Vladimir Vladimirovich Uspenskij

On the group of isometries of the Urysohn universal metric space

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 1, 181--182

Persistent URL: http://dml.cz/dmlcz/106833

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

On the group of isometries of the Urysohn universal metric space

V. V. USPENSKIJ

Dedicated to the memory of Zdeněk Frolík

Abstract. We show that the group mentioned in the title, equipped with the topology of pointwise convergence, is a universal topological group with a countable base.

Keywords: topological group, Urysohn space

Classification: 22A05, 54E40

Does there exist a universal topological group with a countable base, i.e. such a group G that every topological group with a countable base is isomorphic (topologically or algebraically) to a subgroup of G? A positive answer to this question of S. Ulam was given in [1]: the group Aut Q of all autohomeomorphisms of the Hilbert cube, equipped with the compact-open topology, is universal. In the present paper we apply Katetov's construction [2] of Urysohn universal metric spaces to give another example of a universal topological group with a countable base.

Let us say that a separable metric space M is Urysohn iff for any finite metric space X, any subspace $Y \subseteq X$ and any isometric embedding $f: Y \longrightarrow M$ there exists an isometric embedding $\overline{f}: X \longrightarrow M$ which extends f. There exists a unique (up to an isometry) complete Urysohn space [2], [3], and there exist non-complete Urysohn spaces [2]. For a metric space M, let Is M be the topological group of isometries of M onto itself, equipped with the topology of pointwise convergence (which coincides with the compact-open topology on Is M). If M is separable, the group Is M has a countable base.

Theorem. Let U be the complete Urysohn separable metric space. Then Is U is a universal topological group with a countable base, i.e. every (Hausdorff) topological group with a countable base is isomorphic to a subgroup of Is U.

The proof is based on Katëtov's paper [2]. Recall some definitions from [2]. For a metric space (X, d) let E(X) be the set of all functions $f: X \longrightarrow R$ such that $|f(p) - f(q)| \le d(p,q) \le f(p) + f(q)$ whenever $p, q \in X$. For $f, g \in E(X)$ put $d^E(f,g) = \sup\{|f(p) - g(p)|: p \in X\}$. Then $(E(X), d^E)$ is a metric space. If $Y \subseteq X$ and $f \in E(Y)$, define $f^* \in E(X)$ as follows: for $p \in X$, let $f^*(p) = \inf\{d(p,q) + f(q): q \in Y\}$. The mapping $f \longmapsto f^*$ is an isometric embedding of E(Y) in E(X), so we can identify E(Y) with a subspace of E(X). Let $E(X,\omega) = \bigcup\{E(Y): Y \subseteq X, Y \text{ is finite}\} \subseteq E(X)$. There is a natural isometric embedding $p \longmapsto f_p$ of X in $E(X,\omega)$, where $f_p(q) = d(p,q)$ for $p, q \in X$, so X can be identified

V.V.Uspenskij

with a subspace of $E(X,\omega)$. Put $X_0 = X$, $X_{n+1} = E(X_n,\omega)$. We regard each X_n as a subspace of X_{n+1} , so we get a chain $X_0 \subset X_1 \subset \ldots$ of metric spaces. There is a natural metric on $X_{\omega} = \bigcup X_n$ which extends the metric on X_n for every n.

Every isometry $\varphi \in Is X$ extends uniquely to an isometry $E(\varphi) \in Is E(X)$ [2, Fact 1.6]. Let $\varphi^* \in Is E(X, \omega)$ be the restriction of $E(\varphi)$ to $E(X, \omega)$. The mapping $\varphi \mapsto E(\varphi)$ from Is X to Is E(X) need not be continuous; however, it follows from [2, Fact 1.7] that the mapping $\varphi \mapsto \varphi^*$ from Is X to Is $E(X, \omega)$ is an isomorphic embedding of topological groups. For $\varphi = \varphi_0 \in Is X$ let $\varphi_{n+1} = (\varphi_n)^* \in Is X_{n+1}$. There is a unique isometry φ_{ω} of X_{ω} which extends φ_n for every n.

Lemma 1. The topological group Is X is isomorphic to a subgroup of Is X_{ω} .

PROOF: The mapping $\varphi \mapsto \varphi_{\omega}$ from Is X to Is X_{ω} is an isomorphic embedding of topological groups.

If X is separable, then X_{ω} is Urysohn [2]. The completion of X_{ω} is also Urysohn [3], [2, lemma 3.3] and hence isometric to U. This proves

Lemma 2. If X is separable, the topological group Is X_{ω} is isomorphic to a subgroup of Is U.

Lemma 3. Every topological group with a countable base is isomorphic to a subgroup of Is X for some separable metric space X.

Actually every topological group is isomorphic to a subgroup of Is X for some metric space X. For metrizable groups this is obvious: if G is a metrizable group, there exists a left-invariant metric d on G compatible with its topology. For any $g \in G$ the left shift $x \mapsto gx$ is an isometry of (G, d), and thus we obtain an isomorphic embedding of G in Is(G, d). This proves lemma 3.

The theorem follows immediately from lemmas 1, 2, 3.

Question 1. Are the topological groups Is U and Aut Q isomorphic?

Question 2. Let m be an uncountable cardinal. Does there exist a universal topological group of weight m? Is Aut I^m such a group?

REFERENCES

- Uspenskij V. V., A universal topological group with a countable base, Funktsional'nyj analiz i ego priloshenija (Functional analysis and its applications) 20 (1986), 86-87.
- [2] Katětov M., On universal metric spaces, Proc. Sixth Prague Topological Symp. 1986, Frolík Z. (ed.), Berlin: Heldermann Verlag, 1988, pp. 323–330.
- [3] Urysohn P., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43-64.

Inst. of Physics of Earth, Bolshaja Gruzinskaja 10, Moscow 242, USSR

(Received February 5, 1990)