Commentationes Mathematicae Universitatis Carolinas

Václav Koubek
Representations in varieties of regular involution bands

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 2, 201--211

Persistent URL: http://dml.cz/dmlcz/106849

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Representations in varieties of regular involution bands

V. Koubek

Abstract

A unary operation ${ }^{+}$on a semigroup S is called a regular involution if the following identities $x^{++}=x, x x^{+} x=x$ hold. We prove that the varieties of left normal bands with a regular involution, of right normal bands with a regular involution, and rectangular bands with a regular involution are universal.

Keywords: varieties of bands, a regular involution, a universal category
Classification: 18B10, 20M07, 20M30

1. Introduction.

A category K is universally representative, (or shortly universal) if any category of algebras A can be fully embedded into K. In case of concrete universal category K it may be often required that any category of alegebras A may be fully embedded into K in such a way that all finite algebras in A are carried to K-objects with finite support. In this case K is termed finite-to-finite universal. If we require slightly less namely than universality, that all one-object categories (i.e. monoids) be fully embeddable (i.e. representable as monoid endomorphism of suitable objects) in K, then K is said to be monoid universal. The universal representativeness of a category is directly related to those structural properties of its objects which enable the objects to control the morphism so as to represent any category of algebras. For this reason, much attention has been paid to varieties of algebras. Universality of a variety is an increasing property which can be lost when going down in the lattice of subvarieties. For example, the universal varieties of semigroups have been characterized [6] as follows: A variety $\underset{\sim}{V}$ of semigroups is universal if and only if contains all commutative semigroups and for no $n>1$ the power law $x^{n} y^{n}=(x y)^{n}$ holds in $\underset{\sim}{V}$. By this characterization it is straightforward that no variety $\underset{\sim}{V}$ of bands (i.e. semigroups satisfying $x^{2}=x$) is universal, the property is lost. However, and this is a motivation of our present work, we can expend the $\underset{\sim}{V}$-band structure by adding new operations so as to obtain again a universal variety, this time, however, in a different, extended type.

Some results have been obtained on expansion of bands by adding a small number of nullary operations [3]. A variety $\underset{\sim}{V}$ of bands has a universal expansion by nullary operations if and only if $\underset{\sim}{V}$ contains all left normal bands or all right normal bands - in this case it suffices to add three nullary operations. Further a variety $\underset{\sim}{V}$ of bands has a universal expansion by two nullary operations if and only if $\underset{\sim}{V}$ contains all semilattices of left zero-semigroups or all semilattices of right zero-semigroups.

Another possibility of a "moderate" expansions of bands is to add one unary operation. In this case the added operation $x \rightarrow x^{+}$can even be tied to the band structure by the identities

$$
\begin{equation*}
x^{++}=x \text { and } x=x x^{+} x \tag{RI}
\end{equation*}
$$

qualifying the operation as what we call a regular involution, and the variety we thus obtain - the variety $R I \underset{\sim}{V}$ of regular involution $\underset{\sim}{V}$-bands - may still be universal.

The universality of the variety $R I B$ with B the variety of all bands was proved in [2]. In this paper we want to give simple characterization of the universal varieties RIV with $\underset{\sim}{V}$ a variety of bands.

We shall use the following abbreviations as names of the band varieties:
$L Z B$ - left zero-semigroups $[x y=x]$,
$R Z B$ - right zero-semigroups [$y x=x$],
$S L$ - semilattices $[x y=y x]$,
$L N B$ - left normal bands [$x y z=x z y$],
$R N B$ - right normal bands [$y z x=z y x$],
$R B$ - rectangular bands [$x y x=x$].
The result can be stated as follows:
Theorem 1.1. A variety $R I \underset{\sim}{V}$ of regular involution $\underset{\sim}{V}$-bands is universal if and only if $\underset{\sim}{V}$ is a non-trivial variety distinct from each one of the atomic band varieties $L Z B, S L$, or $R Z B$.

If we use facts concerning semigroups without any references then they are contained in [1].

2. Left normal bands.

We recall that the variety $L N B$ of left normal bands is generated by the left zero-semigroups and the semilattices. The aim of this section is to prove that the expansion RILNB of $L N B$ by a regular involution is universal. For this reason we shall construct a full embedding from the variety $I(1,1)$ of algebras with two unary idempotent operations into RILNB. Since $I(1,1)$ is universal, see [8] or [9], the proof that RILNB is universal will be complete.

First denote by L the meet semilattice over the set $\left\{a_{i} ; i \in 7\right\}$ with $a_{0}<$ $a_{1}, a_{2}, a_{3}<a_{4}<a_{5}<a_{6}$ and a_{1}, a_{2}, a_{3} pairwise uncomparable. Assume that a unary algebra $X=(X, \varphi, \psi) \in I(1,1)$ is given. Let $\Psi^{\prime} X$ be the subsemigroup of the product of L with the left zero-semigroup on the set $X \times 12=\{(x, i) ; x \in X, i \in 12\}$ generated by the set $\left\{\left((x, 2 j), a_{5}\right) ; x \in X, j \in 6\right\} \cup\left\{\left((x, j), a_{i}\right) ; x \in X, j \in 12, i \in\right.$ $5\} \cup\left\{\left((x, j), a_{6}\right) ; x \in X, j \in\{0,2\}\right\}$. Denote by $D^{\prime}: \Psi^{\prime} X \longrightarrow L$ the restriction of the projection. Then D^{\prime} induces a decomposition of $\Psi^{\prime} X$ into \mathcal{D}-classes. Let \sim be the smallest congruence on $\Psi^{\prime} X$ satisfying:

$$
\begin{aligned}
& \left((\varphi(x), 2 i), a_{1}\right) \sim\left((x, 2 i+1), a_{1}\right) \quad \text { for every } \quad x \in X, \quad i \in 6 \\
& \left((\psi(x), 2 i), a_{2}\right) \sim\left((x, 2 i+1), a_{2}\right) \text { for every } \quad x \in X, \quad i \in 6 \\
& \left((x, 2 i), a_{3}\right) \sim\left((x, 2 i+1), a_{3}\right) \text { for every } \quad x \in X, \quad i \in 6 \\
& \left((x, j), a_{0}\right) \sim\left((y, k), a_{0}\right) \text { for every } x, y \in X, j, k \in 12 \text { such that there exists } \\
& i \in 6 \text { with } j, k \in\{2 i, 2 i+1\} .
\end{aligned}
$$

Set $\Psi X=\Psi^{\prime} X / \sim$. Note that for every $i \in 12, x \in X$, and $j \in\{4,5,6\}$, the class of \sim containing $\left((x, i), a_{j}\right)$ is a singleton, and, for every even $i \in 12, x \in X$, and $j \in\{1,2,3\}$, if $\left(\left(y, i^{\prime}\right), a_{j^{\prime}}\right) \sim\left((x, i), a_{j}\right)$ then $j=j^{\prime}$ and either $\left(y, i^{\prime}\right)=(x, i)$ or $i^{\prime}=i+1$. Whence, for every $x \in X, \quad i \in 12, j \in\{1,2,3,4,5,6\}$ such that $\left((x, i), a_{j}\right) \in \Psi^{\prime} X$ and either $j>3$ or i is even we will denote the class of \sim containing $\left((x, i), a_{j}\right)$ as $\left(x, i, a_{j}\right)$. Further, for every even $i \in 12, x \in$ $\left.X, \quad\left\{\left(y, i^{\prime}\right), a_{j}\right) ;\left(\left(y, i^{\prime}\right), a_{j}\right) \sim\left((x, i), a_{0}\right)\right\}=\left\{\left(\left(y, i^{\prime}\right), a_{0}\right) ; y \in X, \quad i^{\prime}=i\right.$ or $i^{\prime}=$ $i+1\}$, thus the class of \sim containing $\left((x, i), a_{0}\right)$ will be denoted as $\left(i, a_{0}\right)$. Note that $\Psi X=\left\{\left(i, a_{0}\right) ; i \in 12\right.$ is even $\} \cup\left\{\left(x, i, a_{j}\right) ; x \in X, \quad i \in 12\right.$ is even, $j \in$ $\{1,2,3,5\}\} \cup\left\{\left(x, i, a_{4}\right) ; x \in X, \quad i \in 12\right\} \cup\left\{\left(x, i, a_{6}\right) ; x \in X, \quad i \in\{0,2\}\right\}$.

The congruence \sim is a refinement of the Green congruence \mathcal{D} on $\Psi^{\prime} X$ hence we can define a surjective homomorphism $D_{X}: \Psi X \longrightarrow L, D_{X}\left(x, i, a_{j}\right)=a_{j}$ for every $x \in X, i \in 12, j \in\{1,2,3,4,5,6\},\left(x, i, a_{j}\right) \in \Psi X, D_{X}\left(i, a_{0}\right)=a_{0}$ for even $i \in 12$ inducing the decomposition of ΨX into \mathcal{D}-classes.

For every $j \in 7$ let μ_{j} be a bijection of the set 12 into itself without any fixed points such that μ_{j}^{2} is the identity and

$$
\begin{array}{lll}
\mu_{0}(0)=4, & \mu_{0}(2)=6, & \mu_{0}(8)=10, \\
\mu_{1}(0)=2, & \mu_{1}(4)=8, & \mu_{1}(6)=10, \\
\mu_{2}(0)=10, & \mu_{2}(2)=4, & \mu_{2}(6)=8, \\
\mu_{3}(0)=8, & \mu_{3}(2)=10, & \mu_{3}(4)=6, \\
\mu_{4}(2 i)=2 i+1 \text { for every } i \in 6, & & \\
\mu_{5}(0)=6, & \mu_{5}(2)=8, & \mu_{5}(4)=10, \\
\mu_{6}(0)=2 . & &
\end{array}
$$

Define a unary operation ${ }^{+}$on ΨX such that $\left(i, a_{0}\right)^{+}=\left(\mu_{0}(i), a_{0}\right)$ for every $\left(i, a_{0}\right) \in$ $\Psi X,\left(x, i, a_{j}\right)=\left(x, \mu_{j}(i), a_{j}\right)$ for every $x \in X, i \in 12, j \in 7$ such that $\left(x, i, a_{j}\right) \in$ ΨX. By a direct inspection we obtain that + is correctly defined and + is an involutory mapping preserving the \mathcal{D}-classes of ΨX. Since a unary operation α is a regular involution of a band S (i.e. it satisfies (RI)) if and only if α is an involutory mapping preserving the \mathcal{D}-classes of S, we conclude that ΨX with ${ }^{+}$ belongs to the variety RILBN being the expansion of $L N B$ by a unary operation which is a regular involution.

For every semigroup S and every element $s \in S$ define $I(s)=\{z \in S ; z s=s\}$. Then obviously, for every semigroup homomorphism $f: S \longrightarrow S^{\prime}$ and every $s \in S$ we have $f(I(s)) \cong I(f(s))$. The following lemma describes the basic properties of $I(s)$ for the semigroup $\Psi(X)$.

Lemma 2.1. For every $X \in I(1,1)$ we have:
a) $I\left(2 i, a_{0}\right)=\left\{\left(2 i, a_{0}\right)\right\} \cup\left\{\left(x, 2 i, a_{j}\right) \in \Psi X ; \quad j \in 7, \quad x \in X\right\} \cup\{(x, 2 i+$ $\left.\left.1, a_{4}\right) ; \quad x \in X\right\}$ for every $i \in 6$;
b) $I\left(x, i, a_{j}\right)=\left\{\left(x, i, a_{k}\right) \in \Psi X ; \quad k \in 7\right.$ and either $k=j$ or $\left.k \geq 4\right\} \cup\{(y, i+$ $\left.\left.1, a_{4}\right) ; \eta(y)=x\right\}$ for every $x \in X, i \in 12, i$ is even, $j \in\{1,2,3\}$ where $\eta=\varphi$ if $j=1, \eta=\psi$ if $j=2, \eta$ is the identity if $j=3$;
c) $I\left(x, i, a_{j}\right)=\left\{\left(x, i, a_{k}\right) \in \Psi X ; \quad k \geq j\right\}$ for every $x \in X, i \in 12$ which is even, $j \in 7, j \geq 4$;
d) $I\left(x, i, a_{4}\right)=\left\{\left(x, i, a_{4}\right)\right\}$ for every $x \in X, i \in 12$ which is odd;
e) for every $i \in 6,\left\{z \in I\left(2 i, a_{0}\right) ; \quad z^{+} \in I\left(2 i, a_{0}\right)\right\}=I\left(2 i, a_{0}\right) \cap D_{X}^{-1}\left(a_{4}\right)$.

Proof is straightforward.
Denote by ΦX the semigroup ΨX with the unary operation ${ }^{+}$. For a homomorphism $f: X_{0} \longrightarrow X_{1}$ where $X_{i}=\left(X_{i}, \varphi, \psi\right) \in I(1,1)$ for $i \in 2$ define $\Phi f: \Phi X_{0} \longrightarrow$ ΦX_{1} such that $\Phi f\left(i, a_{0}\right)=\left(i, a_{0}\right)$ for every $\left(i, a_{0}\right) \in \Phi X_{0}, \Phi f\left(x, i, a_{j}\right)=\left(f(x), i, a_{j}\right)$ for every $x \in X_{0}, i \in 12, j \in 7$ with $\left(x, i, a_{j}\right) \in \Phi X_{0}$. We check easily that ΦX is correctly defined. We can summarize:
Proposition 2.2. Φ is an embedding from $I(1,1)$ into RILNB.
To prove that Φ is a full embedding consider a homomorphism $f: \Phi X_{0} \longrightarrow \Phi X_{1}$ where $X_{i}=\left(X_{i}, \varphi, \psi\right) \in I(1,1)$ for $i \in 2$. Since every homomorphism preserves the \mathcal{D}-classes there exists an endomorphism $g: L \longrightarrow L$ with $D_{X_{1}} \circ f=g \circ D_{X_{0}}$.
Lemma 2.3. The restriction $g \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$ is one-to-one.
Proof : Assume that $g\left(a_{i}\right)=g\left(a_{j}\right)$ for distinct $i, j \in\{1,2,3\}$. Since g is a semilattice homomorphism we conclude that $g\left(a_{0}\right)=g\left(a_{i}\right)$. Assume that $f\left(0, a_{0}\right)=$ $z, D(z)=g\left(a_{0}\right)$ and $f\left(x, 0, a_{j}\right)=z$ for every $x \in X_{0}$ and $j \in\{1,2,3\}$ with $g\left(a_{j}\right)=$ $g\left(a_{0}\right)$. Since f preserves ${ }^{+}$we observe that $f\left(4, a_{0}\right)=z^{+}$and $f\left(x, 4, a_{j}\right)=z^{+}$for every $x \in X_{0}$ and $j \in\{1,2,3\}$ with $g\left(a_{j}\right)=g\left(a_{0}\right)$. Assume that $g\left(a_{1}\right)=g\left(a_{0}\right)$ then for every $x \in X_{0}$ we have $f\left(x, 0, a_{1}\right)=z$ and $f\left(x, 4, a_{1}\right)=z^{+}$whence $f\left(x, 2, a_{1}\right)=$ z^{+}and $f\left(x, 8, a_{1}\right)=z$ because f preserves ${ }^{+}$. Thus $f\left(2, a_{0}\right)=z^{+}, f\left(8, a_{0}\right)=z$. If $g\left(a_{j}\right)=g\left(a_{0}\right)$ for $j \in\{2,3\}$ then we obtain $f\left(x, 0, a_{j}\right)=z^{+}$and hence in both cases $f\left(0, a_{0}\right)=z^{+}$. Since ${ }^{+}$has not any fixed point we obtain a contradiction. Thus $g\left(a_{1}\right) \neq g\left(a_{0}\right)$ and hence $g\left(a_{2}\right)=g\left(a_{3}\right)=g\left(a_{0}\right)$. Then $f\left(x, 4, a_{2}\right)=f\left(x, 4, a_{3}\right)=$ z^{+}, for every $x \in X_{0}$. Whence $f\left(x, 2, a_{2}\right)=z=f\left(x, 6, a_{3}\right)$ and thus $f\left(2, a_{0}\right)=$ $f\left(6, a_{0}\right)=z$ this contradicts to $\left(2, a_{0}\right)^{+}=\left(6, a_{0}\right)$. Therefore $g \upharpoonright\left\{a_{1}, a_{2}, a_{3}\right\}$ is one-to-one.
Corollary 2.4. $g\left(a_{0}\right)=a_{0}, g\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \subseteq\left\{a_{j} ; j \in 4\right\}, g\left(a_{4}\right)=a_{4}$ and $g\left(a_{5}\right) \geq$ a_{5}.
PrOOF : If $g\left(a_{0}\right) \neq a_{0}$ then by the definition of L there exist distinct $i, j \in\{1,2,3\}$ such that $g\left(a_{i}\right)=g\left(a_{j}\right)=g\left(a_{0}\right)-a$ contradiction with Lemma 2.3. If $g\left(a_{i}\right)=a_{j}$ for $i \in\{1,2,3\}, j \geq 4$, then either $g\left(a_{0}\right) \neq a_{0}$ or $g\left(a_{k}\right)=a_{0}$ for every $k \in\{1,2,3\} \backslash\{i\}$ - again a contradiction. Furthermore by e) of Lemma 2.1 we obtain that $g\left(a_{4}\right)=$ a_{4}. If $g\left(a_{5}\right)=a_{4}$ then for every $x \in X_{0} \quad f\left(x, 6, a_{5}\right) \in I\left(f\left(0, a_{0}\right)\right), f\left(x, 8, a_{5}\right)^{+} \in$ $I\left(f\left(2, a_{0}\right)\right), f\left(x, 10, a_{5}\right)^{+} \in I\left(f\left(4, a_{0}\right)\right)$ because f preserves ${ }^{+}$. Thus $f\left(0, a_{0}\right)=$ $f\left(6, a_{0}\right), f\left(2, a_{0}\right)=f\left(8, a_{0}\right), f\left(4, a_{0}\right)=f\left(10, a_{0}\right)$, and thus $f\left(2, a_{0}\right)=f\left(4, a_{0}\right)$ because $\left(6, a_{0}\right)^{+}=\left(2, a_{0}\right)$ - this is a contradiction because $f\left(8, a_{0}\right)=f\left(10, a_{0}\right)$ but $\left(8, a_{0}\right)^{+}=\left(10, a_{0}\right)$. Therefore $g\left(a_{5}\right) \geq a_{5}$.
Lemma 2.5. For every $i \in 6, f\left(2 i, a_{0}\right)=(2 i, a)$. Moreover g is an identity.
PROOF : Set $A=\{2 i ; \quad i \in 6\}$ and define $h: A \longrightarrow A$ such that for every $i \in A$, $f\left(i, a_{0}\right)=\left(h(i), a_{0}\right)$. Since f preserves the operation ${ }^{+}$we obtain for every $i \in 7$, if
$g\left(a_{i}\right)=a_{j}$ then $h \circ \mu_{i}=\mu_{j} \circ h$. Further for every $j \in A$ there exists a permutation μ in the permutation group generated by μ_{0} and μ_{1} with $\mu(0)=j$. According to Corollary 2.4 we have $g\left(a_{0}\right)=a_{0}$, whence h is uniquely determined by the values $h(0)$ and $g\left(a_{1}\right)$. Therefore we say that f satisfies condition (i, j) if $f\left(0, a_{0}\right)=\left(i, a_{0}\right)$ and $g\left(a_{1}\right)=a_{j}$. We conclude that if f satisfies (i, j) then h has to be of the form given in the following table:

$(0,0)(0,1)(0,2)(0,3)(2,0)(2,1)(2,2)(2,3)(4,0)(4,1)$										
0	0	0	0	0	2	2	2	2	4	4
2	4	2	10	8	6	0	4	10	0	8
4	4	4	4	4	6	6	6	6	0	0
6	0	6	8	10	2	4	0	8	4	10
8	0	8	2	6	2	10	8	4	4	2
10	4	10	6	2	6	8	10	0	0	6

$(4,2)(4,3)(6,0)(6,1)(6,2)(6,3)(8,0)(8,1)(8,2)(8,3)$										
0	4	4	6	6	6	6	8	8	8	8
2	2	6	2	10	8	4	10	4	6	0
4	0	0	2	2	2	2	10	10	10	10
6	6	2	6	8	10	0	8	0	2	4
8	10	8	6	0	4	10	8	6	0	2
10	8	10	2	4	0	8	10	2	4	6

$(10,0)(10,1)(10,2)(10,3)$				
0	10	10	10	10
2	8	6	0	2
4	8	8	8	8
6	10	2	4	6
8	10	4	6	0
10	8	0	2	4

If $g\left(a_{1}\right)=a_{0}$ then $h(0)=h(8)$ and since $\mu_{3}(0)=8$ we obtain that μ_{j} has a fixed point where j is determined by $g\left(a_{3}\right)=a_{j}$ (by Corollary 2.4, $j \leq 3$) - this is a contradiction with the definition of μ_{i}. Hence $g\left(a_{1}\right) \neq a_{0}$ and h is a bijection.

If $g\left(a_{6}\right)=g\left(a_{5}\right)=a_{5}$ then h must preserve the sets $\{0,6\},\{2,8\},\{4,10\}$ and it must map the set $\{0,2\}$ into one of these sets, thus h is not one-to-one, this is a contradiction. Analogously if $g\left(a_{5}\right)=g\left(a_{6}\right)=a_{6}$ then we obtain that h is not one-to-one. By Corollary 2.4 we conclude that $g\left(a_{6}\right)=a_{6}, g\left(a_{5}\right)=a_{5}$. As a consequence we obtain $h(\{0,2\})=\{0,2\}$. Since $\mu_{1}(0)=2$ but $\mu_{j}(0) \neq 2$ for every $j \in\{2,3\}$ we prove by Corollary 2.4 that $g\left(a_{1}\right)=a_{1}$. Thus f can satisfy only $(0,1)$ or (2,1). If f satisfies $(2,1)$ then $h(\{0,10\})=\{2,8\}$. Since $\mu_{2}(0)=10$ we obtain that $h \circ \mu_{2}=\mu_{j} \circ h$ implies $j=5$ - this is a contradiction with Corollary 2.4. Hence h is an identity and thus $f\left(i, a_{0}\right)=\left(i, a_{0}\right)$ for every $i \in A$. Now the identity $h \circ \mu_{i}=\mu_{j} \circ h$ whenever $g\left(a_{i}\right)=a_{j}$ implies that g is an identity.

Lemma 2.6. There exists a mapping $k: X_{0} \longrightarrow X_{1}$ such that for every $\left(x, j, a_{k}\right) \in \Psi X_{0}$ we have $f\left(x, j, a_{k}\right)=\left(k(x), j, a_{k}\right)$.
Proof : By Lemmas 2.1 and 2.5 if $\left(x, j, a_{k}\right) \in \Psi X_{0}$ and j is even then there exists $y \in X_{1}$ such that $f\left(x, j, a_{k}\right)=\left(y, j, a_{k}\right)$ whenever $k \neq 4$ and $f\left(x, j, a_{4}\right)=$ $\left(y, j^{\prime}, a_{4}\right)$ where $j^{\prime} \in\{j, j+1\}$. Since $I\left(x, 2 i, a_{4}\right)=\left\{\left(x, 2 i, a_{k}\right) ; k \in\{4,5,6\}\right\}$ and $I\left(x, 2 i+1, a_{4}\right)=\left\{\left(x, 2 i+1, a_{4}\right)\right\}$ for every $x \in X_{k}, k \in 2, i \in 6$ we conclude that $f\left(x, j, a_{4}\right) \in\left(X_{1} \times\left\{j, a_{4}\right\}\right)$ for every $x \in X_{0}, j \in 12$.

Let $k: X_{0} \longrightarrow X_{1}$ be a mapping with $f\left(x, 0, a_{6}\right)=\left(k(x), 0, a_{6}\right)$ for every $x \in X_{0}$. Then by Lemma 2.1 we obtain that $f\left(x, 0, a_{i}\right)=\left(k(x), 0, a_{i}\right)$ for every $i \in 7, i \neq 0$. Since f preserves ${ }^{+}$we obtain that $f\left(x, j, a_{i}\right)=\left(k(x), j, a_{i}\right)$ for any pairs (i, j) from the set $\{(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)$, $(1,6),(2,6),(3,6),(4,6),(5,6),(1,8),(2,8),(3,8),(4,8),(5,8),(1,4),(1,10),(2,4),(2,10)$, $(3,4),(3,10),(4,1),(4,3),(4,7),(4,9)\}$. If we again apply Lemma 2.1 we obtain that $f\left(x, j, a_{k}\right)=\left(k(x), j, a_{k}\right)$ for every pair (i, j) such $\left(x, i, a_{j}\right) \in \Psi X_{0}$.
Theorem 2.7. The variety RILNB is universal and Φ is a full embedding.
Proof : We prove that Φ is full embedding. By Lemmas 2.5, 2.6 and 2.7 it suffices to show that k is a homomorphism from X_{0} to X_{1}. By the definition of \sim we have $I\left(x, 0, a_{1}\right) \cap\left\{\left(y, 1, a_{4}\right) ; \quad y \in X_{k}\right\}=\left\{\left(y, 1, a_{4}\right) ; \quad y \in X_{k}, \quad \varphi(y)=\right.$ $x\}$ for $k \in 2$. Whence k commutes with φ because φ is idempotent. Since $I\left(x, 2, a_{2}\right) \cap\left\{\left(y, 3, a_{4}\right) ; \quad y \in X_{k}\right\}=\left\{\left(y, 3, a_{4}\right) ; \quad y \in X_{k}, \quad x=\psi(y)\right\}$ we obtain that k commutes also with ψ and the proof is complete.

Corollary 2.8. The variety RILNB is finite-to-finite universal.
Proof : The proof follows from the fact that $I(1,1)$ is finite-to-finite universal and Φ preserves finiteness.

3. Rectangular bands.

The aim of this section is to prove that the variety $R I R B$ of rectangular bands with an added unary operation ${ }^{+}$satisfying ($R I$) is universal. Since the variety $R B$ satisfies the identity $x=x y x$ we obtain that for every unary operation ${ }^{+}$on a rectangular band the identity $x x^{+} x=x$ holds. Thus RIRB is given by the identities of rectangular bands with the identity $x^{++}=x$.

The proof of universality of RIRB is divided into two steps. We first define rectangular bands with a partial involution and their homomorphisms. We prove that the category of rectangular bands with a partial involution and their homomorphisms is universal. In the second step we show that every rectangular band with a partial involution has a free completion in RIRB and as a consequence we obtain that RIRB is universal. An analogous method of universality proof was used by Pigozzi and Sichler [7] for the variety of quasigroups.
Definition. A rectangular band B with a partial mapping α is called a rectangular band with a partial involution if for every $b \in B$ such that $\alpha(b)$ is defined also $\alpha(\alpha(b))$ is defined and equal to b. If $(B, \alpha),\left(B^{\prime}, \alpha^{\prime}\right)$ are rectangular bands with a partial involution then a semigroup homomorphism $f: B \longrightarrow B^{\prime}$ is said to be a homomorphism from (B, α) to $\left(B^{\prime}, \alpha^{\prime}\right)$ if for every $b \in B$, if $\alpha(b)$ is defined then
$\alpha^{\prime}(f(b))$ is also defined and $\alpha^{\prime}(f(b))=f(\alpha(b))$. Obviously, rectangular bands with a partial involution and their homomorphisms form a concrete category, denote it by PIRB.

Denote the category of all undirected graphs without loops and isolated points and compatible mappings by GRA. The following is well known, see [9]
Theorem 3.1[9]. The category GRA is universal.
To prove that PIRB is universal it suffices to construct a full embedding from $G R A$ into PIRB. For a graph $(V, E) \in G R A$ define $\Lambda(V, E)=(X, \alpha)$ as a rectangular band with a partial involution on the set $X=V \times E$ where the band multiplication is defined by:

$$
(v, e)(w, f)=(v, f) \quad \text { for every } v, w \in V, \quad e, f \in E,
$$

and the partial operation α is defined for the pairs $(v, e) \in V \times E$ satisfying $v \in e$ by $\alpha(v, e)=(w, e)$, where $e=\{v, w\}$. The following lemma is straightforward.

Lemma 3.2. For every graph $(V, E) \in G R A, \Lambda(V, E)$ is a rectangular band with a partial involution such that for every $x \in \Lambda(V, E)$ there exist $y, z \in \Lambda(V, E)$ such that $\alpha(x y)$ and $\alpha(z x)$ are defined and $x y \alpha(x y)=x y, z x \alpha(z y)=z x$.

For a compatible mapping $f:(V, E) \longrightarrow\left(V^{\prime}, E^{\prime}\right)$ define $\Lambda f(v, e)=(f(v), f(e))$ for every $v \in V, e \in E$ where $f(e)=\{f(u), f(t)\} \in E^{\prime}$ if $e=\{u, t\}$.
Theorem 3.3. Λ is a full embedding from GRA into PIRB and thus the category PIRB is universal.

Proof : It is easy to see that Λ is an embedding from $G R A$ into PIRB. To prove that Λ is full consider $f: \Lambda(V, E) \longrightarrow \Lambda\left(V^{\prime}, E^{\prime}\right)$. Since f is a homomorphism of rectangular bands there exist mappings $g: V \longrightarrow V^{\prime}, h: E \longrightarrow E^{\prime}$ such that $f(v, e)=(g(v), h(e))$ for every $v \in V, e \in E$. Since $\alpha(v, e)$ is defined if and only if $v \in e$ and then $e=\{v, w\}$ where $(w, e)=\alpha(v, e)$ we conclude that $v \in e$ implies $g(v) \in h(e)$. Thus g is a compatible mapping from (V, E) into $\left(V^{\prime}, E^{\prime}\right)$ and for every $e \in E, h(e)=g(e)$, whence $\Lambda g=f$ and Λ is full.

In the following we shall investigate a free completion of rectangular bands with a partial involution. Clearly, RIRB is a full subcategory of PIRB and we say that an injective homomorphism $f:(B, \alpha) \longrightarrow\left(B^{\prime},{ }^{+}\right)$is a free completion if $\left(B^{\prime},{ }^{+}\right) \in$ $R I R B$ and for every homomorphism $g:(B, \alpha) \longrightarrow\left(B^{\prime \prime},{ }^{+}\right)$into a rectangular band with a regular involution there exists exactly one homomorphism $h:\left(B^{\prime},{ }^{+}\right) \longrightarrow$ ($B^{\prime \prime},+$) with $h \circ f=g$.

To prove that every rectangular band with a partial involution has a free completion we show the following technical lemma which is a modification of well known constructions of completion, see e.g. [5] or [4]:
Lemma 3.4. For every $(B, \alpha) \in P I R B$ there exist $\left(B_{1}, \alpha_{1}\right) \in P I R B$ and an injective homomorphism $f:(B, \alpha) \longrightarrow\left(B_{1}, \alpha_{1}\right)$ satisfying:
a) for every homomorphism $g:(B, \alpha) \longrightarrow\left(B^{\prime}, \alpha^{\prime}\right)$ where $\left(B^{\prime}, \alpha^{\prime}\right) \in R I R B$ there exists exactly one homomorphism $h:\left(B_{1}, \alpha_{1}\right) \longrightarrow\left(B^{\prime}, \alpha^{\prime}\right)$ with $h \circ f=g$,
b) for every $b \in B, \alpha_{1}(f(b))$ is defined,
c) for every $b \in B_{1}$ if there exist $c, d \in B_{1}$ such that $\alpha_{1}(b c)$ and $\alpha_{1}(d b)$ are defined and $\alpha_{1}(b c) b c=b c, \alpha_{1}(d b) d b=d b$ then $b \in \operatorname{Im}(f)$,
d) for every $b \in B$, if $\alpha_{1}(f(b)) \in \operatorname{Im}(f)$ then $\alpha(b)$ is defined.

Proof : Denote by $X=\{b \in B ; \quad \alpha(b)$ is not defined $\}$ and assume that $B=$ $C \times D$ such that $(c, d)\left(c^{\prime}, d^{\prime}\right)=\left(c, d^{\prime}\right)$ for every $c, c^{\prime} \in C, d, d^{\prime} \in D$. Let B_{1} be a rectangular band on the set $(C \cup X) \times(D \cup X)$ with the operation $(c, d)\left(c^{\prime}, d^{\prime}\right)=\left(c, d^{\prime}\right)$ for every $c, c^{\prime} \in C \cup X, d, d^{\prime} \in D \cup X$. Then B is a subband of B_{1}; denote by f the inclusion from B to B_{1}. The operation α_{1} is an extension of α such that $\alpha_{1}(b)=(b, b), \alpha_{1}(b, b)=b$ for every $b \in X$. It is obvious that $\left(B_{1}, \alpha_{1}\right) \in$ PIRB and that f is a homomorphism satisfying b), d), and moreover, if $x \in B_{1}$ with $\alpha_{1}(x)$ defined so that $\alpha_{1}(x) x=x$ then $x \in B$. Hence we immediately obtain c) because B and B_{1} are rectangular bands. We prove a). If $g:(B, \alpha) \longrightarrow\left(B^{\prime}, \alpha^{\prime}\right)$ is a homomorphism and $\left(B^{\prime}, \alpha^{\prime}\right)$ is a rectangular band with a regular involution then $B^{\prime}=C^{\prime} \times D^{\prime}$ and there exist mappings $g_{1}: C \longrightarrow C^{\prime}, g_{2}: D \longrightarrow D^{\prime}$ such that $g(c, d)=\left(g_{1}(c), g_{2}(d)\right)$ for every $c \in C, d \in D$. Define $h_{1}: C \cup X \longrightarrow C^{\prime}$, $h_{2}: D \cup X \longrightarrow D^{\prime}$ as follows: if $c \in C$ then $h_{1}(c)=g_{1}(c)$, if $d \in D$ then $h_{2}(d)=g_{2}(d)$ if $b \in X$ then $h_{1}(b), h_{2}(b)$ are defined by the expression $\alpha^{\prime}(g(b))=\left(h_{1}(b), h_{2}(b)\right)$. Define $h=h_{1} \times h_{2}$ then obviously h is a semigroup homomorphism and from the definition of α_{1} it preserves also α_{1}, thus h is a homomorphism from (B_{1}, α_{1}) into ($B^{\prime}, \alpha^{\prime}$). Obviously, $g=f \circ h$, the unicity of h follows from the fact that (B, α) generates (B_{1}, α_{1}).
Theorem 3.5. Every rectangular band (B, α) with a partial involution has a free completion $f:(B, \alpha) \longrightarrow\left(B^{\prime},^{+}\right)$. Moreover $\left(B^{\prime},^{+}\right)$is unique up to isomorphism and it satisfies
a) if for $b \in B^{\prime}$ there exist $c, d \in B^{\prime}$ such that $(c b)^{+} c b=c b$ and $(b d)^{+} b d=b d$ then $b \in \operatorname{Im}(f)$,
b) for every $b \in B, f(b)^{+} \in \operatorname{Im}(f)$ if and only if $\alpha(b)$ is defined.

Proof : For every natural number i define $\left(B_{i}, \alpha_{i}\right) \in P I R B$ such that the following hold:
(1) for every $i \in N, B_{i} \subseteq B_{i+1}$ and the inclusion is a homomorphism from (B_{i}, α_{i}) into (B_{i+1}, α_{i+1}),
(2) for every $b \in B_{i}, \alpha_{i+1}(b)$ is defined,
(3) $\left(B_{0}, \alpha_{0}\right)=(B, \alpha)$.

We shall construct inductively (B_{i+1}, α_{i+1}) from (B_{i}, α_{i}) by Lemma 3.4. Then 1), 2), 3) are satisfied. Set $B^{\prime}=U\left\{B_{i} ; \quad i \in N\right\}$. By standard calculation we obtain that B^{\prime} is a rectangular band and $+=U\left\{\alpha_{i} ; \quad i \in N\right\}$ is a regular involution. Moreover, the inclusion $f:(B, \alpha) \longrightarrow\left(B^{\prime},^{+}\right)$is a homomorphism. By a) of Lemma 3.4 we easily obtain that it is a free completion and by standard categorical calculus we obtain that it is determined uniquely up to isomorphism. The properties a) and b) are direct consequences of c) and d) in Lemma 3.4.

We can now define a reflection functor $\Psi: P I R B \longrightarrow R I R B$. For a rectangular band with a partial involution (B, α), if $f:(B, \alpha) \longrightarrow\left(B^{\prime},^{+}\right)$is a free completion
then define $\Psi(B, \alpha)=\left(B^{\prime},^{+}\right)$. For a homomorphism $f:\left(B_{0}, \alpha_{0}\right) \longrightarrow\left(B_{1}, \alpha_{1}\right)$ denote by $h_{i}:\left(B_{i}, \alpha_{i}\right) \longrightarrow\left(C_{i},+\right)$ a free completion of $\left(B_{i}, \alpha_{i}\right), i \in 2$ and let $\Psi f:\left(C_{0},^{+}\right) \longrightarrow\left(C_{1},{ }^{+}\right)$be the homomorphism satisfying $\Psi f \circ h_{0}=h_{1} \circ f$. It is well known that Ψ is an embedding.

Theorem 3.6. $\Phi=\Psi \circ \Lambda: G R A \longrightarrow R I R B$ is a full embedding, thus RIRB is universal.

Proof : Since the composition of two embeddings is an embedding it suffices to show that Φ is full. Let $f: \Phi\left(V_{0}, E_{0}\right) \longrightarrow \Phi\left(V_{1}, E_{1}\right)$ be a homomorphism where $\left(V_{i}, E_{i}\right) \in G R A$ for $i \in 2$. Let $h_{i}: \Lambda\left(V_{i}, E_{i}\right) \longrightarrow \Phi\left(V_{i}, E_{i}\right)$ be a free completion for $i \in 2$. According to Lemma 3.2 , for every $z \in \Lambda\left(V_{0}, E_{0}\right)$ there exist $x, y \in \Phi\left(V_{0}, E_{0}\right)$ such that $z x(z x)^{+}=z x$ and $y z(y z)^{+}=y z$ whence the same property is enjoyed by $f(z)$ and $f(x), f(y)$. By a) of Theorem 3.5 we conclude that $f(z) \in \Lambda\left(V_{1}, E_{1}\right)$ and thus $f\left(\operatorname{Im}\left(h_{0}\right)\right) \subseteq \operatorname{Im}\left(h_{1}\right)$. By b) of Theorem 3.5 we conclude that the restriction g of f to $\Lambda\left(V_{i}, E_{i}\right)$ is a homomorphism and by Theorem 3.3 there exists a compatible mapping $g^{\prime}:\left(V_{0}, E_{0}\right) \longrightarrow\left(V_{1}, E_{1}\right)$ with $g=\Lambda g^{\prime}$. Since $V_{0} \times E_{0}$ generates $\Phi\left(V_{0}, E_{0}\right)$ and Φg^{\prime} and f coincide on $V_{0} \times E_{0}$ we conclude that $\Phi g^{\prime}=f$. Thus Φ is full.

4. Conclusions.

By a well known description of the lattice L of subvarieties of bands B we know that $L Z B, R Z B$, and $S L$ are the atoms of L. Moreover, $L N B, R N B$, and $R B$ are the varieties covering an atom of L and every non-trivial variety $\underset{\sim}{V}$ of bands which is not an atom in L contains one of them. By Theorem 2.7, the dual of Theorem 2.7 and Theorem 3.6 we obtain that RILNB, RIRBN, and RIRB are universal, thus $R I \underset{\sim}{V}$ is universal whenever $\underset{\sim}{V}$ is a non-trivial variety of bands which is not an atom in L. Denote by $I N$ the variety of all unary algebras with one operation f satisfying the identity $f^{2}(x)=x$. The varieties $I N$ and $S L$ are not universal, see [9], and because $I N$ is isomorphic to the variety RILZB and also to RIRZB and $R I S L$ is isomorphic to $S L$ (because the identities $x^{++}=x, x=x x^{+} x, x y=y x$, $x^{2}=x$ imply $x^{+}=x$) we conclude that RILZB, RIRZB, and RISL are not universal and the proof of Theorem 1.1. is complete.

The following two questions remain open:
a) determine the minimal universal subvarieties of $R I B$,
b) is there at all a universal subvariety $\underset{\sim}{V}$ of $R I B$ such that for every band there exists its expansion into $\underset{\sim}{V} ?$
We can only give to these questions a partial answer. We use the following notations: the variety of all semigroups is denoted by $S E M$. For a variety $\underset{\sim}{V}$ of semigroups, $\operatorname{RIV} \underset{\sim}{V}[\alpha=\beta]$ denotes the variety of all semigroups from $\underset{\sim}{V}$ with an added unary operation ${ }^{+}$satisfying (RI) and the semigroup identity $\alpha=\beta$. In the following we show

Theorem 4.1. RISEM $\left[x x^{+} y y^{+}=y y^{+} x x^{+}\right], R I B\left[(x y)^{+}=y^{+} x^{+}\right], R I B\left[x x^{+}=\right.$ $x]$, and $R I B\left[x^{+} x=x\right]$ are neither universal nor monoid universal.

Proof : First, note that the variety $\operatorname{RISEM}\left[x x^{+}=y y^{+}\right]$is the variety of all groups.

Since the variety RISEM $\left[x x^{+} y y^{+}=y y^{+} x x^{+}\right]$is the variety of all inverse semigroups, see [1], we obtain for every $x \in S \in \operatorname{RISEM}\left[x x^{+} y y^{+}=y y^{+} x x^{+}\right]$that $x x^{+}$ is an idempotent with $\left(x x^{+}\right)^{+}=x x^{+}$. Whence the constant mapping of S onto $x x^{+}$is an endomorphism of S being a left zero of $\operatorname{End}(S)$. Thus either S is a group or $\operatorname{End}(S)$ has at least two left zeros, consequently $R I S E M\left[x x^{+} y y^{+}=y y^{+} x x^{+}\right]$is neither universal nor monoid universal.

Analogously for $x \in S \in R I B\left[(x y)^{+}=y^{+} x^{+}\right]$we have that $x x^{+}$is an idempotent with $\left(x x^{+}\right)^{+}=x^{++} x^{+}=x x^{+}$, thus the constant mapping of S onto $x x^{+}$is an endomorphism of S and a left zero of $\operatorname{End}(S)$. Since only a trivial group is in $R I B\left[(x y)^{+}=y^{+} x^{+}\right]$we have that either S is a singleton or $\operatorname{End}(S)$ has at least two left zeros, consequently $R I B\left[(x y)^{+}=y^{+} x^{+}\right]$is neither universal nor monoid universal. Consider $S \in R I B\left[x x^{+}=x\right]$. Then for every $s \in S$ either $s=s^{+}$or $\left\{s, s^{+}\right\}$is a subalgebra of S. In the first case the constant mapping of S onto s is an endomorphism of S and a left zero of $\operatorname{End}(S)$. If $s \neq s^{+}$for every $s \in S$ then for every pair $p=\left\{s, s^{+}\right\}, s \in S$ choose an element $e_{p} \in p$ and define a mapping $f: S \longrightarrow S$ such that $f\left(e_{p}\right)=s, f\left(e_{p}^{+}\right)=s^{+}$, for every pair p. By direct inspection we obtain that f is an endomorphism of S belonging to the smallest \mathcal{J}-class of $\operatorname{End}(S)$. Hence $\operatorname{End}(S)$ has the smallest \mathcal{J}-class and thus $R I B\left[x x^{+}=x\right]$ is neither universal nor monoid universal.

The proof for $R I B\left[x^{+} x=x\right]$ is dual.
Even stronger results can be proved, for example:
Proposition 4.2. For every algebra $A \in R I B\left[(x y)^{+}=y^{+} x^{+}\right]$and for every chain C in the semilattice L of \mathcal{D}-classes of A there exists an idempotent endomorphism f of A such that $\operatorname{Im}(f)$ is contained in the union of \mathcal{D}-classes in C and the meet of $\operatorname{Im}(f)$ with every \mathcal{D}-class in C is a singleton.

Proof : We give only an outline of proof. First, if B is a \mathcal{D}-class of S then $B=X \times X$ such that for every $x, y, v, w \in X$ we have $(x, y)(v, w)=(x, w)$. For every $x \in X$ then $(x, x)^{+}=(x, x)$ and we can choose $\left(x_{l}, x_{l}\right)$ in every \mathcal{D}-class $l \in C$ such that $A=\left\{\left(x_{l}, x_{l}\right) ; \quad l \in C\right\}$ is a subalgebra of S. Then by a standard way we can construct an idempotent endomorphism f of S with $\operatorname{Im}(f)=A$.

It is an open problem whether the expansion RIRB of rectangular bands by a regular involution is finite-to-finite universal. GRA is known to be finite-tofinite universal, see [9], and Λ preserves finiteness, thus also PIRB is finite-tofinite universal. But the reflection functor Ψ does not preserve finiteness (moreover $\Psi(B, \alpha)$ is finite if and only if B is finite and $(B, \alpha) \in R I R B$.

References

[1] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, AMS, Providence Vol. 1 1961, vol. 21967.
[2] M. Demlová, V. Koubek, Endomorphism monoids of bands, Semigroup Forum 38 (1989), 305-329.
[3] M. Demlová, V. Koubek, Endomorphism monoids in small varieties of band, (to appear in Acta Math. Sci (Szeged)).
[4] G. Grätzer, Universal Algebra, Van Nostrand, Princeton, New Jersey, 1968.
[5] V. Koubek, J. Reitermann, Categorical constructions of free algebras, colimits and completions of partial algebras, J. Pure and Appl. Algebra 14 (1979), 195-231.
[6] V. Koubek, J. Sichler, Universal varieties of semigroups, J. Austral. Math. Soc. (Series A) 36 (1984), 143-152.
[7] D. Pigozzi, J.Sichler, Homomorphism of partial and of complete Steiner triple systems and quasigroups, in Universal Algebra and Lattice Theory, Lecture Notes in Mathematics 1149, Springer-Verlag, Berlin 1985.
[8] A. Pultr, J. Sichler, Primitive classes of algebras with two unary idempotent operations containing all algebraic categories as full subcategories, Comment. Math. Univ. Carolinae 10 (1969), 425-445.
[9] A. Pultr, V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam 1980.

The Faculty of Mathematics and Physics, Charles Univ., Malostranské nám. 25, 11800 Prague, Czechoslovakia

