(u,gP)) V ¢, hence, in particular, if ¢ = 0, then
g is well-fitting.

II. We prove (A) by induction on the cardinality of fP. Let |fP| =2, fP =
{s,t}, s = (s(i) : ¢ <m), t = (#() : i < n). Let (i; : j < k) be the increasing
sequence of all § < mAn such that s; # t;. For j < k, let uj,v; € {0 1} xRy, Auj =
Avj = A(s(35)) A A(E(3;)), w(u;) =0, 7(vj) = 1. Put u =(u;:j <k), v=_v;:
Jj<k). FotmGPputhz-uxffz-s, hz = v if fz =t. It is easy to show that
h is a regular e~code of P in K, satisfying (A1)-(A3) with respect to f.— Assume
that the statement (A) holds if |fP| < n. Consider an e-code f of P in K, such
that |fP| =n. Let z be the least element of B(f), and let Br(z, fP) = {3,}; put
s=2%, t=z1 Pt Qo={c€P:s<fz}, @y ={zx€P:t=< fz}. Put
flx) =sifz € Qo f'l(z) =tifz € Qy; put c = d(Qo) ANd(Q:). Then f'is a
regular c—code of P in K. Since |f'P| = 2, there is a c—code A’ of P in Ko, which
satisfies (A1)—(A3) with respect to f'.— If z € Qo (respectively, z € Q,), define
fo(z) (respectively, £1(2)) by f(z) = s.fo(z) (respectively, f(z) = t.£i(2)). It is
easy to see that f; is a regular e-code of P; = Q;.P. Since |f;P| < n, there exists,
for ¢ = 0,1, an e—code h; of P; which satisfies, with respect to f;, the conditions
(A1)~(A3).- For every z € P, put h(z) = h'(z).hi(z) if z € Qi. It is easy to prove
that, with respect to f, h has the required properties.

II1. We are going to prove (B). Let M consist of all pairs (u,s) such that u €
B(h), s € Br(u,hP). Let ¢ be a mapping of M into A such that if (u,s), (u,t) €
M, s #t, then p(u,s) # ¢(u,t), Mp(u,s)) = A(p(u,t)). For every u € [hP], let
(zi : 3 < k) be the sequence described in 2.19, i.e. the sequence such that z; € A,
the concatenation [];(, zi is equal to u, zo € Br(8,hP), z; € Br([],; zi, hP) for
1<j<k.

Put ¢(u) = (go(HKj 2i,2) 1 j < k). For every z € P put h*(z) = ¥(hz). It
can be easily proved that h* is a regular e—code of P in K satisfying (A1)-(A3)
with respect to h, hence also to f. Evidently, A* is strongly branching.— Define
g as follows: if A*(z) = u = (u; : ¢ < n), put g(z) = v = (v; : i < n) where
nv; = mu;, A\v; = €.d{z € P : u; < fz}. It is easy to show that g has all the
required properties. ]

2.21. Fact. For every P € 6f U Wy, there are only finitely many strongly
branching well-fitting (hence regular exact) codes of P in K.

PROOF : It is sufficient to consider the case P € 2r. For P € Wr let C(P)
be the set of all strongly branching well-fitting exact codes of P in Koo. If P =
(Q,0,4) € Wr and f € C(P), let ay denote the (unique) a € {0,1} x R4 such
that (a) € [fP), ma = 0, and let Qy(f) consist of z € P such that (as) < fz.
Clearly, M(ay) = d(P). It is easy to see that, for every T C Q, § # T # Q, we have
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I{f € C(P): Qo() = T} = [C(T-P)LIC((Q \ T).P)|. Since, evidently, |C(P)| < 2
if || P|| < 2, the proof is completed by induction on the cardinality of |P|. =

2.22. We now turn to the functionals E* and E, which have been introduced in
[2]. More precisely, in [2], 3.4, the concept of gauge functional has been introduced
and, for every gauge functional 7, two functionals on 20, C} and C,, called the
T-semientropy and T—entropy, respectively, have been defined (see [2], 3.17). For a
special choice of 7, the functionals C§, and Cg are obtained; in subsequent articles,
they have been denoted by E* and E, respectively.

We are not going to state the pertinent definitions. Indeed, we present different
but equivalent (see 2.27 and 2.29 below) definitions of E* and E for FW-spaces. It
will turn out that, for every FW-space P, E(P), E*(P) and E(P) coincide.

To state the definitions, we need the concept of a dyadic expansion ([2], 4.3, 4.16),
the definition of which is re-stated below. Observe that the terminology is different
from that in [2]:we call a dyadic expansion (of a space P € 20) what was called a
pure dyadic expansion in [2], and the term "subspace” is used here instead of ”pure
subspace” used in [2].

2.23. Notation and definition. A)D will denote the collection of all D C {0,1}*
such that 0 < |D| < w, [D] = D and |br(u,D)| # 1 for all u € D. If D € D, then we
put D' = {u € D : br(u,D) # 0}, D" = D\ D'. - B) If Q is a set, then a collection
(Qu : u € D) will be called a dyadic expansion (abbreviated d.e.) of Q if D € D,

= Q and, for eachu € D', @y = Quo UQu,, @uoNQy, =0. -C)f P € 65U,
then a collection (Py : u € D) will be called a dyadic expansion of P in all P, are
subspaces of P and there is a d.e. (@, : u € D) of |P| such that P, = @,.P for all
u€ D.

2.24. Definition. If P € Wr and Z = (P, : u € D) is a d.e. of P, we put
E(P,2) = Y (H(wP,,,wP,,)d(P,) : u € D'). If P € Wp, then E*(P) denotes
the infimum of all E(P, Z) where Z = (P, : u € D) is a d.e. of P such that (*)
[[Pull €1 for all u € D". — Evidently, the condition (*) can be replaced by (**)
[|IPll =1 for all u € D".

2.25. Fact. Foreach P € 2, there exists (i) ad.e. Z = (Qu.P : u € D) of P such
that E*(P) = E(P,Z) and |Q.| = 1 for all u € D", (ii) ade. T = (T,.P:v € D)
of P such that E*(P) = E(P,T) and d(T,) = 0 iff v € D"

2.26. Proposition. For every P € Wp, E(P) = E*(P).

PROOF : The equality E(P) = E*(P) is an easy consequence of the following two
assertions, the proofs of which can be omitted.

A) Let P € GU and let d(P) < oo. Let Z = (Q(u) : v € D) be a de. of
|P| such that (Q(u).P : u € D) isa d.e. of P (if P = (Q,¢,p) € W, this means
that Q(u) are fi-measurable). Define a mapping f of |P| into |K| as follows: if
z € Q(u), u = (u; : ¢ < n) € D", then f(z) = (vi : ¢ < n) where v; = (uj,t;),
t; = d(Q(u | 7)). Then f is a strongly branching regular approximative code of P in
Koo; in addition, if d(Q(u)) = 0 for all u € D", then f is a well-fitting exact code.
- B) Let f be a well-fitting strongly branching regular exact code of P € G U 20
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in Keo. For u = (u; : i < n) € [fP), put ¢(u) = (wu; : i < n). Let D consist
of all p(u), u € [fP]. fv =n(u) € D, put Q(v) = {z € P:u < fz}. Then
(Q(v):veD)isade. of |P|, Z=(Q(v).P:v€ D)isade. of Pandif P € Wy,
then E(P, 2) = E(f). ]

2.27. Fact. For every P € 2r, E*(P), as defined above (2.24), coincides with
C5(P) introduced in [2].

This is an easy consequence of 4.15 in [2] (see also [2], 4.11 and 4.9).

Remark. The fact just mentioned will not be used in what follows. We only want
to stress that E* defined in 2.24 is one of the "extended entropies” examined in {2].

2.28. Definition. A) Let P = (Q,p,p) € Wr. Let (T, : ¢ € Q) be a family of
disjoint sets, 0 < |T,| < w. Put T = | J(T, : ¢ € @), 0(s,t) = o(z,y) for s € T,
teT,. S =<T,o,v>€ Wr and vT; = pugq for all ¢ € @, we will say that S
is obtained from P by splitting. — B) For every P € Wp, E(P) will denote the
infimum of all E*(S) where S is a space obtained from P by splitting.

2.29. Fact. For every P € Wp, E(P), as defined above, coincides with Cg(P)
introduced in [2].

This is an easy consequence of [2], 3.23. - Remarks. 1) The functional Cf is one
of the functionals C, introduced in [2], 3.17. - 2) Similarly as with 2.27, the fact
stated above will not be used in the sequel. However, it seems useful to point out
that E, as defined in 2.28, coincides with one of the "extended entropies”.

2.30. Lemma. Let p € S(Q), a,0€ Q,a#b. Letc€ Ry, c>0; for0<t< 1,
let ue be @ measure on Q, Pr = (Q,0,11) € WF, g = pogq for g € Q \ {a,d},
pea = te, yb = (1 —t)e. Let Z = (Q(u) : u € D) be a dyadic ezpansion of Q
such that |Q(u)] = 1 for u € D". Let z,y € D", Q(z) = {a}, Q(y) = {b}. Then
either (I) the diameter of Q(z A y) in some (hence in all) P, 0 <t < 1, is zero
and E(Py,Z)V E(P,,2) < E(P;, Z) for 0 <t < 1, or (II) the diameter mentioned
above is positive and E(Po,Z)NE(P,,Z) < E(P,2) for 0 <t < 1.

PROOF : Evidently, for any X C Q and 0 < s <t < 1, the diameters of X in P,
and P, coincide; their common value will be denoted by d(X). - If d(Q(z Ay)) =0,
then it is easy to see that all E(P;,Z), 0 < t < 1, coincide and E(P;) < E(P;)
for i = 0,1, 0 < ¢t < 1. — Consider the case d(Q(z Ay)) > 0. Put h = [z Ay|,
m=|z|-h n=|y—h Fork <mputur =2z | (h+k); for k < n put
v =y [ (h+Fk). Foreveryt—(t :i<p)€D p>0,putit=(:1i<p)
where &; = t; fori < p—1,%—y = 1 —t,_1. For X C Q, put pX = po(X \ {a,b});
clearly, uX does not depend on ¢. For 1 < k < m, put g = pQ(u,,), sk = pQ(ur),
2t = d(Q(ur)); for 1 < k < m, put r} = - W(Q()), 5 = pQ(B), 74 = d(Q(vb))
Put rp =ro = uQ(z Ay), 7 = 20 = d(Q(z A y))-
For 0 <t <1, put p(t) = E(P, Z). It is easy to see that

(1) E(R,2) < lim ¢(t), E(P,2)< lim ¢(t). Clearly, for 0 < ¢ < 1 we have

(2) »(t) = E H(ris1 +tc,se41)2n + E H(riyy +1tc,8h )2k + H(ry +te,r +
¢ —tc)zg + K, where k is a constant mdependent of t. Hence,
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(3) () = ’:E zk(L(re41 + te — L(rx + tc)) + E 7 (L(rhyy + e —te) = L(ri +

¢ —tc)) + zo(L(ry + tc) + L(ry +c —tc)) + x,, where Ky is a constant. From
(3), we eas:ly get

-1
(4) o) = Z (2 = z141)L(resr + t€) + kZ (2k = Zhp 1) Lrhyy + €= te) + 51
Let ¢(t) denote the derivative of p at ¢,0 <t < 1. Then

-1 n-1
(5) $(t)/loge = —e — ¢ 5 (2 — zr1)loglrass + 1) + Ckzo(zi = Zip1)-
k=0 =
log(ryyq +c¢—tc).

Since zj) = zp = d(Q(z A y)) > 0 and zm = 2z, = 0, some z; — zx41 (and also
some z} — z;,,) is positive. Hence ¥ is a decreasing function. This implies that
(}i_xg e(t)) A (}1_!3} w(t)) < p(t) for 0 < t < 1. By (1), we get E(Po,Z) A E(Py,2) <
E(P,Z)for0<t< 1.

2.31. Proposition. For any P = (Q, o, ) € Wr, E(P) = E*(P) = E(P).

PROOF : By 2.26, E(P) = E*(P). Clearly, E(P) < E*(P). Thus, we have to
show that E(P) > E*(P), i.e., that E*(P) < E*(S) for any FW-space S obtained
from P by splitting (see 2.28). To prove this assertion, it is, clearly, sufficient to
show that E*(S) > E*(P) whenever S is of the form (T,0,v) described in 2.28
and such that T, = {a,b}, a # b, for some p € Q, T, = {q}, for ¢ € Q\ {p},
and va + vb = pp. By 2.30, we get E*(T,0,v) > E*(T,0,v') where v'q = pq for
a # g # b and either v'a = pp, v'b = 0 or v'a = 0, v'b = up. Evidently, in both
cases, E*(T,0,v') = E*(P). ]

2.32.. In view of 2.31, we will write E(P) instead of E(P) or E*(P) provided P
is an FW-space, and the fact that E(P) = E*(P) = E(P) will be used without
explicit reference to 2.31, as a rule.

3.

3.1. Lemma. Let P € Gr U 2r. There ezist well-fitting strongly branching
regular ezact codes fi, f2, f3 of P in Ko, such that (1) §(f,) = 6P, (2) if P € W,
then A(f2) = AP, E(f;) = E(P).

PROOF : The assertions concerning 6 and \ follow easily from 2.20 and 2.21. The
assertion concerning E follows from 2.20, 2.21 and the equality E(P) = E*(P) =
E(P). .
3.2. Remark. There are very simple FW-spaces P possessing no regular exact
code f in Ko with both A(f) = AP and E(f) = E(P), as the following example
shows. — Let @ = {a,b,c}, p(a,b) = p(a,c) =t > 1, p(b,c) = 1. Let pa = ¢,
0<e<1/3, ub=pc=(1-¢)/2. Put P =(Q,p,s). An elementary calculation
shows that (1) E(P) =tH(e,1—-¢)+1—¢, (2) E(f) = E(P)iff (3) {¢€ Q: f(g) |
1= (i,t)} = {a} for i = 0 or for i = 1. On the other hand, if f is a well-fitting
strongly branching exact code for P in Koo, then A(f) =t 4+ 1 — ¢ if f satisfies (3)
whereas A(f) = t + (1 +¢€)/2if {g € Q: f(g) | 1 =(0,t)} is equal to {b} or to {c}.
Assume that t < 2(1 — £)/(1 + ¢). Then, clearly, A(f) > A(P) if f satisfies (3).
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3.3. Proposltlon Let P € 6SpUWp. Then (1) for every partition (Po, 1) of P,
6P < d(P)+6P,V Py, (2) for some partition (Py, P,) of P, 6P = d(P)+ 6P, V6P,.

PROOF : I Let (Qo,@1) be a partition of |P|, P, = Qi - P. By 3.1, there are
regular codes f; of Pi, i = 0,1, in Ko, such that §(f;) = 6Pi. Fori =01, put
a; = (i,t) where t = d(P). For z € |P| put f(z) = (&) fi(z) if z € Qi. Clearly,
f € K%, Ncod(0,P), 6(F) = t+ é(fo) V 6(f1), hence 6P < d(P) + 6Py V 6P;.
~ Let f be a well-fitting strongly branching regular code of P in Ko such that
§(f) = 8(P). Clearly, |br(d, fP)] = 2. Let br(d,fP) = {@0,a1}. Since f is
well-fitting, Aag = Aa; = d(P). Put Q; = {z € [P|: (ai) < fz}, i = Q, - P
If z € Q;, define fi(z) by f(z) = (&) fi(z). Clearly, fi € KT, N cod(0, P,),
6P = 6(f) = d(P) + 6(fo) V &(f1)- In view of 6P < d(P)+ 6PV 6P1, this proves
S§P =d(P)+ 6Py V 6P,. ]

3.4. Proposition. Let P € Wr. Then (1) for every partition (Po, Py) of P,
AP < d(P)-wP+APy+ APy, E(P) < d(P)H(wPy,wP,)+ E(Ps)+ E(P,), (2) there
are partitions (Po, Py) and (So,S1) of P such that AP = d(P) - wP + APy + APy,
E(P) = d(P)H(wSo,wS1) + E(Sp) + E(S1).

‘We omit the proof since it is analogous to that of 3.3.

3.5. Characterization theorem for § on finite spaces. - Let P = Sp or
P = Wr. The functional § defined on P is the largcst functional ¢ on P such
that P = 0 if ||P|| < 1 and, for every partition (Py, ;) of a space P € ‘B, the
inequality P < d(P) + ¢Py V P, is satisfied.

PRrROOF : I By 3.3, 6 satisfies the conditions stated in the theorem. — II. Let
¢ satisfy the conditions in question. We are going to prove that pP < éP for
all P € B. Suppose this is not true and choose a P € P with P > §P and
with the least possible ||P||. By 3.4, there is a partition (P, P;) off P such that
6P = d(P)+ éPy V 6P,. Then ¢P; = 6P;, hence ¢ P < §P, which contradicts the

assumption. ]

3.8. Characterization theorem for A\ and E on finite spaces. - The func-
tional X (respectively, E), defined on W, is the largest functional ¢ on Wr such
that P =0 if |P|| = 1 and, for every partition (Py, P1) of a space P € W, the
inequality P < d(P) - wP + Py + ¢Py (respectively, P < d(P)H(wP,wP;) +
@Py + @ Py) is satisfied.

The proof is similar to that of 3.5 and can be omitted.

3.7. Definition. If p € S(Q) and, for any z, y, 2 € @, p(z,y) < p(z,2) V p(2,3),
then p will be called a U-gemimetric. If, in addition, p(z,y) = 0 implies z = y,
then p is called an ultrametric and (Q, p) is called an ultrametric space.

3.8. Definition. Let P = (Q,p,p) € 2. We will say that p is (1) a U-
semimetric with respect to p (or simply a U-semimetric) if there is a set Z C Q?
such that [4®)(Z) = 0 and p(:t,y) < p(2,2)V p(z,y) whenever (z,y,2) € @*\ Z, (2)
an ultrametric with respect to u (or simply an ultrametric) if, in addition, there is
aset Y C Q? such that [4?)(Y) = 0 and p(z,y) > 0 whenever (z,y) € Q*\Y, z #y.
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If p is an ultrametric with respect to u, then (@, p, #) will be called an ultrametric
W-space.

3.9. Lemma. Let P = (Q,p,p) € Wp. Let a = min{p(z,y): z,y € Q, p(z,y) >
0} and let py(z,y) = (p(2,4) — @) V0. Then (1) E(P) > aE(0» P) + E(Q, p1, 1),
(2) if p is & U-semimetric with respect to p, then E(P) = aE(0 x P) + E(Q, p1, p)-

PROOF : I Forz,y € Q, put p2(z,y) = aif p(z,y) 2 a, pa(z,y) = 0if p(z,y) =

Clearly, for every M C P, d{M, p) = d(M, p1)+d(M, p3). Put P; = (Q, pi, ). Then,
for each d.e. Z = (Q.: u € D) of Q, E(P,Z) = E(P,, Z) + E(P,, Z). This implies
E(P, £) > E(P,)+ E(P,), hence E(P) > E(Q, 1,1} + E(0* P). - IL. To prove the
assertion, it is sufficient to consider the case when ug > 0 for all ¢ € Q. By 2.25,
thereisad.e. Z = (Qy: u € D) of Q such that |Qu]| = 1foru € D" and E(P,,Z) =
E(P,). 1t is easy to show that E(P,Z2) + E(P,,Z) + aH(uQy: u € T) where T
consists of u € D such that d(Q,) = 0 whereas d(Q,) > 0 if v < u, v # u. Since
(0#p)(z,y) € {0,1} for all z, y € @, it is easy to see that E(0+P) = H(uQ.: u € T),
hence E(P, Z) = E(P;) + aE(0 * P). This implies E(P) < E(Q, p1,) +aE(0+ P)
and the assertion follows by (1). ]

o0
3.10. Theorem. For every FW-space P = (Q,p,p), E(P) > [ E(t* P)dt, and if
0
p is a U-semimetric FW-space, then E(P) = [ E(t + P)dt.
0

PROOF : Let (a;:i < n) be the increasing sequence of a.ll pz,y), =,y € Q.
From 3.9 we obtain, by induction, the inequality E(P) > 2 E(ak * P)(ak41 — ax)

(respectively, if p is a U-semimetric, the corresponding equahty) It is easy to see
that if k < n—1, ay, <t < apqa, then t*P = ax * P, and if a,—1 < t, then

E(t « P) = 0. Hence fE(t * P)dt = E E(ai * P)(ag4+1 — ax), which proves the
theorem. ]

3.11. Lemma. Let P = (Q,p,u) € Wr. Let a = min{p(z,y): z, y € Q, p(z,y) >
0} and let py(z,y) = (p(z,y) — a) VO. Then A(P) > aX(0 * P) + \(Q, p1, ).

The proof is analogous to that of 3.9 and can be omitted.
oo
3.12. Proposition. For every FW-space P, A(P) > [ A(t * P)dt.
0

This follows from 3.11 in the same way as 3.10 follows from 3.9.

3.13. Examples. A) Let Q = {1,2,3,4}, p(i,5) = |i — j|, n{i} = 1/4 for all
i € Q. Put P = (Q,p,p). It is easy to see that E(P) = 4. On the other hand,
I;° E(t+P)dt = E(0%P)+ E(1xP)+ E(2+P) = 2+ H(1/2,1/3)+ H(3/4,1/4) < 4.
Thus, if P = (@,p,s) € W and p is not a U-semimetric, then the equality

o0

E(P) = [ E(t+ P)dt need not hold. - B) Let Q@ = {1,2,3,4}, p(i,j) = 1 if
[]

A, 144,774 p4i)=2fri=123, u{i} =1/4foralli € Q. Put
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P = (Q,p,n). Clearly, P is ultrametric. It is easy to see that A(P) = 13/4 (this
value is obtained for the code 1 +— ((1,2),(1,1),(1,1)), 2+— ((1,2),(1,1),(0,1)),
o

3 — ((1,2),(0,1)), 4 — ((0,2)). Evidently, [ A(t * P)dt = 3 < 13/4. Thus, the
o

inequality in 3.12 can be strict even if P is ultrametric.

4.

4.1. Fact. If P, € 6p or P; € Wr, i = 1,2, then §(P, x P,) < 6P, + 6P,. If Py,
P e QBF, then t\(P1 X Pz) < AP, -wP; + AP, - wh,, E(P] X Pg) < E(P]) cwP; +
E(P) - whP;.

PROOF : We prove the assertion for § only, since for A and E the proof is analogous.
Put P = P, x P;. Clearly, 6P < 6P, + 6P, holds if ||P|| < 1. Assume that it holds
if || P)] < n and consider the case ||P|| = n + 1. We can assume d(P;) > d(P;). By
3.3, there is a pa.rtition (Plo, Pu) of P] such that (*) 6P1 = d(Pl) + 5P10 \ 6Pu.
Since ||P1; x P;|| < n, we have §(Py; x P;) < 6Py; + 6P, i = 0,1. By 3.3, 6P <
d(P)+ 6(Pio X P;) V(P11 x Py) Sd(P)+ 6(P, x P;) < 6Py + 6P;. ]

4.2. Remark. None of the inequalities in 4.1 can be replaced by an equality.
For § and A, this is well known already for FW-spaces of the form (Q,1,4). We
give an example concerning E. - Let Q = {1,2,3}, p(3,7) = |i — jl|, #{i}1/3 for
i =123 Put P =(Q,p,pn). Itis easy to see that E(P) = 2H(2/3,1/3) +
H(1/3,1/3) = 2log3 — 2/3. We are going to show that E(P?) < 2E(P). Con-
sider a de. Z = (Qu:u € D) of Q% such that (1) |Q.| = 1 for u € D",
(2) (Qoo, Qo1,Q10,Qu1) = (4, B\ 4,{(1,3)},{(3,1)}) where 4 = {1,2} x {1,2},
B = {2,3} x {2,3}. It is easy to see that E(P? Z) = 2H(4/9,3/9,1/9,1/9) +
H(1/9,1/9,1/9,1/9) + H(1/9,1/9,1/9) = (11log3)/3 — 8/9. Hence E(P?) <
E(P?, 2) < (11log3)/3 - 8/9 < 2(2log 3 — 2/3) = 2E(P).

4.3. Proposition. Let P; = (Q;, pi, pi), t = 1,2, be FW-spaces. If, fori = 1,2, p;
is a U-semimetric with respect to p; (in particular, if P, and P, are ultrametric),
then E(Py x P;) = E(P,) - wP; + E(P;) - wP,.

PROOF : Clearly, we can assume that wP; = 1 and p;q > 0 for all ¢ € Q;. - I. Let
¥ denote the class of all FW-spaces (Q, p, ) such that (1) 4Q = 1, (2) pg > 0 for all
q € Q, (3) pis a U-semimetric, (4) p(Q@ x Q) C {0,1}. For every T = (Q,p,u) € ¥,
let Zr consist of all X C @ such that d(X) = 0 whereas d(Y) = 1 whenever
XCYCQ X #£Y. It is easy to see that Zr is a disjoint collection and (*)
E(T) = H(“Z: Ze ZT)' Clearly, lfPa Se ‘Ilv P= ('PLPP) I-‘P)’ §= (lsl,Psms)’
thenT=PxS€¥Yand Zr ={UxV:U € 2Zp,V € Z5). Write ur instead of
pp X ps, pr instead of pp X ps. Then, by (*), we have E(T') = H(urZ: Z € 2r) =
H(upU: U € Zp)+ H(usV: V € Zs), hence E(T) = E(P) + E(S). - IL Clearly
it is sufficient to consider the case when P; = (Q;, pi, i), § = 1,2, are FW-spaces
such that wP; = 1, ujq > 0 for all ¢ € Q; and p; is a U-semimetric u;. Then, p; X py

0

is a U-semimetric and therefore, by 3.10, E((P, x P;) = [ E(t « (P; x P,))dt. By
0

L E(t+*(PrxP))=E{+P)+E({t+P)foralte R;. Hence E(P, x P;) =
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TE(t+ P)dt + | E(t+ Py)dt = E(P,) + E(Py), by 3.10. .
0 0

4.4. Fact. Lee m,ne N,m>0,n> 0. If P € Sp U W, then §(P™*") <
5(P™) + 6(P™). If P € Wp, wP =1, then A(P™*") < A(P™) + M(P™).
This is a consequence of 4.1.

4.5. Fact. Let =4 € R, for k € N, k > 1. Assume that for all m, n € N\ {0},
Zmin < Tm + Zn. Then lim(z/n) = inf(z/n: n > 0).
This is well known.

4.6. Definition. If P € 6 U 20, then inf(6§(P")/n: n € N, n > 0) will be de-
noted by A(P) and will be called the final entropic content of P. If P € 20, then
inf(A(P™)/n(wP)*~': n € N,n > 0) will be denoted by A(P) and will be called
the final entropy of P.

4.7. Fact. If P € 6p U Wy, then A(P) = im(§(P")/n). If P € WFr, wP > 0,
then A(P) = im(A(P")/n(wP)*"?); in particular, A(P) = im(A(P™)/n) if wP =

Thxs is a consequence of 4.4 and 4.5.

4.8. Remarks. 1) The equalities in 4.7 do hold for all P € 6, respectively
P € 8. This will be proved in the forthcoming Part II. — 2) It will be proved
below (4.21) that if P € 2, wP = 1, then A(P) = inf(E(P*)/n:n € N,n >
0) = im(E(P™)/n), which justifies the term “final entropy”.

4.9. Proposition. If P € Sr U Wp, then A(P™) = m A (P) for everym € N,
n>0. IfP,S€ Sp or P, S € Wr, then A(P x S) < A(P) + A(S).

PROOF : From 4.7, A(P™) = m A (P) follows at once. By 4.1, §(P™ x S™) <
8(P™) + §(S™), from which the inequality for A follows by 4.7. n

4.10. Proposition. If P € 6r U Wr and (P, Py) is a partition of P, then
A(P) <d(P) + A(Ry) V A(P).

PROOF : It is easy to see that, for every n € N, n > 0, 6(P") < n-d(P) +
max{6(P¥ x P[*): k + m = n} where we put P xP° PD,P° x PP = PP. Let
€ > 0. By 4.7, there is an ng € N such that if j > ng, then 5(P’)/J < A(Py) +¢,
§(PH/j < A(Py) + €. Choose ny € N such that ng(6P, V6P;) < eny. Let n > ny,
n = k + m. Then either (I) k > ro, m > ng or (II) m < ng or k < np. If k > ny,
m > ny, then §(PF x P*) < k(A(Py)+€)+m(A(Py)+¢€) < n(A(Po)V A(Py)) +ne.
-1If, e.g., k < ng, then 6(P¥ x P*) < k-6Py+m(A(P1)+¢) < (en+n)A(P)+€ <
n(A(Po)VA(P,;))+2ne. Thus, in both cases, §(P")/n < d(P)+A(Po)V A(P1)+2€
This proves the proposition.

4.11. Characterization theorem for A on finite spaces. Let P be either
the class of all finite semimetric spaces or that of all FW-spaces. The functional
A defined on P is the largest of all functionals ¢ on P such that P = 0 if
[IP]] £ 1, p(P™) = np(P) for every P € P and everyn € N, n > 0, and P <
d(P) + @(Py) V ¢(Py) for every partition (Py, P,) of a space P € P.
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ProOF : I By 4.9 and 4.10, A satisfies the conditions stated in the theorem. -
II. Let ¢ satisfy the conditions. Then, by 3.5, ¢(S) < §(S) for every S € P and
therefore np(P) = ¢(P") < §(P™), ¢(P) < 6(P™)/nfor all P € P and n € N,
n > 0. This implies ¢(P) < A(P). L]

4.12. Facts. I) For every P € 20 and every m € N, m > 0, A(P™) =«
m(wP)™~!A(P); in particular, A(P™) = mA(P)if wP =1. -II) If P, S € Wp,
then A(P x S) < A(P)-wS + A(S) - wP.

PROOF : I We can assume that wP = 1. Then, by 4.7, A(P™) =
"an;o(I\(P”“/n) =m- "l'l'n:o(/\(}’""')/nm). Hence, again by 4.7, A(P™) = mA(P).
- II. We can assume that wP = wS = 1. By 4.7, A(P x §) = im(A\(P™ x S")/n),
A(P) = im(A(P™)/n), A(S) = im(A(S™)/n),. This implies A(P x §) < A(P) +
A(S), since A(P™ x S®) < A(P™) + A(S"), by 4.1.

4.13. In 4.14, 4.15 and 4.18 below we prove some propositions concerning those
classes P C 20 which satisfy the following conditions: (1) if (Q, ap, bu) € P and a,
b € Ry, then (Q,ap,bp) € 2, (2) if S is a subspace of P € P, then S € P, (3)
if (P, Py) is a partition of P € B, then AP < d(P)- wP + APy + AP, (4) if Py,
P, € B, wP, = wP; =1, then P, x P, € P and AP < AP; + AP;. - By 3.4 and
4.1, the class Wy satisfies (1)-(4). In the forthcoming Part 11, it will be shown that
(1)-(4) are satisfied by 20 as well.

4.14. Lemma. Let P C W satisfy (1)~(4) from 4.13. Let P € P and let
(Py,...,Pn) be a partition of P. Put S = ({1,...,n},t,v) where t = d(P),
v{k} = wP;. Then AP <AS+ Y (APi:i=1,...,n).

PROOF : By 3.4, the assertion is true for n = 2. Assume that it holds for all
n <m. Let (Q1,...,Qm) be a partition of |P| such that P; = Q; - P are subspaces
of P. By 3.4, there is a partition (Xo,X;) of {1,...,m} = |S| such that AS =
d(S) - wS + ASp + AS;. Where S; = X; - S. PutY = U(Qi:t € Xj),j =0,1,
PU) = Y; . P. By the assumption, we have AP() < AS, +Y(A\Pi:i€ X;),j=0,1.
By 3.4, AP < d(P) - wP + AP® + APW, Hence AP < d(S) - wS + ASy + AS; +
Y(AP::i€|S])=AS+ Y (APi: i €|S]). ]

4.15. Fact. Let P C 20 satisfy (1)~(4) from 4.13. Then for every P € P,
A(P™)/n(wP)™"! converges to A(P) for n — co.

PROOF : We can assume wP = 1. By (4) from 4.13, \(P™*") < A(P™) + A(P™)
for all positive m, n € N. By 4.5, this proves the assertion. ]

4.16. Fact. Let v be a probability measure on {0,1}, »0 > 0, #1 > 0. For every
n € N,n >0, and ¢, let Ba(c) consist of all z = (z(5): i < n) € {0,1}" such that
10— ¢ < |{i < n: z(i) = 0}}/n < v0 + €. Then, for every sufficiently small ¢ > 0,
(1) lim v™(By(€)) = 1, (2) lim(log | Ba(€)|/hn) = 1 where h = H(v0,v1).

This is well known: the first assertion is an elementary fact, the second one is
easily proved using the Stirling formula.

4.17. Fact. If v is a probability measure on {0,1}, S = ({0,1},1,v), then
A(S™)/n — H(v0,v1).
This is an easy consequence of 4.16.
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4.18. i’roposition. Let P C W satisfy (1)~(4) from 4.13. Then for every P € B
and every partition (Po, Py) of P, A(P) < d(P)H(wPy,wP1) + A(Ps) + A(P1).

PRrOOF : 1. We can assume that d(P) = 1, wP; > 0, AP; < co. Put a = wh,,

= why, ¢ = (MPo)/a) V (A(Py)/b). Put S = ({0,1},1,v) where 10 = a, v1 = b.
If z = (z({): i < n) € {0,1}"*, n > 0, put u(z) = |{i < n: z(i) = 0}|, v(z) =
Hi < n: 2(i) = 1}|, P(z) = [] P clearly wP(z) = v*(z). By 4.14, we have

i<n

(1) MP™) £ MS™) + 2 (MP(z): z € {0,1})") for eachn > 0. Ifn > 0,¢ >
0, put Bn(e) = {z € {0,1}": |u(z)/n — a| < €}. Clearly, for every ¢ > 0, (2)
v*(Bn(e)) > 1forn - co. —-ILIfn € N,n >0, z € {0,1}", then, by (4) in 4.13,
A(P(z)) < wP(z)(u(z)- APo/a+v(z)- AP, /b), hence (3) A(P(z)) < v™*(z)ne. - IIL
Let € > 0, ¢ < aAb. By 4.15, there is an ng € N such that (4) n > n, implies
MPM)/na™ ! < A(Po) + €, A(PP)/nb*~! < A(P1) + €. By (2) and 4.17, there is an
n; € N, ny > ng, such that (5) n > n; implies (i) v™(Bn(€)) > 1—¢, (ii) u(z) > no,
v(z) > ng for all z € By(¢), (iii) A(S™) < n(H(a,b)+¢). Let n > ny, z € By(e); put
u = u(z), v = v(z). Then M(P(z)) = AP} x Py) and therefore, by (4) from 4.13
and the inequalities (4) above, A(P(z)) < (A(Py) +€)ua® 10" + (A(Py) +€)vb* ' a*,
hence (6) A(P(z)) < (A(Ry) + €)a™ - u(z)v™(z) + (A(Py) + )b~ - v(z)v™(z). -
IV. Let n > ny. By (3) and (5i), we have Y (A(P(z)): z € {0,1}" \ B,(¢)) < enc.
Since Y (u(z)v™(z): z € {0,1}) = na, we get 3 (AM(P(z)): z € B.(¢)) < n(A(P) +
€+ A(Py) + €). Hence Y (A(P(z)): = € {0,1}") < (A(Po) + A(P1) + 2¢ + c¢) and
therefore, by (5iii) and (1), A(P™)/n < H(a,b) + A(Po) + A(Py) + c& + 2¢.

4.19. Proposition. If (P, P,) is a partition of an FW-space P, then A(P) <

This is an immediate consequence of 4.18 and the fact that 2 satisfies the
conditions (1)-(4) stated in 4.13.

4.20. Characterization theorem for A on finite spaces. The functional A
defined on the class Wr of al FW-spaces is (A) the largest of all functionals p on
Wr satisfying (1) P =0 if |P|| = 1, (2) p(P™) = n(wP)*~1.uP for all P € Wy
andn € N, n >0, (3) pP < d(P):- wP + ¢Py + ¢P, for all P € Wr and all
partitions (Po, P1) of P, (B) the largest of all functionals ¢ on Wy satisfying (1),
(2) and (3’) pP < d(P)H(wPy,wP,)+9Po+¢Py for all P € Wr and all partitions
(Po, Pr) of P.

PRrOOF : 1. Clearly, A satisfies (1). It satisfies (2) by 4.12, and (3’), hence also
(3), by 4.19. - IL Let ¢ satisfy (1), (2) and (3). By 3.6, 9pS < AS for all S € Wp.
Hence, if P € Wr, wP =1,n € N, n > 0, then, by (2), np(P) = p(P") < \(P"),
@P < A(P™)/n and therefore o P < A(P). ]

4.21. Theorem. If P is a finite separated semimetrized measure space, wP > 0,
then 6P - wP > AP > E(P) > A(P) = Lim(E(P")/n(wP)""!); in particular, if
wP =1, then 6P > AP > E(P) > A(P) = lim(E(P"™)/n).

PROOF : The first two inequalities follow from 2.5, and 2.31. The inequality
E(P) > A(P) follows from 4.20 and 3.6. If wP =1, n € N, n > 0, then E(P") >
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A(P™) = nA(P), hence E(P")/n > A(P). On the other hand, E(P") < A(P),
hence E(P")/n < A(P™)/n for all n € N, n > 0, and therefore hm(E(P")/n) <
A(P). This proves the theorem.

4.22. Theorem. If P is a finite separated probability space equipped with an ul-
trametric, then AP > E(P) = A(P).

PROOF : By 4.3, we have E(P") = nE(P) for all n € N, n > 0, hence
lim(E(P")/n) = E(P) and therefore, by 4.21, A(P) = E(P). .

4.23. Remarks. 1) Clearly, 4.21 and 4.22 correspond to a rather special version of
the well-known theorems (for finite probability spaces) on coding in the absence of
noise. In fact, 4.22 extends to finite probability spaces equipped with an ultrametric
the basic theorem asserting that if (Q, p) is a finite probability space, the sequences
(zi: i < n) € Q" can be coded, provided n is large, in {0,1}* in such a way that
the average length of codewords is less than nH(ug: g € Q) +¢), € being any given

. positive number. - 2) If P is not ultrametric, then E(P) = A(P) does not hold, in

general.
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