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INDEPENDENT SET and CLIQUE problems 
in intersection-defined classes of graphs 

JAN KRATOCHVfL, JAROSLAV NESETRIL 

Dedicated to the memory of Zdenek Frolfk 

Abstract. We study the computational complexity of INDEPENDENT SET and CLIQUE 
problems restricted to intersection graphs of segments in the plane, and to some subclasses 
of this class of graphs. 
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Classification: 05C99 

1. Preliminary. 

In this paper we study the computational complexity of the following two prob
lems 

I N D E P E N D E N T SET. 
Input: A graph G and a positive integer k. 
Question: Does there exist a set of k vertices of G no two of which are joined by an 

edge? 
(A set of vertices of G which contains pair-wise nonadjacent vertices is called inde
pendent and the maximum size of an independent set is denoted by ar(O).) 

CLIQUE. 
Input: A graph G and a positive integer k. 
Question: Does there exist a set of k vertices of G with any two of its members 

joined by an edge? 
(A maximal set of pairwise adjacent vertices is called a CLIQUE and the maximum 
size of a clique in G is denoted by u;(G).) 

It is possible to say that these are two of basic combinatorial optimization prob
lems. They were studied intensively and they are, in general, known to be N P -
complete. Here we study these problems restricted to various classes of graphs 
which are induced by geometric configurations in the plane. The complexity of 
these problems is nearly completely answered. 

Intersection graphs of geometric objects in the plane belong to popular and 
studied classes of graphs. The most general (if we restrict ourselves to arc-connected 
sets in the plane) is the class of string graphs, i.e. intersection graphs of curves in the 
plane [EET], [KGK], [Krai], [S]. Although INDEPENDENT SET and CLIQUE 
restricted to string graphs are NP-complete problems, they are polynomially solv
able in various subclasses (interval graphs, permutation graphs, chordal graphs, 
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circle graphs [Gav]). We will be concerned with intersection graphs of straight 
Une segments in the plane, and in order to obtain sharper results, we consider the 
following classes 

Definition. Let k be a positive integer. Denote by 
SEG the class of intersection graphs of straight Une segments in the plane; 
k-DIR the class of intersection graphs of segments lying in at most k directions 

in the plane; 
PURE-fc-DIR the class of intersection graphs of segments lying in at most k 

directions in the plane, with the additional condition that any 
two parallel segments are disjoint. 

(Let us state expUcitely that a graph G is said to be an intersection graph of 
objects of some type, if there exists a collection R of some of these objects such 
that G is isomorphic to the intersection graph of H, i.e. to the graph I(R) = 
(R, {rs | r, s € R, r ^ s and r 0 s ^ 0}). Then R is called a representation of 
G. In the sequel, we wiU say ua SEG graph" and "a SEG representation'' instead 
of "a graph belonging to SEG" and "a representation by straight line segments", 
respectively (and similar for fc-DIR and PURE-fc-DIR graphs).) 

Remark. These definitions generalize some particular cases studied earlier. For 
instance 1-DIR are exactly interval graphs. Note also that PURE-1-DIR are dis
crete graphs, with the exception of these two aU the other classes are NP-complete 
or NP-hard to recognize [Kra2], [KM2]. 

Obviously ifc-DIR C (k + 1)-DIR, PURE-Jfc-DIR C PURE~(Jfc + 1)~DIR and 
PURE-ifc-DIR C ifc-DIR hold true for every k > L We will also use the fact 
that every PURE-2-DIR graph is bipartite later on. 

2. I N D E P E N D E N T SET problem. 

Theorem 1. INDEPENDENT SET is polynomially solvable in 1-DIR and PURE-
2-DIR, but it is NP-complete when restricted to 2DIR and PURE-Z-DIR. 

PROOF : INDEPENDENT SET problem is known to be solvable in polynomial 
time for interval (i.e. 1-DIR) graphs and for bipartite (and hence PURE-2-DIR) 
graphs [GJ], The main point of the theorem Ues in its NP-complete part. 

Suppose G is a planar graph with maximum degree four (INDEPENDENT SET 
problem is NP-complete for such graphs [GJ]). Fix an embedding of G in a grid 
such that edges of G are piecewise linear curves following the grid lines (such an 
embedding in a linear sized grid always exists and is constructive in polynomial 
time [V]). For every edge e of (7, let k€ denote the number of linear pieces the 
drawing of e consists of. Let G' be a graph obtained from G by subdividing every 
edge e with 2[(kt + l)/2] + 2 vertices (i.e. by replacing every edge c by a path of 
length 2 p e + l) /2] + 3). It foUows that 

«((?') =«((?)+ £ ([(*. +l)/2] + l) 
€€B{6) 

and thus to complete the proof it suffices to show that G' € 2-DIRDPURE-3-DIR. 
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Having the grid embedding of G, construct a representation of G' as follows (see 
schematic Figure 1). Replace every vertex of G by a short horizontal segment. For 
an edge e, consider every linear piece of the drawing of e to be a segment of the 
representation. The pieces which were incident with the vertices of G are slightly 
shortened so that they do not intersect the short horizontal segments, and slightly 
shifted so that vertical segments lie on distinct lines. Finally, short segments are 
added (either overlapping in the case of 2-DIR or in the third direction in the case of 
PURE-3-DIR) near the segments representing the vertices of G so that the number 
of 2[(ke +1)/2] +2 segments on the path joining the endpoints of e is reached. (Note 
that this would not be possible to arrange without overlapping or using the third 
direction, since <?' is in PURE-2-DIR iff G is bipartite.) • 

3. How to describe a SEG representation. 

Before we proceed to the CLIQUE problem we are going to discuss several ways 
in which a system of segments in the plane can be described. This is necessary 
because our polynomial algorithm for finding a clique number of a fc-DIR graph G 
depends on knowing some facts about a fc-DIR representation of G. We suggest 3 
approaches: 

1. Complete description. Here we describe the segments of the representation. 
We can do it formally as follows: 

Given a graph G == (V,E)y we introduce functions fa: V —• Z, i = 1,2,3,4 so 
that a vertex u € V is represented by the segment with endpoints [fi(v)i h(u)], 
(/3(u),/4(u)]. (Thus we describe the segments by giving the coordinates of their 
endpoints. Without loss of generality we restrict ourselves to segments with end-
points located in integer points.) 

The size of such a description, i.e. the number of bits necessary to give is then 

4 
L - E E ^ * AMI -s 4nV°to *i. 

where x = max{|/,(u)|: t =-1,2,3,4, u € V} and n = |V|. 
The advantage of this description is that given /,, t = 1,2,3,4, one can easily 

decide (in time polynomial in n and L) whether the system of segments actually 
represents G, i.e. whether for every pair of distinct vertices ti, v € V, the segments 
[/i(t-),/2(t-)][/3(ti),/4(u)] and [fi(v)yf2(v)][f$(v)J4t(v)] are disjoint if and only if 
uv $E. 

On the other hand the disadvantage of the complete description is the fact, that 
there are graphs with 0(n2) vertices which can be represented by segments, but 
every SEG representation of which requires a complete description of size at least 
2n [KM]. 

2. Partial description. Here we give a full description of the representation from 
the topological point of view, i.e. in the description we omit the fact that the 
segments are straight. We may consider the partial description as a result of the 
following procedure: 
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We take the representation R and consider all lines in the plane carrying at least 
one segment of R (we caU such a Hne "a line determined by the representation"). 
Then we apply a homeomorphism of the plane which maps (injectively) the crossing 
points of the Hnes into the vertices of a linear sized (in n = |V| = |JR|) grid. This is 
possible even with the images of the parts of the Hnes between the crossing points 
being straight since we can interpret the Hnes determined by J? as a drawing of 
a planar graph, and every planar graph is known to have a Fary embedding in a 
polynomial sized grid [FFP]. Thus the partial description consists of 

a) a set C of curves in the plane, 
b) a mapping (p which assigns to every vertex u € V a segment (p(u) on some 

curve c € C. 

(Note that b) is equivalent with 

ba) saying which segment appears on which line and 
bb) saying the orderings of the endpoints of the segments on the lines.) 

The disadvantage of this partial description is that it is NP-hard to decide 
whether it actually describes an intersection graphs of straight line segments (i.e. 
whether the curves of the description can be stretched). This follows from the result 
of Shor [personal communication] on the stretchabiHty of pseudoline arrangements. 

On the other hand, every SEG representation of a SEG graph has a partial 
description of size 0(n log n). 

3 . Discrete partial description. For our purpose it is not necessary to know 
the Hnes of the representation (nor the curves of the partial description), only the 
incidencies are important. So we consider two sets of points - the set of crossing 
points of the Hnes determined by R (denoted by C(R)) and the set of the endpoints 
of the segment (denoted by E(R)). Then the discrete partial description consists of 

c) a set X (=C(R) U E(R)), 
d) a set A of subsets of X (the lines determined by R), 
e) a mapping t/> which assigns to every vertex u € V a subset tp(u) of X (the 

endpoints and crossing points which appear on the segment representing the 
vertex u). 

Note that \C(R)\ < (£) and E(R) < 2n where n = |V|, and i/>(u) > 2 for every 
e € V (we do not consider a single point to be a segment). It is also straightforward 
that i/>(u)n*l>(v) y- 0 if and only if u = v or uv € 15, provided R was a representation 
o fG = (V,_E). 

The disadvantage of the discrete partial description is that it is NP-hard to 
recover the partial description from it. 

The main advantage of this description we see in its general form (cf. the following 
section). It grasps the properties of SEG representations on which our algorithm for 
finding a maximum cHque in a fc-DIR graph is based. Thus though we relate our 
result mainly to intersection graphs of segments, the algorithm introduced in the 
following section computes the cHque number in polynomial time for considerably 
wider class of graphs. 
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4. CLIQUE problem. 

Throughout this section we suppose that G = (V, E) is a graph with n vertices. 
If G is in PURE-k-DIR, u(G) < k and one can find u>(G) in time < 0(nk), 

provided k is fixed. In the sequel, we are going to present a polynomial algorithm 
that determines w(G) for k-DIR graphs. (Note that in this case there is no upper 
bound for u(G) except of w(G) < n.) In fact our algorithm works for a larger class 
of graphs. 

Definition. We say that (X, f) where X is a finite set and / : V —• exp X assigns 
to every vertex of G a subset of X is a finite (intersection) representation of G if 
for every pair of distinct vertices u, v € V, f(u) f) f(v) ^ 0 if and only if uv € E. 

A triple (X,A,f) where (X,f) is a finite representation of G and A = {Ai,A2> 
. . . , Ar} is a set of some subsets of X is called a special representation of G if 

i) |At n Aj\ < 1 for every 1 < i < j < r, 
ii) for every u EV there is exactly one t such that f(u) C A t , 

iii) for every i, the set Z7t = {/(«): f(u) C Ai, u € V} is nonepmty and has 
Helly number 2, i.e. for every U C Ui such that f)U = 0 there exist u, v € V 
with f(u), f(v) € U and f(u) f) f(v) = 0. 

In addition (X,A,f) is called k-special if 

iv) for every M C {1,2 , . . . , r } such that Ai 0 Aj ^ 0 for all i, j € M, M has 
size at most A: (i.e. every subset of A of size k -f1 contains two disjoint A t 's). 

Theorem 2. Let k be a fixed positive integer and let (X,A,f) be a k-special repre
sentation of G. Then one can compute u>(G) in time < 0(rmn + krk(km + k2n)) < 
0(nk(m -f n)), where m = \X\ and r = \A\. 

PROOF : For 1 < t 7̂  j < r, denote by ItJ- the intersecting point of At and Aj 
providing the intersection At n Aj is nonempty (if At and Aj are disjoint Itj remains 
undefined).* 

For t = 1,2, . . . , r , put 

^ = mBx{\U\: U C V, [j f(u) C Ai, f(u) n f(v) 9- 0 for all u, v € U}. 
«€U 

Claim 1. Suppose C C V is a clique in G, i.e. C is a maximal set of vertices such 
that the sets f(u), u € C have pairwise a nonempty intersection. Put M = {i: 3w € 
C with f(u) CAi}. Then either \M\ = 1 and \C\ < wt for some i, or \M\ > 1 and 
then M is such that Ai D A} £ 0 for all i, j G M and C = (J UiM, where 

UiM = {u:u€ V, f(u) C Ai and {I0 : j eM,i^j}C / ( « ) } . 

PROOF of Claim 1: The case \M\ = 1 is straightforward. If \M\ > 1, then 
0 7* / ( « ) n f(v) C Ai n Aj C {Iij} whenever f(u) C Ah f(v) C Aj and u, v € C. 
Hence Ai n Aj ^ 0 and Iti G f(u) f) f(v). • 

Now the algorithm is clear 
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Algorithm. 
1. For every i = 1,2,..., r compute a;,- and put fti = max a/,-. 

»srl,2,...,r 

2. For every M C {1,2,...,r} such that 2 < |M| < k and such that A tf lA i # 0 
for all t, j € M compute U>A# = ]£ I^»M|. Put &2 = maxu>M • 

i€M 
3. Seta;(G) = max{n1,02}. 

To justify the upper bound on the running time of the algorithm we have the 
following two claims 
Claim 2. For every t. u>i can be computed in 0(mn) steps. 
PROOF of Claim 2: Due to the HeUy property iii), u>i = maxu;lit, where u>»x = 

\{u:u€V,xef(u)QAi}\. * ' • 

Claim 3. For every M C {1,2,..., r}, \M\ > 2, O>M C<W be computed in 0(m|M|+ 
n\M\2) < 0(km + k2n) = 0(m + n) .jfcpa. 

PROOF of Claim 3: First we find the crossing points I,y, t ^ j € M (in time 
< 0(m|M|) < 0(mk) = 0(m)). Then we check which /(w)'s contain all of them 
(in time 0(n\M\2) < 0(nk2) = 0(n)). m 

Since it follows from ii) that r <n^ step 1 of the algorithm requires running time 
0(rmn) < 0(mn2), while step 2 requires time < krk • 0(km + k2n) < 0(kznk(m + 
n)). This concludes the proof of Theorem 2. • 

Remark 4.1. Note that given k and a special representation (Jf,.4,/), one can 
check in time < Ofan11*1) whether (X,„4,/) is ^-special. Also it is not necessary 
to save the lines A in the description. If we suppose that |/(ti)n/(v)| > 2 whenever 
/(«), /(«) lie on the same line (and are not disjoint), we can recover the lines A 
just from (X, / ) . 

Let us now return to the intersection graphs of segments in the plane. 

Lemma 4.2. Let (X, A, tp) be a discrete partial description of SEG representation 
R of a graph G. fhen (X, ,4, $) is a special representation of G. Moreover, if R is 
a k-DIM representation then (X, A, xp) is k-special. 

PROOF : 

i) is straightforward. 
ii) foUows form i) (note that |^(ti)| > 2 for every u € V). 
iii) It is weU known that a system of intervals on a line has HeUy number 2, and 

the same is true for intervals in a discrete linearly ordered set. 
iv) is again clear since the lines parallel with the same direction are either iden

tical or disjoint. 
• 

Corollary 4.3. Given a discrete partial description of a k-DIR graph G, one can 
compute u>(G) in 0(&3n*+2) steps. 

Remarks 4.4. A more careful investigation shows that given a k-special represen
tation encoded in a suitable data structure one can compute the clique number in 
time 0(nk^). 
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4.5. We know that the condition iv) is in general necessary. More precisely, given 
a special representation of G, it is stiU NP-hard to compute u(G). However, we 
do not know whether this is also true in the case of geometric representations, i.e. 
whether computing u>(G) for SEG graphs is more difficult than for k-DIR graphs. 
Particularly, this leaves us with the following open question 

Problem. Determine the computational complexity of the CLIQUE problem re
stricted to intersection graphs of straight line segments in the plane. 

4.6. Middendorf and Pfeiffer [MP] proved the NP-completeness of CLIQUE for 
special class of string graphs, having a representation which .^very curve is either 
a straight line segment, or consists of two straight segments parallel with axis all 
being of the same type (say r, i.e. the upper left corner of some isothetic rectangle). 
This is presently as far as one can go in solving the above problem. 

4.7. Note that the answer to the above problem may vary depending on whether 
the size of the input is measured as the size of the intersection graph or as the size 
of the complete description of a SEG representation (cf. section 3). 
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