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Existence of unstable sets for invariant sets 
in compact semiflows. 

Applications in order-preserving semiflows 

PETER POLA6IK 

Abstract. A compact local semiflow on a metric space is considered. Conditions are pre­
sented which guarantee that for a given compact invariant set K there exists a negative 
orbit whose a-limit set is contained in K. By checking these conditions, it is proved that 
such a negative orbit exists if K is an unstable isolated equilibrium in a gradient-like semi-
flow or a compact invariant set, not containing equilibria, in a strongly order preserving 
semiflow. 

Keywords: Semiflow, invariant set, limit set, order-preserving 

Classification: 58F25, 35B40, 34C35 

1. Introduction. 
Consider a (local) semiflow S(t), t > 0, on a metric space(X,d). Let K C X 

be a compact set, invariant under the semiflow S(t). In this paper we show some 
conditions guaranteeing that there exists a nontrivial unstable set of K. More 
precisely, these conditions imply that there exists a relatively compact negative 
orbit whose a-limit set is contained in K. 

Our investigation was inspired by a result of Matano. In [Ml], he has proved 
that in a certain class of semiflows, an unstable equilibrium always has a nontrivial 
unstable set. Specifically, he assumes that X is an ordered Banach space and 
the semiflow preserves the ordering in the following strong sense: For any t > 0 
and any two different related points x < y in the domain of S(t), the relation 
S(t)x < S(t)y is satisfied for all x, y sufficiently close to a,, ft, respectively. Under 
certain compactness conditions, he has proved existence of a negative orbit, which 
lies above a given unstable equilibrium and approaches this equilibrium as t —• — oo. 
This result has appeared useful in various applications. In particular, it can be used 
to establish an orbit connection between related equilibria (see [Ml], [M3], where 
also further applications can be found). 

Our approach to the question of existence of nontrivial unstable sets equilibria, 
and more general compact invariant sets, is different from that of Matano. We do 
not restrict our consideration to a special class of semiflows from the very beginning. 
Instead, we start by identifying a general property of a given invariant set, which 
ensures existence of a nontrivial unstable set. Then, by checking this property, 
we establish existence of such sets in various particular cases. Thus, for strongly 
order-preserving semiflows we prove that any compact invariant set, which does 
not contain a stable equilibrium, has a nontrivial unstable set. This extends the 
result of Matano mentioned above. As an application, we prove existence of an 
orbit connection from a compact invariant set to an equilibrium. 
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Another consequence of our general theorem asserts that any unstable isolated 
compact invariant set has a nontrivial unstable set. In particular, any isolated 
unstable equilibrium in a gradient-like semiflow has such a set. 

We now prepare formulation of the main theorem by recalling some definitions. 
By a negative orbit we mean a function v: (—oo,0) —• X such that S(t)v(s) = 

v(t + s) for all t > 0 > s with t -f s < 0. If v(0) = x, we say that t; is a negative 
orbit of x. For a negative orbit v(.), the a-limit set a(v(.)) of v(.) is the set of 
all limit points of v(t) as t —• — oo. Of course, a(v(.)) is nonempty, provided v( . ) 
(more precisely its image) is relatively compact. 

A set K C X is called positively invariant if for any t > 0, K is in the domain 
D(S(t)) of S(t) and S(t)K C K. K is called negatively invariant if any element of 
K has a negative orbit which takes values in K. If K ^ 0 is both negatively and 
positively invariant, it is called invariant. 

We use the notation c\(U) or U for the closure of a set U and dU for the boundary 
of U. By dist(x,B) we denote the distance from a point x to a set A: dist(x, A) — 
inf{d(x,y): y € A}. 

We assume the following compactness of the semiflow. 

(C) For any bounded set G C X there exists a 6 > 0 such that G C D(S(6)) and 
S(S)G is relatively compact. 

The main result of this paper reads as follows. 

Theorem 1. Let (C) hold. Let K C X be a compact positively invariant set. 
Assume that there exist a neighbourhood U of K and a set M CU with the following 
properties: 

(i) M is closed. 
(ii) KCM. 

(iii) K is not open in M (i.e., there exists a sequence yn € M \ K such that 
dist(yn,K) —> 0 tt.5 n —> ooj. 

(iv) For any y € M\K there exists a constant r > 0 such that S(t)y € M for 
allt€[Q,r] andS(r)y€dU. 

Then there exists a negative orbit v(.) with relatively compact image such that 
v(t) £M\Kforallt>0 and a(v( .))cK. 

fYeely speaking, the hypotheses of Theorem 1 require that there exist a closed set 
M D K, which is locally positively invariant (i.e., any positive orbit starting in M 
remains in M as long as it stays close to K), and in which K is totally unstable. By 
total instability we mean that there is a neighbourhood of K in M from which every 
positive orbit eventually escapes, unless it lies in K. We return to the discussion of 
these hypotheses in Section 3. 

The idea of the proof of this theorem is quite simple. Consider the o^limit set 
v(M) of the set M (see Section 2 for the definition). At this point assume that the 
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orbit 
(JS(ť)M 
<>o 

of M is relatively compact. By weU known property [Hi], [H2], this ensures that 
LO(M) is nonempty , compact and invariant. Hence through any point y in u(M) 
there exists a relatively compact negative orbit. The instability property (iv) guar­
antees that if such a y is chosen sufficiently close to K, then its negative orbit (at 
least one of them) satisfies the conclusion of Theorem 1. 

Theorem 1, together with some immediate consequences, is proved in Section 3. 
In Section 2 we have collected definitions and basic properties of semiflows used 
throughout the paper. In that section we also introduce the concept of a relative 
o;~Hmit set of a set, which allows to skip the unnatural assumption of compactness 
of the orbit of M, as assumed in the above outline. 

A major part of the paper (Section 4) is devoted to strongly order preserving 
semiflows. We derive from Theorem 1 the existence theorem of Matano and prove its 
extension indicated above. Then we prove that for any minimal compact invariant 
set there exists an entire orbit connecting this invariant set to an equiHbrium. 

We do not show concrete examples of strongly order preserving semiflows in this 
paper. We refer an interested reader to the papers [Hi4—6], [Ml—3], [MP], [PI—3] 
for examples in parabolic equations and to [Hil-4], [Mi], [SI—2], [ST] for examples 
in ordinary and delay differential equations. 

The paper is finished with some remarks concerning extensions of our results to 
discrete dynamical systems (Section 5). 

2. Invariance of limit sets. 
In this preliminary section we introduce further definitions and state some prop­

erties of the limit sets which we need below. 
Throughout the paper, (X, d) is a metric space and S(t) is a local semifiow (for 

brevity only semifiow) on X. The latter means that for any t > 0, S(t) is a 
mapping of an open subset D(S(t)) C X into X such that the following conditions 
are satisfied. 

(a) D(S(Q)) = X and 5(0) is the identity on X. 
(b) The set D(S) : = {(t, x): t > 0, x € D(S(t))} is open in [0, +oo) x X and the 

mapping (x,t) «—• S(t)x is continuous on D(S). 
(c) For any t, t1 > 0 we have D(S(t +1')) = S(tf)'1 D(S(t)) and S(t + t')x = 

S(t)S(t')x for any x e D(S(t +1')). 

For x € X we denote by rx the escape time of x: 

TX = sup{< > 0: x € D(S(t))} 

The positive orbit (or the trajectory) of x is the set 

O+(x) = {S(t)x:0<t<Tx} 
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The positive orbit 0*(H) of a set H C X is the union of the positive orbits of 
all elements of H. 

The w-limit set of a point x with a global trajectory (i.e., rx = -j-oo) is defined 
by 

ш(x) = (]cl([jS(t)x) 
в>0 \t>8 / 

Replacing in this definition x by H, where JET is a set of points with global tra­
jectories, we obtain the definition of the a>-Hmit set of H. 

It is well known (see e.g. [Hi], [H2]) that the uh-Hmit set of a point with a 
relatively compact trajectory is nonempty, compact, connected and invariant. The 
same properties has the a-Umit set of a relatively compact negative orbit (as defined 
in the introduction). Moreover, relatively compact trajectories have the following 
property: 

dist(S(t)x,w(x)) —» 0 as t —* oo. 

The statements concerning the u>~limit sets hold true if the positive orbit of a 
connected set H (instead of a point) is considered. We now state a modified version 
of the latter property. For this we need the foUowing definitions. 

Let H C G be two subsets of X. We define the positive orbit of H relative to G 
by 

0%(H) : = {S(t)x: x € H, 0 < t < rx and S(s)x € G for aU s G [0,t]} . 

Clearly, if G is open, then OQ(H) is just the positive orbit of H for the restricted 
semiflow S(t) \G, t > 0. 

If IT C G, and G is closed, we define the u>-limit set of H relative to G by 

U)Q(H) := {y € X: there are two sequences xn € H and tn —• -foo such that 

S(s)xn € G for aU s € [0,tn] and S(tn)xn -> y} . 

Clearly, WQ(H) C G and 

(2.1) u>G(H)=()cl(\JS(t)Ht), 
B>0 \t>8 / 

where 
Ht := {x € H: S(s)x G G for aU s € [0,<]} . 

Using (2.1), an obvious modification of standard arguments (see e.g. [Hi] , [H2]) 
proves the foUowing property: 

Lemma 2.1. Let G C X be closed and let H CG. IfO%(H) is relatively compact, 
then U)Q(H) is compact and negatively invariant. Moreover, 

&st(S(t)HuwG(H)) - • 0 as t -> +oo . 

Note that uG(H) may be empty. 
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Remark 2.2. From (2.1) it follows that uG(H) = wG(S(t)Ht) for any t > 0. 
Therefore the conclusion of Lemma 2.1 remains valid if instead of compactness of 
OQ(H) one assumes that Ojt(5(i)Ht) is relatively compact for some t > 0. The 
latter holds provided there is a S > 0 such that G C D(S(S)) and S(S)G is relatively 
compact. This is easily seen from the inclusions 

0+(S(S)H6) = U S(t)Ht = S(S) U S(t - S)Ht c S(S)G. 
<>* *>* 

3. Existence of unstable sets. 
In this section we prove Theorem 1 and a few related results. Before doing so, we 

make some remarks concerning the hypotheses of this theorem. In the introduction 
we have rephrased them as requiring that K is totally unstable in some locally 
positively invariant closed set M. As we will verify in a moment, if closedness of M 
is not required, then such a set M can be found for any unstable positively invariant 
set K. Still there need not exist a nontrivial unstable set of K. So closedness of 
M cannot be omitted. However, it can be replaced by another assumption (see 
Theorem 1' below). 

Let K be a compact positively invariant set. We show that if K is unstable, 
then a neighbourhood U and a set M can be found, which have all the properties 
required in Theorem 1, possibly except for (i) (closedness of M). Recall that K is 
stable in case that for any neighbourhood V of K there exists a neighbourhood W 
such that for any x € W we have r z = -f oo and O+(x) C V. So if K is unstable 
(i.e. not stable), then there exists a neighbourhood U of K and a sequence xn € U 
such that dist(xn , K) —> 0 and for any n we have either rXn < 4-oo or 0~*~(xn) is not 
contained in U. By compactness of K, neighbourhood U can be chosen bounded. 
Hence, if we assume the compactness condition (C), then any trajectory starting in 
U is either contained in U (and then it is global by (C)) or else it hits dU. It is 
then easy to see that if we put 

(3.1) M:=K\j\JO±(xn), 

then M C U and all the conditions (ii)-(iv) of Theorem 1 are satisfied. (Recall 
that OJJ(X) denotes the positive orbit of x relative to 17). We now borrow a simple 
example from [Ml] which shows that without additional assumptions (like (i)) there 
need not exist a nontrivial unstable set of K. Consider the system 

(3.2) x = t/, y = 0 . 

The origin (as well as any other point on the x-axis) is an unstable equilibrium of 
this system and there is no orbit approaching the origin in the backward direction. 

This example is rather special in that 0 is not an isolated equilibrium. As we shall 
see, the assumption that there is no compact invariant set in M \ K can replace (i) 
in Theorem 1. 
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Theorem 1 \ Let the hypotheses of Theorem 1 be satisfied with (i) replaced by the 
following: 

(V) If K C M is compact and invariant then K C K. 

Then there exists a negative orbit v(.) with relatively compact image such that 
v(t) €M\Kforallt<0 and a(v( .))cK. 

PROOF of Theorems 1,1': Assume that a neighbourhood U of K and a set M C U 
satisfy (ii)-(iv) and (i) or (i'). Choose a bounded neighbourhood V of K such that 
V C U and let H := M n V. Consider the relative positive orbit 0±(H). By (C) 
and Lemma 2.1, Oy(H) has a compact negatively invariant limit set u*y(H) (cf. 
Remark 2.2). Since 0±(H) C M, by (iv) we have 

(3.3) c*y(H)cMC)V. 

We now proceed in two steps. First we prove that there exists an a; € (j*y(H) \ K. 
Then we verify that the negative orbit of x (which exists by invariance) has its 
a-limit set in K. 

Consider the sequence yn as in (iii). By compactness of K, passing to a subse­
quence we may assume that yn —> y € K. By positive invariance of K, the positive 
orbit of y is global and lies in K C V. Using this and continuity of the semiflow, we 
obtain that the positive orbit of yn stays in V for an arbitrarily long prescribed time 
if n is large enough (formally, for any T > 0 there is an n0 such that S(t)yn € V for 
all 0 < t < T and n > no). This, in conjunction with (iv), implies that there is a 
sequence tn -* -f oo such that S(tn)yn € V for 0 < t < tn and S(tn)yn € dV. Since 
the points S(tn)yn = S(S)S(tn — S)yn lie in a relatively compact set S(S)V, we can 
find a convergent subsequence of this sequence. Clearly the limit is an element of 

cjv(H)ndVCiMH)\K' 
Now take any x € c*y(H)\K. By compactness and negative invariance of o^JET), 

x has a relatively compact negative orbit v(.) such that v(t) € (Vy(H) for all t < 0. 
By (3.3), v(t) € M for all t < 0. Since x = v(Q) $ K, we have v(t) <£ K for t < 0 
(otherwise x € K% by positive invariance). It remains to prove that a(v(.)) C K. 
This is trivial if (i') is assumed (for a(v(.)) C M is a compact invariant set). 
This proves Theorem 1'. Assume (i). By invariance, for any z € a(v(.)) we have 
0+(z) C a(v(.))C Mf)V CMHU. Thus z $ K would clearly contradict (iv). 
This proves a(v(.)) C K and completes the proof. • 

We now state two consequences. First recall that a compact invariant set K is 
called an isolated compact invariant set if it is a maximal compact invariant set in 
some neighbourhood of K. 

Corollary 3.1* Let (C) hold. Let K be an isolated compact invariant set. If K 
is unstable, then there exists a negative orbit v(.) with relatively compact image 
disjoint from K such that a(v(.)) C K. 

PROOF : As was remarked above, there exist a neighbourhood U of K and a set 
M CU satisfying (ii)-( iv) °f Theorem 1 (see (3.2)). Shrinking £7, if necessary, we 
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may assume that any compact invariant set K C U is contained in K. It foUows 
that assumption (V) of Theorem 1* is satisfied. The conclusion now follows from 
Theorem 1\ • 

The next simple consequence of Theorem V establishes an unstable set of an 
unstable isolated equiUbrium in a gradient-Uke semiflow, i.e., in a semiflow with 
a Lyapunov function. The latter means that there exists a continuous function 
y: x —• R such that for any x £ X the function t i—• V(S(t)x) is strictly 
decreasing, unless x is an equilibrium. It is weU-known that if S(t) is gradient­
like, then the a-limit set of any compact negative orbit consists of equiUbria. This 
property is what we actually need in the next proposition. 

Proposition 3.3. Let (C) hold. Assume that the a-limit set of any relatively com­
pact negative orbit consists of equilibria. Then for any unstable isolated equilibrium 
e, there exists a relatively compact negative orbit v(.) such that v(t) ^ e for all 
t<0 anda(v(.)) = {e}. 

PROOF : If {e} is an isolated compact invariant set, then the conclusion follows 
from Corollary 3.2. If, on the contrary, {e} is not an isolated compact invariant 
set, then there exist a neighbourhood U of e, not containing other equilibria, and a 

compact invariant set K, {e} ^ K C U. So there exists a negative orbit t;( . ) with 

relatively compact image contained in K\e. Since, by assumption, a(v(.)) consists 
of equilibria, the choice of U implies a(v(.)) = {e}. This proves Proposition 3.3. • 

We finish this section with one more remark. Return to the system 3.2. It is a 
special case of the plane cooperative system, i.e., system 

* = f(x, y) 
y-g(x,y) 

where / and g are C1 with the nonnegative partial derivatives /-,, gx. In such a 
system, the a-Umit set of any bounded negative orbit is an equilibrium [Hil]. Thus, 
by Proposition 3.3, the only obstacle, which prevents an unstable equiUbrium from 
having a nontrivial unstable set, is this equiUbrium not being an isolated equiUbrium 
(like in (3.2)). 

4. Order-preserving semiflows. 
In this section we apply Theorem 1 in strongly order-preserving semiflows. We 

reprove, using this theorem, Matano's result establishing a nontrivial unstable set 
for a semiunstable equiUbrium. Then we proceed with an investigation of compact 
invariant sets not containing an equiUbrium. In strongly order-preserving semiflows 
such sets are automatically unstable (by a result of Hirsch), and we prove existence 
of unstable sets for them. As a consequence of this result, we then prove existence 
of a connecting orbit from a compact invariant set to an equiUbrium. 

.From now on we assume that X is an ordered metric space. This means that 
there is a partial ordering < on X, which is compatible with the topology: x < y 
whenever x, y are the limits of sequences xn < yn. In other words, the relation < 
is closed in X x X. 
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For two points we write x < y if x < y and x / y. For two sets A, B C X we 
write A < B (A < B) if x < y (x < y) whenever x £ A, y £ B. The reserved 
inequality signs are used in the usual way. 

Given a set A C X we denote 

X + (A) := {y £ X: y > x for some x £ A} . 

In particular, for x £ X, X+(x) = {y £ X: y > x}. 
A semiflow S(t) is said to be order-preserving (or monotone) if x < y implies 

S(t)x < S(t)y for all 0 < t < min{rx,rj,}. Following [M3], we call S(t) strongly 
order-preserving if it is order-preserving and for any x < y there exist a t0 > 0 and 
neighbourhoods U, V of x, y, respectively, such that 

U U V C D(S(t0)) and S(t0)U < S(t0)V. 

In the whole section we assume that S(t) is an order-preserving semiflow. 
Let E denote the set of all equilibria of S(t). Note that if e £ E then, by 

monotonicity, the set K+(e) contains positive orbits of all its elements. Thus S(t) 
restricts to a semiflow on K+(e) (taken with the induced metric). An equilibrium 
e is said to be unstable from above if it is unstable for the restricted semiflow on 
X+(e). 

For a convenient application of Theorem 1 the following lemma is useful. (Note 
that a similar property is implicitly contained in the proof of Theorem 5 in [Ml].) 

Lemma 4 . 1 . Assume that S(t) is strongly order-preserving and that (C) holds. 
Let e be an equilibrium unstable from above. Then there exists a neighbourhood U 
of e with the following property: For any x £ X+(e) f\U, x ^ e, there exists a 
t £ [0,r r) such that S(t)x $ U. 

In the proof of this lemma and later in this section we shall use the following 
lemma which follows immediately from the strong order-preservence. 

Lemma 4.2. Assume that S(t) is strongly order-preserving. Let N C X be a com­
pact set and let z £ X satisfy N < z. Then there exist a t\ > 0 and neighbourhoods 
U and V of z and N, respectively, such that 

S(h)U < S(h)V. 

An analogous statement holds for the reserved inequality sign. 

PROOF of Lemma 4.1: By instability of e, there exist an e0 > 0 and sequences 
xn £ K+(e), tn £ (0,-rco) such that 

d(5(ť)xn,e)<є0for^Є[0,ťn), 
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d(S(tn)xn,e) = £ 0 . 

(Here we have used (C), which guarantees that the distance eo is actually achieved.) 
Continuity of the semiflow implies tpf —• +00. Prom this and (C) (where we 
take G = i?(e,£o) ~ the £o~ball with center e) we easily obtain that the set 
N .=- {S(tn)xn: n = 1,2, . . .} is relatively compact (just observe that S(tn))xn = 
S(6)S(tn ~- 6)xn € S(6)G). By Lemma 4.2, there exist a t\ and a neighbourhood U 
of e such that 

(4.1) S(h)U < S(h)N. 

Of course, U can be chosen bounded. We claim that U has the property required 
in the conclusion. Suppose not. Then there exists an x £ (7, x > e, such that 
O+(x) C U. Since U is bounded, by (C) we have rx = -f 00. Now, using the strong 
order-preservence and the facts that x > e and xn —• e, we find a t2 > 0 and an 
integer no such that 

S(t2)x > S(t2)xn for n>n0. 

Consequently 
S(t)x > S(t)xn for all £ > t2 and n > no . 

In particular, 

S(h)S(tn)x > S(tn -f h)x > S(tn + h)xn = S(h)S(tn)xn 

if n > no is sufficiently large (such that in~f ti > t2). This is a contradiction to (4.1) 
because S(tn))x € U and S(tn)xn € N. Thus U indeed has the required property. 
Lemma 4.1 is proved. • 

As any easy consequence of Lemma 4.1 and Theorem 1 we now obtain existence 
of an unstable set of an unstable equilibrium. 

Corollary 4.3 [Matano]. Let the assumptions of Lemma 4.1 hold. Then there 
exists a negative orbit v(.) with relatively compact image such that v(t) > e for all 
t < 0 and v(t) —> e as t —> —00. 

PROOF : Let U be as in Lemma 4.1. The assertion follows immediately from 
Theorem 1, where we take K = {e} and M = K+(e) fl U. • 

It is worth mentioning that another possible choice of M is 

M = it"u|Jo±(xn), 
n 

where xn > e is any sequence approaching e (cf. (3.1)). The resulting negative 
orbit v(.) then takes values in M C -K+(e). If all these xn are subsolutions (i.e., 
0*(xn) .5 %n) fche*- ̂ (t) is monotone in t. To see this, one first observes that the set 
of subsolutions is closed and contains the positive orbits of all its points. So if the 
xn are subsolutions, then M\K consists of subsolutions which implies monotonicity 
oiv(t)€M\K. 
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A sufficient condition for existence of a sequence of subsolutions as above is given 
in [Ml] (see the end of the proof of the Theorem 5). It requires that X is a Banach 
lattice and any order bounded set B (i.e. a set satisfying a < B < b for some a, 
b 6 X) is bounded. Thus under this condition the negative orbit from the conclusion 
of Corollary 4.3 can be chosen monotone. (This is the second part of Theorem 5 of 
[Ml].) 

Now we focus our attention to compact invariant sets. Assume that K is a 
compact invariant set, which is minimal in the sense that K has only trivial compact 
invariant subsets. Note that, by Zorn's lemma, any compact invariant set contains 
a minimal compact invariant set (see e.g. [PM, Lemma 2.2]). We want to find a 
nontrivial unstable set of K. Of course this is not possible if K is stable. While the 
latter may happen in an order-preserving semiflow (in [Hi5] is an example of stable 
periodic orbit), in strongly order-preserving semiflows all such sets are unstable. 
This is a consequence of the following property: 

Proposition 4.4 (Limit set dichotomy). Let S(t) be strongly order-preserving. 
If x, y € X have relatively compact positive orbits and x > y then either UJ(X) > u>(y) 
or else w(x) = u(y) C E. 

The limit set dichotomy has been proved by Hirsch under a slightly more re­
strictive assumptions on the semiflow [Hi6]. Modifying his arguments Smith and 
Thieme [ST2] have proved this property for strongly order-preserving semiflows, 
as defined above. (Proposition 4.4 is also stated without proof in [M3].) 

Now we can prove 

Theorem 4.5. Assume that S(t) is strongly order-preserving and that (C) holds. 
Let K be a minimal compact invariant set which is not open in X*(K) and which is 
not an equilibrium. Then there exists a negative orbit v(.) with relatively compact 
image such that v(t) G X+(K) \ K for allt<0 and a(v( .)) = K. 

PROOF : First observe that, by compactness of K, the set K+(K) is closed. 
Further, by monotonicity and invariance of K, we have 0+(x) C X+(K) for any 
x € K+(K). 

We now claim that there exists a neighbourhood U of K such that for any y € (Ud 
X+(K)) \ K there exists a t € [0, r9) such that S(t)y $ U. Once this is established, 
one easily verifies that for this neighbourhood and for the set M := U H X+(K)) 
all the hypotheses of Theorem 1 are satisfied (note that (iii) holds by assumption). 
So the conclusion of Theorem 4.5 follows from Theorem 1, provided we prove the 
claim. 

In searching for such a neighbourhood U, we start with the observation that 
there are no two points x, z € K with x < z. Indeed, if two, such points existed, 
then, by compactness, invariance and minimality of K, we would have w(x) = 
K = o;(-2r).Hence, by Proposition 4.4, K C E - a contradiction. It follows that the 
closed set W := {g € X: g > K} is disjoint from K. We can thus find a bounded 
neighbourhood U C X \ W of K such that there is no y € U with y > K. We finish 
the proof by showing that U has the desired property. Suppose not. Then there 
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exist two points y € U and x € K such that y > x and 0+(y) C U. By (C) and 
boundedness of U, 0*(y) is relatively compact. Now, since u>(x) n E = K f\ E = 0, 
by Proposition 4.4, we have u;(y) > OJ(X). But this is impossible by the choice of U 
(we clearly have <*/(y) C U). This contradiction proves that U indeed is the sought 
neighbourhood. The proof is complete. • 

Remarks 4.6. 

(a) From Theorem 4.1 it immediately follows that any nontrivial closed orbit K 
has a nontrivial unstable set in X+(K) (if it is not open in X+(K)). 

(b) Previous results establish an unstable set above a given invariant pet. Analo­
gous assumptions and arguments can be used to prove existence of invariant 
sets lying below given invariant sets. 

In [Ml], Matano has proved, under stronger compactness conditions, that be­
tween two related equilibria e\ < e2 there exists a connecting orbit, provided there 
is no other equilibrium in the order interval [ei,e2] := {x € X: e\ < x < e2}. Qur 
next theorem is an extension of this result. Before we formulate the theorem we 
need some definitions. 

A function w: (—oo, -f oo) —• X is called an entire orbit if S(t)w(s) = w(t 4- s) 
for any t > 0, s € R. 

Let K\, K2 be two minimal compact invariant sets. An entire orbit w(.) is 
called a connecting orbit from K\ to K2 if w( .) has relatively compact image and 
a(w( .)) = K\ and a(w(0)) = K2. 

In the remaining part of this section we assume that for any x € X there are two 
sequences # n , yn both approaching x such that xn < x < yn. Note that this implies 
that no set K is open in X"I"(K), neither it is open in X"~(K) := {y € X: y < 
x for some x € K}. 

Now we are in position to prove the next theorem. Note that its formulation 
implicitly contains the obvious fact that if K\ < K2 are two invariant sets then the 
set X+(K\) fl X~~(K2) contains the positive orbits of all its elements. 

Theorem 4.7. Let S(t) be strongly order-preserving and let (C) hold. Assume 
that K\ < K2 are two minimal compact invariant sets such that all positive orbits 
in D := X+(Ki) fl X~~(K2) are relatively compact and there is no equilibrium e 
satisfying K\ < e < K2. Further assume that K\ is not an equilibrium. 

Then K2 = {e} for some equilibrium e and there is a connecting orbit from K\ 
to e. The image of this connecting orbit lies in D. An analogous statement holds if 
K2 is not an equilibrium. 

In the proof we use the following convergence criterion. Its proof can be found 
in [Hi6], [Ml], [ST2]. 

Proposition 4.8. Let x € X have relatively compact positive orbit and let S(T)x > 
x for some T > 0. Then S(t)x approaches an equilibrium as t —> +oo. 

PROOF of Theorem 4.7: Assume that K\ is not an equilibrium (if K2 is not an 
equilibrium, the proof is analogous). By Theorem 4.5, there is a negative orbit 
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v(t) eX+(K\) such that 

(4.3) a(v(.))~K\ 

To prove the conclusion we show that v(.) extends to an entire orbit which lies in 
D and connects K\ to an equilibrium e. Then we prove that e = K2. First we 
prove that v(t) € K~(K2) for all t < 0. For this we choose a z € Ki and find a 
sequence tn —• - c o such that v(tn) —> z. Using Lemma 4.2 with N = K2 > z, we 
obtain that there is a sequence tn —> —oo such that v(tn) < K2 for all n. This, 
in conjunction with invariance of K2 clearly implies v(t) € X"~(K2) for all t < 0. 
Setting v(t) := 5(t)u(0) for t > 0, we thus obtain an entire orbit with values in 
D, which is relatively compact by assumption. Using Lemma 4.2 again (this time 
with z = v(0) and N = Ki), we find two numbers ti < t\ such that v(t2) < v(t\). 
Proposition 44.8 now implies that v(t) approaches, as t —• -f oo, an equilibrium {e}. 
Recalling (4.3) we see that v(t) is a connecting orbit from K\ to e. 

It remains to prove that K2 = {e}. By closedness of D (which follows from 
compactness of Ki, K2), we have e € D, i.e., z\ < e < z% for some z\ € Ki, 
2r2 € K2« By minimality of Ki, K2 and Proposition 4.4, we have K\ = w(z\) < e < 
u)(z2) = K2. Since K\ D E = 0 and e cannot satisfy K\ < e < K2 (by assumption), 
we must have K2 = {e}. This completes the proof. • 

Remark 4.9. By (C), the hypothesis that all trajectories in D := X+(K i ) D 
X~(K2) be relatively compact is satisfied if D is bounded. The latter is the case 
if X is a subset of an ordered Banach space possessing a normal positive cone (e.g. 
C(ft), 1/(0)). 

5. Discrete dynamical systems. 
We finish the paper with some remarks concerning extensions of our results to 

discrete dynamical systems. 
Consider a compact continuous mapping T on a metric space X. The discrete 

dynamical system defined by T is the set of iterations T n , n = 1,2,... The concepts 
of positive and negative orbits, and u> resp. cr-limit sets are defined in a natural 
way. It is well known [HI], [H2] that the limit sets of points and sets have similar 
invariance properties as in the continuous case. It is therefore quite easy to extend 
some of our results to discrete dynamical systems. We now state a discrete version 
of Theorem 1. Its proof is straightforward "production" of discrete analogs of the 
arguments of the proof of Theorem 1 and is therefore omitted. 

Theorem 5.1. Let K C X be compact and positively invariant (i.e. TK C K). 
Assume that there exist a neighbourhood U of K and a set M C U satisfying the 
properties (i)-(iii) of Theorem 1 and 

(iv) For any y € M\K there exists an m such that Tny € M for n = 0 , 1 , . . . , m— 
1 and Tmy i U. 

Then there exists a negative orbit (vk) such that vk € M \ K for all k = 
0, - 1 , - 2 , . . . , and a(vk) C K. 

Applying this theorem analogously as in the continuous case, one can prove ex­
istence of a nontrivial unstable set of an unstable fixed point of T if T is strongly 
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order-preserving (which is defined analogously as in the continuous case). Though 

it seems possible (and not difficult) to prove this discrete version of Matano's exis­

tence theorem by "discretizing" his original proof, in our approach the discretization 

is more convenient. 

We do not know whether a discrete version of Theorem 4.7 holds. The reason is 

that it is not known, up to our knowledge, whether a discrete analog of the limit 

set dichotomy is valid. 

For recent results in discrete strongly order-preserving dynamical systems and 

their applications in nonautonomous periodic parabolic differential equations see 

[AHM], [He]. 
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