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Fan-Gottesman type compactification of frames 

D.BABOOLAL 

Abstract. We construct a compactification, which we call a Fan-Gottesman type com­
pact ification, of a regular frame having a normal base. It is shown that the Stone-Cech 
compactification of a normal regular frame and the least compactification of a regular con­
tinuous frame are examples of compactifications of such type. We also characterize those 
precompact uniformities on a frame whose Samuel compactification is of Fan-Gottesman 
type. 

Keywords: frame, compactification, strong inclusion, uniform frame 

Classification: 06D20, 06B35, 54D35 

In [4] Fan and Gottesman construct a compactification of a regular topological 
space having a normal base. It is shown there that the Stone-Cech compactification 
of a normal HausdorfF space can be obtained using this general construction if one 
takes as a normal base the collection of all open subsets of the topological space. It 
is also shown that the AlexandrofF one-point compactification of a locally compact, 
non-compact Hausdorff space X can be so obtained if one takes as a normal base 
the family of all those open subsets U such that either cl U or X — U is compact. 

This classical construction for topological spaces provided the motivation to con­
struct compactifications of regular frames having a base satisfying properties anal­
ogous to that for normal bases as defined in [4], Such compactification we shall call 
compactifications of Fan-Gottesman type. We construct this compactification for 
a regular frame with a so-called normal base in Section 1. 

In Sections 2 and 3 we show that just as for the classical case the Stone-Cech 
compactification of a normal regular frame and the least compactification of a regu­
lar continuous frame are examples of compactifications of Fan-Gottesman type. We 
also give in Section 2 an alternative proof (which avoids the use of JoyaTs lemma 
[6, p.91]) of P.T. Johnstone's [7] result that the Wallman compactification of a nor­
mal regular frame is the same as its Stone-Cech compactification. The Wallman 
compactification for such a frame, we may deduce then, is of Fan-Gottesman type. 

In Section 4 we discuss uniform frames with a view to characterizing those precom­
pact uniformities on a frame whose Samuel compactification is of Fan-Gottesman 
type. 

0. Pre l iminar ies . Recall that a frame (locale) is a complete lattice satisfying the 
infinite distributive law a, A \/ A = Va€A(x^a) *° r a n y x € Ly A C L. These are the 
objects of the category FVm whose morphisms are those functions which preserve 
finite meets and arbitrary joins. We denote the top of L by e and the bottom by 0. 
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A frame L is compact if e = V A implies that there exists a finite 5 C A such that 
e = V«->- A frame L is regular if for each a € L, a = V*-<a *• H e r e x ~< a i s r e a d 

as x is "rather below" a and is defined by x A y = 0 and y V a = e for some y £ L, 
or equivalently x* V a = e, where x* is the pseudocomplement of x. X is normal if 
given a and b in L with a V h = e there exists c and d with c A d = 0, c V 6 = e and 
a V d = e. A frame map /i : M —> L is called dense if /i(x) = 0 implies that x = 0. 
A compactification of L is a compact regular frame M together with a dense onto 
map h : M —• L. A strong inclusion on L is a binary relation <3 on L such that 

(i) x < a < b < y = > x <J y 
(ii) <J C L x L is a sublattice, i.e. 0 <J 0, e <J e, 

x < a, b = > x <3 a A 6, x,y<3a = > x V y <J 6 
(iii) x <J a = > x -< a 
(iv) <3 interpolates, that is x < z = > x <3 y <i 2 for some y € L 
(v) x <3 a = > a* <3 x* 

(vi) a = VI<a * 
If <3 is a strong inclusion on L, then this determines a compactification of L defined 
as follows: An ideal J C L is called strongly regular (with respect to <j) if x 6 J 
implies that x <y for some y € J. Let 7L = {J |J is a strongly regular ideal of L}. 
Then 7 L is a compact regular subframe of Idl(L'), the frame of ideals of L. The join 
map V : 7-k —* L is dense and onto so that (7.L, V) is a compactification of L. 

The concept of strong inclusion and the construction of the compactification 
determined by it is due to Banaschewski [2]. We are unaware of any published 
reference of this fact. For a general reference on frames see [6]. 

1. Fan-Gottesman compactification. In [4] Fan and Gottesman constructed a 
compactification of a regular toplogical space having a so called normal base, which 
includes Wallman's compactification for normal HausdorfF spaces. As a direct frame 
translation of the conditions for this base we may formulate 

1.1 Definition. A base B C L for a regular frame L is said to be a normal base if 
it satisfies 

(i) a, 6 £ B = > a A b £ B 
(ii) a £ B = > a* € B 

(iii) for any c£ L, a € B with a<c there exists b £ B such that a -< 6 X c. 

1.2 Proposition. Let L be regular and B a normal base for L. Define < on L by: 
x <y if there exists b £ B with x -< b -< y. Then < is a strong inclusion on L. 

PROOF : We check that the six conditions for a strong inclusion are satisfied: 
(i) x < a < b < y = > x <a •< c<b <y for some c £ B. Thus x •< c -<y and hence 
x<3y. 
(ii) We have 0 <3 0 since 0 -< 0 -< 0 and 0 £ B. Also e <3 e since e -< e -< e and 
e £ B. Now suppose x <3 a, b. Find c,d £ B such that x -<c -< a, x -< d -< 6. Then 
x - < c A a * - < a V 6 . Since cAd £ B we have x <3 a A 6. If x, y <3 6, then there exist 
a,c£ B such that x X a -< 6, y -< c -< 6. Thus a V c -< b and hence (a V c)** -< 6. 
Thus xVy-<{a\t c)** X 6. Since (a V c)** = (a* A c*)* € B w e have x V y <3 6. 
(iii) If x <3 y, then x -< y follows from the definition. 
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(iv) Suppose x < z. Then there exists a £ B such that x < a < z. By the 
third condition of the definition of the base J3, there exist 6,c £ B such that 
x -< a <b •< c A z. Hence x < b < z. 
(v) If x < a then there exists b £ B such that x -< b -< a. Then a* -< 6* -< x*, and 
since 6* € £ we have a* <i a;*. 
(vi) Let a £ L. By regularity and the fact that B is a base for JL, we have a = 
Vz-<a z€B z* Now if z -< a and z £ B, then there exists c £ B such that -? -< c -< a. 
Hence z < a, and thus a = Vx«a x- * 

The compactification 7L associated with the above <J (or 7#L, to emphasize that 
this is with respect to a normal base B for L) we shall call the Fan-Goiiesman 
compaciificaiion of L. Any compactification of L isomorphic with 7#L for some 
normal base B for L will be called a Fan-Gottesman type compactification. 

Let S(L) be the set of all strong inclusions on L partially ordered by inclusion 
and let K(L) be the set of all compactifications (M, h) of L partially ordered by: 
(M, h) < (K, / ) if and only if there exists a frame homomorphism g : M —• K such 
that fg = h. It is known that S(L) = K(L) (Banaschewski [2]). As we are unaware 
of this result appearing in the published literature, we sketch a proof below from 
Banaschewski [2]. 

1.3 Proposition. S(L) = K(L). 

P R O O F (sketch): 

Consider the maps S(L) —> K(L) given by <i *•** (7L, V) (as defined above) and 
K(L) —+ S(L) given by (M, h) *++ <. Here <i is defined by x < y if and only if 
l(x) < l(y) where I : L —• M is the right adjoint of h given by 1(a) = \/h(x)=ax' 
That these maps are order-preserving can be easily shown. We show these maps 
are inverses of each other. 

Consider S(L) —> K(L) —> S(L) where < ~* ( 7 I , V) ^ «o- For a € I , fc(a) = 
{x 6 L\x < a} £ 7L . Furthermore \J J < a if and only if J C fc(a) so that k is the 
right adjoint of V : yL —+ L. Thus for <J0 determined by (7L, V)> £ <o a -̂  a11^ o n -y 
if k(x) X k(a). 

Now x < a = > k(ar) -< k(a) (with a little calculation) = > x <0 a. Conversely 
x <0 a ==> k(x) < k(a) = > there exists J £ jL such that k(x) O J = 0 and 
k(a) V J = L from which we may obtain x < a. Thus S(L) —* K(L) —* 5(L) is the 
identity. 

To show K(L) - ^ S(L) - • K(L) is the identity, where (M, a) - • < -*+ (7L , V), 
we must show (M, /i) = (7.L, V)- Consider 

kj4 yh 
M • 7 M • 7.L 

ќ̂  
L 

where kM(a) = {x £ M\x X a} and (7*)(J) = (J{lh(x)\x £ / } • 
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The map km is a frame map since M is compact regular. Furtermore yh is a 
frame map so that (jh)km : M —• 7L is a frame map. Also the above diagram 
commutes and (/)h)km is dense since both h and V a re« A-s o n e c a n verify (*)h)km is 
also onto. Thus (lh)km is an isomorphism since M and 7 L are compact regular. • 

1.4 Propos i t ion . Let L be a regular frame, B a normal base for L and R the set 
of regular elemenU of B, that is R= {b G B\b = b**}. Then R is a normal base for 
L and JRL is isomorphic to JBL. 

PROOF : That J? is a normal base follows from the following: 
(i) If a, 6 € R then (a A b)** = a** A b** = a A b. Hence a A b € R. 
(ii) If a € R, then (a*)** = a*. Hence a* € R. 
(iii) If a € R, a X c then there exists b G B such that a X b X c. Thus a X 6** X c 
with 6** € R. 
(iv) If a € L, then a = VxeB x-<a x- ~>mce # € -5 and # X a implies that z** € -R 
and x** X a we have a = V*-<a *eR *• 

To complete the proof we show that <B = <R, where <B and <R are the strong 
inclusions with respect to the bases B and R respectively. Obviously if x <R y then 
x <B y since R C B. If #«#, then x X a X y for some a € B. But then x <Ry since 
we have a: X a < a** X y and a** € -R. Hence <J# = <R. • 

It might be thought that if B and Bf are normal bases for L such that 7#L and 
7B'L are isomorphic then they contain the same regular elements. The following 
example shows this is not the case. 

1.5 Example:Let X = [0,1] with the usual topology. Then OX is compact, 
regular and normal, where OX is the frame of open sets of X. Since, as is well 
known, every dense frame map between compact regular frames is an embedding, 
any compactification of OX is isomorphic with OX. Now OX is a normal base 
for OX and thus the set R of all the regular elements of OX (i.e. the regular 
open subsets of X) is a normal base as well by Proposition 1.4. Now R! = {g € 
OX\G is a finite union of open intervals in X} is evidently a normal base for OX. 
We have yROX S* <yR>OX(^ OX), but R! % R. 

2. Normal regular f rames. If L is normal regular, recall that the rather below 
relation X interpolates and that the Stone-Cech compactification can be described 
as (RL, V) where RL consists of all the regular ideals of L and V : RL —* L is the 
join map. (See e.g. [1],[2],[6]). An ideal J C Lis said to be regular if a: € J implies 
that there exists y € J such that x X y. Since X interpolates it is clear that L itself 
is a normal base and that <i =X. Thus (71,-k, V) *s isomorphic to (RL, \f). We 
have shown: 

2.1 Proposition. For normal regular L, L iUdf is a normal base and the Fan-
Gottesman compactification (yiL,\J) is the Stone-Cech compactification of L. 

The remainder of this section is devoted to an alternative proof (which avoids the 
use of Joyal's lemma ([6]) of Johnstone's result ([7]) that the Wallman compactifi­
cation of a normal regular frame is the Stone-Cech compactification of L. Hence by 
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Proposition 2.1, the Wallman compactification of such a frame is a compactification 
of Fan-Gottesman type. 

Let us firstly recall Johnstone's ([7]) construction of the Wallman compactifica­
tion of a subfit frame L, i.e. a* frame satisfying v ( a ) C V W = ^ a "-S &> where 
V( a ) = {c G L\a V c = e}: Let j be the nucleus on the frame Idl(L) of ideals of a 
subfit frame L given by 

j(I) = {ae L|(V6 € L)(a V b = e) = > (3c € I)(c V b = e)} . 

The Wallman compactification of L is defined to be the frame Idl(L)j of j -fixed 
ideals of L. 

2.2 Lemma. If L is regular, then for any ideal I of L, \J I = y j(I). 

PROOF : I c j(I) so that V I < ViCO-
Now let a € j(I) be arbitrary. Take any x •< a. Then x* V a = e. Since a € j ( I ) , 
there exists c € I such that i * V c = e, i.e. x < c <y I. By regularity a = V«-<a V 
so that we have a <\j I. Hence \/ j(I) < VI-

• 
2.3 Lemma . If L is normal regular then (Idl(L)j, V) w a compactification of L. 

PROOF : That Idl(L)j is compact regular is proved in [7]. We need to show that 

V *• Idl(L)j —• L is a frame homomorphism which is dense and onto. 
That V i s dense is clear; also L subfit ==-> every principal ideal of L is j-fixed 
([7]) so that V 1S onto. That V preserves finite meets is clear. Now take I, J € 
ldl(L)j. Then V(I V, J) = \/(j(I V J) = V(I V J) (from Lemma 2.2) = V I V V I-
Now take any collection of updirected ideals {I,} in Idl(L)j. Then V(V. IO ^ 
y j(\JIi) = V(U^«) = : V V^«- Thus V preserves arbitrary joins and hence is a 
frame homomorphism. • 

2.4 Proposition ([7]). If L is normal regular then (Idl(L)j, V) w the Stone~6ech 
compactification of L. 

PROOF : Let M be compact regular, h : M —• L a frame map. Define 

g; M -> IdKL); by 

</(*>) = ; ( V i f c ( c ) ( c x * ) | 
\ldl(L) / 

Then 

\Jg(b) = y V i k ( c ) ( c x l ) (from Lemma 2.2) 
Idl(L) 

=yyih(c)(c*b) 

= V%)(cx6) 

= fc(V <<*-<*)) 
= h(b) 
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We need to show only that g is a frame map: 

g(0) = j(0), g(e) = L is clear; 

y(*Ad)=j V iHs)(s^b)\Ajl V lh(t)(t^d)\ 
\ld\(L) J \W1(L) / 

= i ( V (l*WAiM0)(^6, *-<<0) 
\Idl(L) / 

= ; f V i*(*A*)(*x&, *x<f)j 
\Idl(L) / 

Cg(6A<x) 

Since g(b A d) C g(b) A g(ci) is clear, we have g(b A d) = g(6) A g(d). To show 
g(b) Vj y(a*) = g(b V d): Obviously g(b) V, g(d) C g(6 V d). Now g(b V d) = 
V i i /~(c)(cX6V<1). 

Take any c X b V a\ By regularity and compactness of J5 we can find 5 X b , t X d 
such that cAsVt. Then c = (c A 5) V (c A t) which implies 

h(c) = h(c A s) V A(c A t) G y(6) V y(<1) C y(6) V, y(d) 

Thus i h(c) C y(6) Vj y(d) and hence y(6 V d) = </(6) V; </(<1). Now suppose {6t} 
is and updirected subset of B. To show y(V^t) £ J (V9(h)) = j(U#(&-))• ket 
£ € gWk) and x V y = e. Then there exists c € V i M5)(5 X V M such that 
cVy = e. Now c € (J iM5)(5-"< V&-) s o t n a t t n e r e exists x x V&i> c < M5)- By 
compactness of 2?, 3 X 6t for some t. Thus c € i^(^) C jf(V i/i(u>)(w X 6t)) = y(6t). 
Hence a?€ j ( I Jg (6 t ) ) a s required. Thus g is a frame homomorphism. 

3. Regular continuous frames. Recall that in any complete lattice L, x << y 
(x is "way below" y) if y < \J Xi implies that x < a:tl V x t2 V • • • V x tn for some 
*i>*2> - > ">in- A complete lattice L is said to be continuous if for each a G L, a = 
V # (s X a). A continuous frame is a distributive continuous lattice, also called a 
locally compact frame (see e.g. [2],[6]). For regular continuous L, x « y if and 
only if x X y and t x* is compact, where | x * = {z € £|z > a:*}. Furthermore 
such a frame has a smallest strong inclusion given by: x <J y if and only if x X y 
and t #* -S compact. This means then that L has a least compactification which 
is the frame conterpart to the Alexandroff one-point compactification of a locally 
compact non-compact Hausdorff space. We then have the following result which is 
just the localic version of Exercise iv 2.7 in [6]. 
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3.1 Proposition. Let L be a regular continuous frame. Let B == {a € L\ 
either | a or | a* w compact}. Then B w a normal base for L and (IBL, V) *5 

tfhe lea-stf compactification of L. 

PROOF : That B is a normal base follows from: 
(i) Let a £ B, 6 6 B . If either } a* or 16* is compact, then t (a A b)* is compact 
and hence a A b £ B . If fa* and 16* are not compact, then | a and 16 are compact. 
Hence f (a A 6) is compact and thus a A 6 £ B. 
(ii) Let a £ B. If fa is compact, then since a < a** we have |a** is compact. Thus 
a* € B . 
(iii) Let a € B , a X c. If f a* is compact then a « c. Since the "way below" 
relation interpolates there exists b £ L such that a « b « c. Now since 6 < < c 
we have b ~< c and 16* is compact. This says b £ B. Thus a -< 6 -< c with 6 € B. 
If, on the other hand, f a is compact, then | c is compact also. Now a -< c implies 
that a* V c = e and hence y cV x(x « a*) = e. Since | c is compact we can find 
x « a* such that cV.r = e. Now x < < a* implies that x -< a* and t.r* is compact. 
Thus a < a** ~< x* X c with #* £ B as required. 
(iv) That B is indeed a base follows from the fact that x « a implies that x £ B. 

• 
To show that 7#X is the least compactification, we show that <& = <. Suppose 

x <B J/. Find c £ B such that x -< c -< y. If | c is compact, then | y is compact and 
hence x <y. If | c * is compact, then c<y and hence x <y. Suppose now that x < y. 
Find a, b £ L such that x < a < b < y. If j a* is compact, then a £ B and we have 
x -< a -< y. Thus x <B y- If T & *s compact, then b £ B and x -< b -< y, so again 
x<By. 

4. Precompact uniform frames. It is well known that every Hausdorff com­
pactification of a Tychonoff space is the Samuel compactification of a uniform space 
with respect to a precompact uniformity. The same is true for compactifications 
of frames as well. In this section we characterize those precompact uniformities on 
a frame whose Samuel compactification is of Fan-Gottesman type. Let us recall 
borne preliminaries on uniform frames which we shall need. Uniform frames were 
introduced in [8], called uniform locales therein; also see [5], [9]. A cover of a frame 
L is a subset ACL such that \J A = e. Denote by Cov(L), the set of all covers 
of L. For A,B £ Cov(L), we write A < B if for each a E A there is a b £ B 
such that a < b. For A,B £ Cov(L), set A A B = {a A b\a £ A, b e B } . Clearly 
A A B G Cov(L). For A € Cov(L), x £ L, let st(x, A) = \J{a £ A\a A x ^ 0}. For 
A,B £ Cov(JL), A is said to star-refine B, written A* <B if {st(a, A)\a £ A} < B. 

4.1 Definition ([9]). Let L be a frame. A non-empty set of covers \x of L is said 
to be a uniformity on L if 

(i) A € fi and A < B ==> B £ \x 
(ii) A£ fi and B £ /x = > A A B £ p 

(iii) For each A £ fi there exists B £ /i such that B* < A 
(iv) For each a £ L, a = \J x (for some A € //, st(x, A) < a) 

(L, fi) is called a uniform frame . 
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As in the classical theory of uniform spaces we say that a non-empty subfamily 
/ / C fi is a uniformity basis for fi if each member of fi is refined by some member 
of fi'. A non-empty subfamily fi" C /i is a uniformity subbasis for fi if the set 
of alll finite meets of members of /z", is a basis for fi. Clearly y! is a basis for 
some uniformity on L if and only if it is a filter basis satisfying (iii) and (iv) above. 
A uniform frame (£, fi) is said to be precompact (or totally bounded) if the finite 
uniform covers form a base for fi. 

We recall the Samuel compactification of a uniform frame as defined by Ba-
naschewski ([3]): 
For a uniform frame (L, fi) define x < y if there is an A € ^ such that st(x, A) < y. 
Then <3 is a strong inclusion on L, as one may verify. The Samuel compactification 
of (L, ji) is defined to be (i2L, V)» where RL consists of all the strongly regular 
ideals (with respect to <) and V : -&--' —• -& is the join map. 

For a frame L let P(L) be the set of all precompact uniformities on L partially 
ordered by inclusion, and as earlier let S(L) and K(L) be the set of all strong 
inclusions and compactifications of L respectively. In [5] it is shown that every 
strong inclusion on L is induced by a unique precompact uniformity: Given «, fiQ = 
{Cj|a, 6 € L, a<i6} where C* = {a*, 6} forms a subbasis for a precompact uniformity 
fi(<) on L. Any uniformity fi on L induces a strong inclusion <(fi) given by: x<(fi)y if 
and only if there is an A € fi such that st(x, A) < y. The maps S(L) —* P(L) given 
by <i *** fi(<), and P(L) —• S(L) given by fi -** <(fi) are clearly order preserving, 
and by the result in [5] stated above are inverses of each other. Thus we have the 
proposition, the second statement of which follows from the first. 

4.2 Proposition. 
(a)S(L)*P(L)~K(L). 
(b) Every compactification of L is the Samuel compactification of L with respect to 
a precompact uniformity. 

4.3 Definition. Let / j b e a precompact uniformity on L. A base B for L is said 
to generate fi if the family of all finite covers of L from B is base for fi. 

We may now prove 

4.4 Proposition. Let (L,fi) be a precompact uniform frame. Then the Samuel 
compactification (RL,V) of(L,fi) is of Fan-Gottesman type if and only if fi pos­
sesses a generating base B which is normal. 

PROOF : (<?=): Assume fi possesses a generating base B which is normal. Let <i 
be the strong inclusion induced by fi and <B the strong inclusion associated with 
B. It suffices to show <i = <?#. Suppose x <y. Then there exists z, x <z <y. Find 
A € fi such that st(x, A) < z. Find finite C C B such that \ / C = e and C < A. 
Let C = {6i, 62 , . . . , 6n}, say. By relabelling, if necessary, let 61,62,... 6* be those 
elements of C for which 6j A x = 0 and 6* + i , . . . , 6n be those for which 6, A x ^ 0. 
Then 

x < 6 * + 1 V . . . V 6 n < ( 6 * + i V - . . V 6 n r 

Now (6*+i V • • • V 6n)** = ( j j + i A . . . A b*J* € B. 
Further x X 6*+i V • V 6n (separating element being bt V • • • V 6*) so that x X 
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( 6 t + i V . . . V &,.)•*. 
We have st(x, C) < z < y so that bk+x V • • • V bn < z < y and hence (bk+i V • • • V 

bn)** ~< y- We have found an element 6 6 B such that x •< b •< y, i.e. x <B y. If on 
the other hand x <B y, then there exists z, x <B z <B y- Thus there exists b,c £ B 
such that H H M c X i / . Then {6*,c} C B , 6* V c = e so that {b*,c} € /i. 
Further st (ar, {6*, c}) = c < y so that x < y. 

(=>): Now assume the Samuel compactification of (_L, /i) is a Fan-Gottesman type 
compactification. Then there exists a normal base B of L such that (js^i V) = : 

(_RL, V)- We show B is a generatingg base for fi. Since ysL = RL, the coresponding 
strong inclusions on L are the same, i.e. <1J3 = <i. Since p is precompact and fj, 
induces <i it is evident from Proposition 4.2 and the remarks preceding it that \i has a 
subbasis \Ch

a = {a*,6}|a< 6}. Take any C\, a<b. Then a<Bb and hence there exists 
c such that a <B C <B b, i.e. there exists &i,&2 € B such that a -<&i-<c-<&2-<6. 
Then {&*,&2} is a cover of L from B which refines C j . This implies every basic 
member, and hence every member of \i is refined by a cover of L from B. ' • 
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