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Iterative approximation of fixed points of nonexpansive 
mappings with starshaped domain 

JURGEN SCHU 

Abstract. Let E be a reflexive Banach Space, which possesses a weakly sequentially con­
tinuous duality mapping and A be a closed, bounded subset of E, which is starshaped with 
respect to zero. Then for each nonexpansive self-mapping T of A the iteration process 
-?n+i =-- An.f iT(zn) converges strongly to some fixed point of T, if (An) satisfies certain 
conditions. 

Keywords: fixed points, nonexpansive mappings on starshaped domains, iteration pro­
cesses 

Classification: 47H10 

1. Introduction. 
In [2] B. Halpern introduced the process zn+\ = An+iT(zn) for approximation of 

a fixed point of a nonexpansive self-mapping defined on the unit ball of a Hilbert 
Space. 

Later it was shown by S. Reich ([5], Theorem 3.1), that in case of a smooth Opial 
Space E, admitting a duality mapping which is weakly sequentially continuous at 
zero, the sequence (zn) converges strongly to a fixed point for every nonexpansive 
self-mapping T of a closed, bounded and convex subset A of JS7, containing zero, if 
(An) equals ( l - (n^2)c j with c € (0,1). 

We intend to show, that this result remains valid, if we demand A to be merely 
starshaped with respect to zero instead of being convex, and assume that E is 
reflexive and possesses a duality mapping, which is weakly sequentially continuous 
on the whole of E. 

Conventions. Throughout this paper all normed spaces are assumed to be real 
Banach Spaces. 

Let (£?, ||.||) be a normed space; 0 ^ A C E; T : A —> E; x0 € A. 
We call ( £ , ||.||) smooth iff ||.|| is Gateaux-differentiable on E \ {0} and A is called 
starshaped with respect to x0 iff for all a: € A and A € [0,1] we have Ax+(1 — A)xo € 
A. T is said to be nonexpansive iff \\Tx - Ty\\ < \\x - y\\ for all x, y € A. For 
abbreviation we denote the fixed point set of T by Fix(T). The weak (weak*, 
strong) convergence of a sequence (xn) to some element x is indicated by (xn) —-
x [(xn) -*-> x, lim(xn) = xj. 

Let us now recall the definition of a duality mapping. 
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A function fi : R+ —• R+ is said to be a gauge function iff \x is continuous, 
strictly increasing, //(O) = 0 and 1im fi(x) = oo. 

X—^oo 

The related set-valued duality mapping JE '> E —• 2E is given by J#(0) := {0} 
and J£j(a:) := {u G E*\u(x) = \\u\\ \\x\\ and ||u|| = fJ.(\\x\\)} for all x G E \ {0}. 

J : E —• E* is said to be a duality mapping iff J(x) G JE(X) for all x G E. 
For convenience in all proofs of section 2, we will assume, without loss of gen­

erality, that JE respectively J is normalized, i.e. w =id. Note, that for a smooth 
normed space JE is always singlevalued, in which case we regard JE as a mapping 
from EtoE*. 

Finally we call J weakly sequentially continuous in x G E iff for all (a;n) € EN 

(xn) —- x implies that (J(a:n)) —- J(x). 

2. Main result. 
Before stating our above mentioned theorem, we have to give several lemmas. 

Lemma 1. Let (-E, ||.||) be a normed space; x,y G E; a,fi G R; ||(1 + a)x — (1 + 

«vll<ll--y||. 
Then u(ax — /5y) < 0 for all u G JE(X — y). 

PROOF : Foru G JE(x-y) wehaveu(aa: — fiy) = u((\+a)x-~(\+f3)y)—u(x — y) < 

\\u\\ IKI + a)x - ( i + p)y\\ - II* - yll2 < h - 2/11 II* - vll - Ik - yf = 0. • 

L e m m a 2. Let (Ey ||.||) be a smooth normed space; x,y € E; a > fl > 0; J#(x — 
y)(aa: - 0y) < 0. 
Then Js(y - x)(x) > 0. 

PROOF : From our assumption 0 > JE(X — y)((a + 0)(x — y) + (ay — fix)) = 
(a + p)\\x - y\\2 + JE(x - y)(ay - fix), hence JB(z - y)(/3x - ay) >(a + /3)\\x - y||2. 
Define 7 := ^ | - j . Then, since a > p > 0, 7 G [0, f) and therefore 1 - 27 G (0,1]. 
Now we obtain 

\\x - y\\2 < JE(x - y)(jx - (1 - 7 )y) = -JE(x - y)((27 - l)(a: + y) + (x - y)) = 

2 D* ™ *>H2 + 2 ( 2 7 " 1)Jf?(:r "" V^X + y ) ' henCC 

||a: - y||2 < (1 - 27)JE(y - x)(x + y), where 1 - 27 > 0. 

Therefore JE(y — x)(x + y) > 0 and consequently ||a: — y||2 < J#(y — x)(x+y)% from 
which we conclude, that 

2JE(y - x)(x) = JE(y - x)((y + a:) - (y - a:)) = JE(y - a:)(y + x) - ||a: - y||2 > 0. 

Lemma 3 . Let (E, ||.||) be a normed space with a weakly sequentially continuous 
duality mapping J : E —• E*; (xn) G EN; x G E; (xn) —- x; 

(*) J(xm — a:n)(a:n) > 0 for all m>n. 
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Then lim(a:n) = a:. 

R e m a r k . Since J is weakly sequentially continuous, E is a smooth normed space 
(see e.g. [1]). 
PROOF : F ixn e N. T h e n ( x m - x n ) m - - x - x n , hence (J(xm-xn))m -^ J(x-xn) 
and with the help of (*) we get 

0 < lim J(xm - xn)(xn) = J(x - xn)(xn). 
m •oo 

Therefore 

J(x - xn)(x) = J(x - xn)(x - xn) -f J(x - xn)(xn) > \\x - arn||2, 

from which the result follows, because lim J(x — xn)(x) = 0. 
n—•oo , 

• 
R e m a r k . Combining Lemma 2 with Lemma 3 one immediately obtains a conver­
gence lemma of G. Muller and J. Reinermann ([4], Lemma 2.5). 
Lemma 4 . Let (JE7, ||.||) be a smooth normed space; 0 ^ A C E; T : A —• E 
nonexpansive; a;,y € A; X £ (0,1); x = XT(x); y = T(y). 
Then JE(y - x)(x) > 0. 

PROOF : If we define a := j — 1 and /? := 0 we observe, that a > ft > 0 and 

||(1 + a)x - (1 + P)y\\ = \\\x- y\\ = \\Tx - Ty\\ < \\x - y\\. 

The result follows from Lemma 1 and Lemma 2. • 

Lemma 5. Let (E, ||.||) be a smooth normed space possessing a duality mapping 
j : ]$ —Y ft*} which is weakly sequentially continuous at zero; 0 ^ A C E; T : 
A —> E nonexpansive; (xn) € AN; (Xn) € (0,1)N ; x € A; x - Tx; xn = AnT(xn) 
for all n € N; (xn) —- x. 
Then 

(1) lim(a:n) = x 
(2) J(y - x)(x) > 0 for all y € Fix(T). 

PROOF : Lemma 4 tells us, that J(x — xn)(xn) > 0 for all n 6 N and, as already 
seen in the proof of Lemma 3, this implies, that \\x — xn\\

2 < J(x — xn)(x) for 
n 6 N. Since (a: — a:n) —-> 0 and J is weakly sequentially continuous at zero, we 
obtain lim||a: — a:n|| = 0. To prove (2) let y be an arbitrary fixed point of T. 

Again by Lemma 4 J(y — xn)(xn) > 0 for n € N. 
Since E is smooth, J is strong-weak* continuous (see e.g. [1]) and so lim(y—xn) = 

y — x implies, that (J(y — xn)) -*-* J(y — a:). 
This, together with lim(a;n) = x, shows, that lim J(y — arn)(a:n) = J(y — x)(x) 

n >oo 

and so J(y — x)(x) > 0. • 
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Lemma 6. Let (By 11-11) he a normed space with a weakly sequentially continuous 
duality mapping J : -^ ~—» E*; 0 7- A C F closed; T : A —• E nonexpansive; 
(xn) € AN; a? € E\ (K) € (0,1)N strictly increasing; lim(An) = 1; xn = AnT(arn) 
/or a / /n € N; ( s n ) -*" *. 

Then 

(1) \im(xn) = * an i T(x) = x 
(2) J(y - *)(*) > 0 /or all y € Ftar(T). 

PROOF : Defining nn := -̂  1 for n 6 N, we observe, that for ra > n, / in > 
Hm > 0 and ||(1 + /Xn)-rn - ( 1 + fim)xm\\ = ||Tx„ - Txm\\ < \\xn - xm\\. 
We now apply Lemma 1 and Lemma 2 to derive, that J(xm — xn)(xn) > 0 for 
m > n and from Lemma 3 we conclude, that lim(;rn) = x € A = A. 
Since T is continuous Tx = lim(Txn) = lim( j-xn) = x. 
Part two of our claim now follows from Lemma 5. • 

Lemma 7. Let ( F , ||.||) be a reflexive Banach Space with a weakly sequentially con­
tinuous duality mapping J : E —> E*; 0 =fi A C E closed, bounded and starshaped 
with respect to zero; T : A —• A nonexpansive. 
Then there exists z £ A such that T(z) = z and J(y - z)(z) > 0 for all y € Fix(T). 

PROOF : Set An := 1 - ^ € (0,1) and Tn := AnT for n € N. 
Then ||Tna: — Tny|| < An||:r — y|| and, because A is starshaped with respect to zero, 
Tn(A) = AnT(A) C AnA + (1 - An){0} C A. The classical contraction principle 
therefore delivers for each n € N, xn € A, such that xn = Tn(xn) = AnT(a:n). 
Since A is bounded and E is reflexive, there exists z 6 E and <p : N —• N strictly 
increasing, such that (a:v,n) —- z. Because x(fin = \{pnT(x(Pn) we are allowed to apply 
Lemma 6 to (xifin), from which the result follows. • 

Definition 8. (see B. Halpern [2]) 
A sequence (An) is said to fulfill condition (H) iff 

(1) (^n) € (0,1)N strictly increasing and lim(An) = 1 
(2) there is (f$n) € N N nondecreasing, such that lim(/?n(l — An)) = oo and 

U m ( i ^ ) = i . 

In the course of the proof of Theorem 3, [2] B. Halpern actually showed, that the 
following holds. 

Theorem 9. Let (F, ||.||) be a normed space; 0 / A C E bounded and starshaped 
with respect to zero; T : A —• A nonexpansive; (An) € (0,1)N satisfying condition 
(H); (xn) € AN ; xn = AnT(xn) for all n € N; ** 6 A; zn+x := An+1T(2rn) for all 
n € No; assume further, that (xn) converges strongly to some q € E. 
Then lim(*n) = q. 

Note, that (zn) is well-defined, because T(A) C A and A is starshaped with 
respect to zero. 
Now we are able to show our main result. 
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Theorem 10. Let (E, ||.||) be a reflexive Banach Space with a weakly sequentially 
continuous duality mapping J : E —• E*; 0 =fi A C E closed\ bounded and star-
shaped with respect to zero; T : A —• A nonexpansive; (An) € (0,1)N satisfying 
condition (H); z0 £ A; zn+1 := \n+iT(zn) for all n € N0 . 
Then there exists z £ A, such that T(z) = z and lim(zn) = z. 

PROOF : From Lemma 7 we obtain z € A such that T(z) = z and 

(*) J(y - z)(z) > 0 for all y € Fix(T). 

As shown in the proof of Lemma 7 there is (xn) 6 AN with xn = AnT(-cn) for all 

neN. 
Consider an arbitrary strictly increasing mapping y> : N —> N now. 
Since A is bounded and E is reflexive, we find some strictly increasing t/> : N —• N 
and x 6 E, such that (x(fi),n) —-* x. 
If we apply Lemma 6 to (x{p%(ln), we get \\m(xfp%t)n) = x, T(x) = x and 

(**) J(y - x)(x) > 0 for all y e Fix(T). 

Because Tx = x, (*) delivers J(x - z)(z) > 0 and since Tz = z, (**) shows us, 
that J(z - x)(x) > 0, hence J(x - z)(~x) > 0. Adding both inequalities one gets 
0 < J(x — z)(z - x) — -\\x - 2r||2 < 0, hence x = z and therefore lim(xv>¥,n ) = z. 
This shows, that lim(arn) = z and applying Theorem 9 we are done. » 

R e m a r k . A result of J.-P. Gossez and E. Lami Dozo ([3], Theorem 1) states, 
that every normed space, which possesses a weakly sequentially continuous duality 
mapping, is also an Opial Space (i.e. (xn) —- x and y y- x always implies that 
liminf \\xn — ar|| < liminf \\xn — y\\). 

Therefore Theorem 10 reduces to a special case of the result of S. Reich, already 
mentioned in the beginning ([5], Theorem 3.1), if we additionally demand A to be 
convex. The proof of S. Reich, however, does not carry over to starshaped domains. 
Note for example, that for a nonexpansive self-mapping T of a closed, bounded 
and starshaped subset of an Opial Space, id — T is not necessarily demiclosed. But 
demiclosedness of id — T is essential to the proof of Theorem 3.1 from [5]. 

For a result concerning the weak convergence of the sequence given by zn+\ := 
\n+iT(zn) in case of a Hilbert Space and under different assumptions, we refer to 
[6], Theorem 8. 
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