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Moments of stochastic processes 
governed by Poisson random measures 

BRUNO BASSAN, ELISABETTA BONA 

Abstract. We provide a general formula to evaluate the moments of those processes which 
can be written as integrals with respect to a Poisson random measure. This result applies, 
for example, to discontinuous Levy processes and shot noise. 
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1) Introduction. 

A wide class of stochastic processes including Poisson, compound Poisson, 
discontinuous Levy processes, shot noise and others can be represented through 
integrals with respect to a Poisson random measure. This representation permits 
us a unified approach to a variety of problems and allows many a computational 
simplification. For a general outline of Poisson random measures see, for example, 
Ikeda and Watanabe (1981), where their central role in the theory of stochastic 
differential equations with jumps is carefully explained; see also Ito (1951). Qinlar 
and Jacod (1981) show how Poisson random measures, together with Brownian 
motion, underlie all semimartingale Hunt processes. 

We recall that a Poisson random measure N on a measurable space (IE, S), defined 
on a probability space (0 , A, P) and with cr-finite mean measure i/, is a mapping 
N : Q, x E -+ IN such that: 

(i) UJ «—> N(u>, B) is a Poisson distributed random variable with parameter v(B), for 
every B € S; 

(ii) B i-> N(u>, B) is a measure on IE, for every u € 0; 
^iii) if B\,... , Bn are disjointed sets of £, then N(Bi),... , N(Bn) are independent 

random variables. 
As an example of how certain stochastic processes can be represented through 

integrals with respect to a Poisson random measure, consider a homogeneous 
Poisson process {X(t) | t € 1R+} with parameter A; let IE = H+ and let N be 
a Poisson random measure on JR+ with mean measure v(ds) = Xds. Then 

X(oj,t)= f l(0i f )(*)ЛГ(w,Љ) 
УIR4. /1R+ 

where I A ( ' ) denotes the indicator function of the set A. 
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A further example is given by shot noise random fields in !Rn (see, for example, 
Daley (1971), Orsingher and Battaglia (1982) or Bassan and Bona (1988)). These 
fields are defined by the relation 

(1.1) W(P) = £ Z , 7 ( P - Q , ) P,Q< € H n 

i€ I 

where {Qi \ i € / } , / C IN, are the random points of a Poisson field with parameter 
A, {Zi | t € / } is a family of i.i.d. random variables ("impulses") and 7 : H n —• H 
is the so-called response function. The field (1.1) can be written as 

W(z\...,zn) = I z1(x
l-y\...,xn-yn)N(dy\...,dyn,dz). 

JR"xJR+ 

where N is a Poisson random measure with mean measure v (dyl,... ,dyn,dz) = 
A dy1 • • • dyn dF(z) (F is the common distribution function of the random variables 

Zi)-
Formulas for mean and variance of processes which can be written as integrals 

with respect to Poisson random measures are well known; bounds for higher order 
moments, in settings slightly different from ours, can be found, for example, in 
Schmidt (1985). In this note we provide a general formula to evaluate the moments, 
if existing, of those processes which admit the represntation described above. 

2) Main result. 

Let (IE, S) be a measurable space and let N be a Poisson random measure on IE 
with <j-finite mean measure v. If / : IE —> 1R+ is a measurable function, we write 

*/(-»)= í f(x)N(u,,dx) 
JE 

and 

uf = f f(x)u(dx). 
JE 

For the moments of a stochastic process which can be represented through 
integrals with respect to a Poisson random measure, the following result holds. 

Theorem. Let {Xt | t € T} ,(T C H ,d > 1) be a stochastic process with values 
in IR+, and let {ft ( t € T} be a family of positive measurable functions defined on 
IE such that, for every t € T, we can write 

Xt = Nft. 

Then, the n-th moment of Xt, if existing, is given by 

(2.1) E(Xt)
n= £ Kn(r1,...,rn).(uftr-(vf?)r'-...-(vfnrn 

(r, -„)€/( n) 
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where 

J(n) = i (n, . . . ,rn) € IN x IN x . . . x IN | J V < - = n l 

and 

Kn(rU... , r n ) = l ! r | . 2,ra . . j ( n _ 1 ) n r „ - i . [ n !jrn # ̂ , # . ^ -

PROOF : It is known that the Laplace functional $xt of the process Xt = Nft is 
given by 

</>Xt(a) = E[exp(-aNft)} 

= exp {1/ (e-°* - l) } = exp j / [c-°* <*> - l] i/(<**)} . 

For fixed t, we write, for brevity, ^(a) instead of <l>xt(a). Let also 7(a) = log^(a). 
We shall use induction to prove that, for all n € IN, the general form of the n-th 
derivative of </>(a) is: 
(2.2) 

<»<">(«) = « a ) £ ^n (r, , . . . ,r„) [y'(a))r> [7"(a)]r»... [7<»>(a)] "*. 
(r, r„)€/(n) 

It is obvious that (2.2) holds for n = 1, since 1(1) = {1} ,K(1) = 1 and, clearly, 
<t>'(a) = <j>(a)-y'(a). 

Suppose now that (2.2) holds for a given n > 1; we want to show that 
(2.3) 

t<n+1\a) = <j,(a) £ Jt-(n+l){pi,... ,Pn,Pn+l)• 

(j»l>». »J»n,J»n+l)€/(n+l) 

.[7'(a)^•...•[7(n)] , ,"[7("+1)] , ,"+^ 

Let f(n) = /(n) \ {(0,... ,0,1)}. Differentiating (2.2), we have: 

(2.4) 

^(n+i)(a) = y(a)^(«)(a) + ^(a){7<»+1>(a) + VJ Kn (ru... ,r„) • 

(r,,...,r„)€/(n) 

•Eriiv(«)r...[iw],,"IM,,+t+1...['/->],w}. 
i = i ' 

This can be rewritten, substituting (2.2) for </>(*)(a) as: 

^ M = 7 ( n + D ( a ) + 7 ( n ) ( Q ) y ( a ) 
0(a) 

(2-5) 
(r, rn)Є/(„) 

+ £ Ä-„(г„...,rn){[7'(в)p+,[7"(a)Г...HГ" 
(ri,...,rn)€/(n) 

Eo[7Ч«)Гv..ИГ І"И1 )]Г І + , + I---H r"}-
j -в l ' 

n - 1 

+ 
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Now, we can observe that, if ( r i , . . . , rn) 6 I(rc), then the n-tuples 
(ri + l , r 2 , . . . ,0) and ( n , . . . ,r, - l , t v+ i + 1 , . . . , r n ) , Vjf € {1 , . . . , n - l } , are 
in the set {(pi,... ,pn) € 3Nn | 5Z!Li *P* = n + *}• Hence, we can rearrange (2.5) 
as 

^ - _ = _ 7 ( « + » ( a ) + 7(")(a)7 '(a) 

+ 5 ľ |K П (P1-1,P2, . . . ,0) 

{(pi,...,p-)єiN» i E L I ' P І = = П + 1 } 
n - 1 n - i -. 

+ X](P> + 1)^n(Pli... ,Pi + l,Pi+l-l,." ,P») [' 
i=l j 

.[ 7 v)r. . .[7 ( n ) ] P n 

where the value of Kn is taken to be zero if any of its arguments is negative. 
Let us consider now the n-tuple (p_,... ,pn) = (1,0,... , 0,1), which is the only 

one with p n ^ 0. The corresponding term is: 

(pn_, + 1)J_-(1,0,... ,0,1,0)7'(«)7<">(«) =_ n7 '(a)7<">(a). 

since all the terms with j ^ n — 1 in the sum between braces vanish. Thus, we can 
write: 

^" + / ) i a ) = 7(n+1)(«) + (n + l)7

(n)(a)7'(«) 

(2-6) 

+ 5ľ |-Қ-"n(Pl-l,P2,...Pn) 
{(Pь.. ,P»)ЄІN» | X)Li» í > i = = n + 1»- , n = =°} 
n - 2 n - _ v 

+ _0^ + 1)^w (P1' * * * 'P> + X'P>+1 - 1»' • • »Pn) [' 
i=l } 

.WiaT...^}"". 
In order to express the coefficients between braces in the relation above in terms 

of JKn+i, w e shall make use of the following relations, which are easy to check: 

(2.7) Kn(Pl,... >Pn)~ —-TKn+l (P l , . . . ,Pn,0) 

n + 1 

(2.8) P l#»+l (Pl ,P2 , . . . ,Pn,0) = Kn+l(Pl - 1 , P 2 , . . . ,Pn,0) 

(2.9) Kn+l(Pl,...,Pi + l , P i + l - l , . . . , P n , 0 ) 
_ 0' + X)Pj+l y / n n n ftX 
- ZTTl A n+l(p i . . . ,Pi ,Pi+i , . . . ,Pn,0). 

Pi T i 
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In view of (2.7), the quantity between braces in (2.6) becomes: 

~-7-7<Kn+l(Pl - 1,P2,.-. ,Pn,0) 
n + l { 

n-<2 . 

+ Yl(PJ + 1)Kn+1(Pu'" »W + 1»W+1 - 1 , . . . ,Pn,0) > 
i = l } 

which in turn can be written, using (2.8) and (2.9), as: 

^T"J <#n+l(Pl,P2,.-. ,Pn,0) pt + ] T ( ; + l ) p i + J > 

= ^7Y<-^«+l(PliP2,. . . ,Pn-0)5^tp/>. 

Thus, (2.6) becomes 

*{Hll)[a) = -r{n+1}(<*) + (" + i)7(n)(a)V(«) 

(2.10) + Yl Kn+l(Pl,... ,pn,Pn+l)' 
{(Piv-,Pn,P„+i)€/(n+l) | p„=p„+i=0} 

•[ywr...[rr 
The relation (2.3) can be derived immediately from (2.10) simply observing that 

Kn+i(0,... ,0,1) = 1 and K n + 1 ( l ,0 , . . . ,0,1,0) = n + 1; (obviously, these two 
(n + l)-tuples are the only ones in I(n + 1) with pn > 0 or p n + 1 > 0). 

Thus, it has been proved that (2.2) holds for every n € IN. Now, the theorem 
follows easily; in fact, observing that 

7<»(0) = ( - l ) W ' = (-1)J / fj(x)u(dx) 
JE 

and recalling that 
E(Xt)

n = ( - l ) V ^ ( O ) , 

we have 

E(Xt)
n = (-l)*Vx,(0) £ [-„/,]••' [ ( - l ) -„ /? ] r *. . . [(- l)V/,"] r" 

(ri r„)€/(n) 

= (-i)"+-^"-iri E w.r ["/?]" • • • wrr- • 
(ri,...,r„)€/(n) 
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Remark. It is immediate to derive from (2.1) the well known formulas E(Nf) = vf 
and E(Nf)2 = vf2 + (vf)2. 

Example. We shall compute, using (2.1), the third moment of a shot noise process 
on IR2. The reader can check that this procedure is computationally much easier 
than the one based on differentiating the Laplace functional. 

Let the "impulses" {£, | i € IN} be exponentially distributed with parameter /*, 
and let the (radially symmetric) response function 7 be given by 

j(xl -y\x2 -y2) = e x p < - y | l { p < H } 

where p = yfa1 — y1) + (x2 — y2) and R > 0. The corresponding shot noise 
field, evaluated in (0,0), can be written as: 

t2n *R i»oo f 2 "I 

W(0,0) = / / / z exp \ - *-- \ Xpfi exp { -^ z } dz dp d<j>. 

Notice that the distribution of the field does not depend on the point where it is 
evaluated. 

We can write W(0,0) = Nf with f(z1pJ(f>) = z exp < — ̂ - >. Some calculations 

yield: 

"-?(—{-*}), 
^ = ̂ [2^(l-exp{-^})+l-exp{-i l2} 

"•-£(i--*{-?}) 
Since 1(3) = {(0,0,1), (1,1,0), (3,0,0)}, formula (2.1) gives 

E[W(0,0)]3 = uf + 3uf uf + (uff 

AwX / f 3B?\\ 8TT 3 A 3 / f R*\\3 

-•?• ( '—»{—} ) + ^ ( 1 - < ^ { - T } ) 

+ = ^ (,--,{.*}) d-pj-*}) 
Notice that the evaluation of the Laplace functional of the field permits us to 

write: 
, 2ffA 

(2.11) E[exp{-аW(0ђ0)}] = 
џ + аexp{-£-} 

џ + а 

Notice, incidentally, that W(0,0) is asimptotically distributed as a r(2?rA,p.) 
when R -~* oo. The reader may verify directly that the calculations needed to 
differentiate (2.11) three times are very lengthy. Furthermore, it must be pointed 
out that the Laplace functional of a process is, in general, hard if not impossible to 
compute explicitly. 
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