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On the non-4 and locally uniformly non-4 properties, 
and I1 copies in Musielak—Orlicz spaces 

GHASSAN ALHERK 

Abstract. It is proved that a Musielak—Orlicz space L*(fi) over a non-atomic measure is 
locally uniformly non-/^ ' if and only if $ satisfies the A2-condition. Moreover, there are 
given some criteria in order that Musielak—Orlicz space be non-ln as well as in order 
that it contains an isometric copy of I1. These results generalize the results of [1], [2], [4] 
and [8]. 
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1. Introduction. 
At the beginning, let us give some terminology and definitions concerning Mu

sielak—Orlicz spaces and geometry of Banach spaces. In the whole paper, (T, E, /i) 
denotes a positive non-atomic measure space, N denotes the set of all natural num
bers, R denotes the reals, R+ denotes the non-negative reals, XA denotes the char
acteristic function of a set A € E. 

A function $ : T x R —• [0, -|-oo] is said to be a Musielak—Orlicz function if $(£, •) 
is even, convex, vanishing and continuous at zero, left continuous on the whole R+ 
and not identically equal to the 0 function on R for ^-a.e. t € T, and such that 
$(-,u) is a E-measurable function for all u € R. 

A Musielak—Orlicz function $ such that $(ti,u) = #(<2»w) for all 1̂,̂ 2 € T 
and u € R is called an Orlicz function. For a given Musielak—Orlicz function # 
and a measure /*, the Musielak—Orlicz space L*(fi) is defined as the set of all 
equivalence classes of E-measurable functions x from T into R such that I$(\x) = 
fT$(T,\x)dfi < +00 for a certain A > 0 depending on x. If $ is an Orlicz 
function, then L*(\x) is called an Orlicz space (see [11], [12], [13] and [14]). We 
denote by E^(fj) the subspace of L*(fj.) defined as the set of all a: € L*(fJ>) such 
that I$(\x) < +00 for every A > 0. 

A Musielak—Orlicz space L*(fi) equipped with the Luxemburg norm 

||x||* = inf {r > 0 : I** < 1} 
r 

is a Banach space (see [11], [12] and [13]). For any Musielak—Orlicz function 
$, the function $*, complementary to $ in the sense of Young, is defined by the 
formula 

$*(*,u) = sup{|u|v - #(t, t>)} 
v>0 
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for all t € T and u € R. 
We say that a Musielak—Orlicz function $ satisfies the A2-condition if there 

exist a constant k ^ 2, a null set To € £ and a E-measurable non-negative function 
h with fT $( t , /i(t)) cfyt < +00 such that $(t , 2/*) > ifc$(t, u) for any t € T \ T0 and 
u > /i(t) (see [9]). 

Every Musielak—Orlicz function which satisfies the A2 -condition has finite val
ues. 

A normed space (X, || ||) is said to be locally uniformly non-4 (n G N, n > 2) if 
for every X\ € X with ||xi || = 1 there exists S(x\) in the interval (0,1) such that for 
all norm-one elements x 2 , . . . , xn in K, the inequality \\xi ± • • • ± xn | | < n ( l — S(xi)) 
holds for a certain choice of signs ±1 (see [16]). 

A normed space (K, || ||0 is called non-/n (n € N, n ^ 2) if for any norm-one 
element x\,..., xn in X , we have ||a:i ± • • • ± arn|| < n for a certain choice of signs 
± 1 (see [3]). 

Now, we shall give some lemmas which will be used in this paper. 

Lemma 1. (see [4]) The space l°° is not non-ln . 

Lemma 2. (see [8]) The space l°° contains an isometric copy of I1. 

Theorem 3. (see [3]) A normed space (X, || \\) is non4n if and only if it does 

not contain any isometric copy of ln . 

2. Results. 
For a Musielak—Orlicz function $ that has only finite values, define 

g(t) = sup{u € R+ : $(£, •) is linear in the interval [0,u]}; 

obviously , g is a E-measurable function, and g(t) = -foo whenever #( t , •) is linear 
on the whole R+. 

Theorem 4. A Musielak—Orlicz space L*(fi) equipped with the Luxemburg norm 

is non-ln (n € N, n > 2) if and only if: 

a) $ satisfies the ^-condition, 

h) fT*(t,g(t))dp<n. 

PROOF : Sufficiency. Let | |xi | |* = ••• = ||a;n||* = 1. In virtue of the A2-
condition, we get I*(xi) = • • • = I f (x n ) = 1 (see [7]). Now, we shall prove that for 
all u i , . . . , u n € R and fi-a.e. t € T, we have 

w £ Ф(ť,«.) > Цt,g(t)) implies Ф (t,«-=-----•)) < i J2Ф(ť,щ), 
1 = 1 ^ ' tsвl 

for a certain choice of signs ± 1 . For this purpose we shall consider two cases: 
I. max |ui | > g(t). For the choice of signs ± 1 such that 

| u ! ± - - - ± u n | < max |ti<|, 
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we get 

^ (x m ± - - ± u n \ ^ ^ (x max |u , | \ ^(\^tx , A 

1 1 n 

= - max $(t, u») < - Y] #(t, u,). 
n n *—* 

t= i 

II. max|u»| ^ fif(t). Then at least two numbers among $(t,tii) i = l , . . . , n are 
positive. In the opposite case, we have J^I-si ^K*>M«) = $(t,u*) ^ $(*>#(*))> where 
1 < k < n, which contradicts to the assumption in condition (*). Thus, we get 

max $ ( t , u , ) / ^ ] $ ( t , u t ) < 1. 
' «=i 

For a certain choice of signs ±1, we have |ui ± • • • ± u n | < maxi^,^n |u»|. Therefore, 

.,, (x u1±--±un\ ^ ^(x max|u»|\ 1 
$ U \ < $ It, - J = - $ ( t , max |u,|) = 

1 1 
= - max #(t,u,) < - V"$(t ,u , ) . 

n n *—f 
•=i 

For this choice of signs ±1 , combining the cases I and II, we get (*). Define 

A = |* € T : £•(*,*<(*)) > •(MO) J • 
Then, in virtue of (*), we have 

. . .4-*. t*\\ i JL 
.(*)) 

for all t € A and a certain choice of sign ±1 . Therefore, 

v ' i=-l 

E.(..síû±řiыa)<çiè«(«.«*»-
±1 V ' 1=1 

Integrating this inequality on both sides over .A, we get 
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Hence, we obtain 

_-. _ g,, (__i_____>) _ r^ p,M _ p . ( a i ^ ) 

>_^£,,/J0_^(______±_^). 
Hence, in virtue of the previous inequality, we get 

E / # ( £ _ ± _ l _ ± f . ) < 2 - i . 

±1 
Then, for a certain choice of signs dbl, we have 

íxi ±--±xn\ 
< 1 . 

Thus, in virtue of the A2~condition, it follows that 

| |£L±Hl±£»|k < ! 
n 

for a certain choice of signs ± 1 . The proof of sufficiency is finished. 
Necessity. If $ does not satisfy the A2-condition, then L*(fj.) contains an isomet

ric copy of /°° (see [5], [6]), so L*(fi) is not non- /„ (see Lemma 1). 
Now, assume that $ satisfies the A2-condition and the condition (b) does not 

hold, i.e. fT$(t,g(t))dfj, > n . In virtue of the A2-condition, $(t, •) is continuous 
for /i-a.e, t € T. If g(t) < +oo for /z-a.e. t € T, then there are pairwise disjoint sets 
A\, A2 J • • • > -4n € E such that 

/ $(*,<?(*))d/t = . - . = / $(t ,g(0)tf> = l 
JA_ J_4n 

Define x, = gx>u f° r t = 1,2, . . . , n. We have /$(£,) = 1, and 

'.(/^r^XXSK t«-)-» 
v 7 t = l 1=1 

for any choice of signs dbl. Thus, we have 
..Xi±-"±Xti • = 1 

n 
for any choice of signs ± 1 . It means that L*(t*) is not non-/n . 

If g(t) = +oo for t € A, where A G E and p(A) > 0, then $(t,u) = P(t)\u\ for 
every t £ A and u € -R+, where P is a E-measurable function positive on A. Define 
on E fl A a new non-atomic measure v by 

v(B) = / P(tO dfi (VB € E fl A). 
JB 

Then £*( / i ,A ) = .L1(i/,A), and therefore L*(p) is not non-41^ (see [4]). The proof 
is finished. • 

Now, we shall give a criterion in order that a Musielak—Orlicz space L*(n) 
contains an isometric copy of Z1. 
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Theorem 5. A Musielak—Orlicz space L*(ft) equipped with the Luxemburg norm 
contains an isometric copy of I1 if and only if: 

c) # does not satisfy the A2~conditionf or 
d) I$(g) = +00, where g is the function defined before Theorem _/. 

PROOF : Sufficiency. If $ does not satisfy the A2-condition, then L*(fi) contains 
an isometric copy of /°° (see [5], [6]) and, in view of Lemma 2, it contains an 
isometric copy of ll. Now, assume that $ satisfies condition (d) and (g(t) < -f-00 
for fi-a.e. t € T. We can assume that $ satisfies the A2-condition. The measure v^ 
defined on £ by the formula 

v^A) = h(gXA) 

is non-atomic and infinite. 
Therefore, there exists a sequence (Ak)^Lt of pairwise disjoint sets in £ such that 

I$(gXAk)
 = 1 f° r every h € N.Denote ak = gXAk and define an operator P from l1 

into L*(fi) by 
00 

Py = Y^Ckak Wy^Mei1)-
fc=l 

P is linear and it is easily seen that Py € E*(n) for any y € J1. In fact, taking into 
account that $(t, •) is linear on the interval [0, g(t)], we get $(£, ag(t) = |a|$(£, g(t)) 
for every |a | < 1. Given A > 0, choose no € N in such a manner that A|c*| < 1 for 
n^ no. We have 

n o —1 . 00 * 

h(XPy)=J2 $(t,Xckak(t))dfi+J2 *(*>*Ckak(t))diJi 
*=1 jA" k=n0

JAk 

n 0 — 1 M 0 0 A 

= Y^ / *Mw»*(0)<^+ £ A|c*| / »(t,afc(t))df* 
fc=l ^ * = n 0

 JA* 

n0—1 - 00 
= £ / $(*,Ac*a*(t))a> + A ]T |ojfc| < +00. 

* = 1 ' A * * = n 0 

Now, we shall prove that P is an isometry. We have 

M&)-K^)*-§Hs£)* 

Hence, 
Py = l,i.e. | |Py | | Ф = ||y||,.. 

ф 
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Assume now that g(t) = -f oo for * € A, where A € £ and p(A) > 0. Then 
L*(n,A) = Lx(v, A), where v is defined as in the proof of Theorem 4. Since 
Lx(v, A) contains an isometric copy of I1 (see [8]), L*(fx, A) contains an isometric 
copy of I1. 

Necessity. Assume that none of the conditions (c) and (d) is satisfied. This means 
that $ satisfies the A2-condition and fT$(t,g(t))dfi < -f-oo. Therefore, there is 
k € N,k ^ 2, such that fT$(t,g(t))dfi < k. In view of Theorem 4, L*(n) is non-

ln for all n > k, n € N. In virtue of Theorem 3, L*(p) contains no isometric copy 
of I1. The proof is finished. • 

Theorem 6. Let $ be a Musielak—Orlicz function such that $(t, •) is linear in 
no neighbourhood ofO in R+ for fi-a.e. t € T. Then the Musielak—Orlicz space 
L*(fi) equipped with the Luxemburg norm is locally uniformly non-ln if and only 
if $ satisfies the ^-condition. 

PROOF : Sufficiency. Let ||.ri||* = ••• = ||:rn||* = 1. Then, in virtue of the A2-
condition, we have J*(xi) = • • • = I*(xn) = 1 (see [7]). Let c > 0 be such that the 
set 

AH = {t € T : c""1 < $(t,xi(t)) ^ c] 

satisfies the condition I^(x\\At) ^ J. Let m > 0 be such that ~ < s(n-i)> an<^ 
define 

Ai = {t € T : $(t,Xi(t)) < m } fori = 2 , . . . , n 

we have 

Thus, 

Hence, we get 

mn(T\Ai) < I*(XÍ\T\AÍ) < 1 -

K T \ Л , ) < - fort = 2,...,n. 
m 

c 1 
I*(*l*At\Ai) < c/i(Ai \ Ai) < — < m 8(n - 1 ) 

Denoting D = f£L2 -̂> w « have 

7 
< Iф(xi\Лl) = Щxi\Al\D) + Iф(xг\D) 

= J * ( x i AuL(At\Ať)) + MXI^D) 

1 
- 8 ( n ~ l ) 

whence I*(x\\D) ^ í* Defíne 

( n - l ) + I*(x1\D), 

^^Wł-*^*1'-1^}-
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In virtue of the assumption that $(£, •) is linear in no neighbourhood of 0 in -R+, we 
get 0 < P(t) < 1 for /i-a.e. t € D. Hence, we have #(t, *) < ^p-^(t,u) for /*-a.e. 
t £ D, and all u satisfying #(t, u) £ [c""1,m]. Define 

Bk = íteD: P(t) < 1 - ì J , 

By E-measurability of P, it follows that Bk £ S for k = 1,2,. . . , . There is / € N 
such that I^(xiXBi) ^ §* -^eno^e <r = 1 — j and £ = B\. Now, we shall prove that 
for every t £ -B, we have 

(„> g , ( l / ,C) ± ; ± M0- ) ,^ i i l ± £ |^ i | ( , ) ) 

For at least one choice of signs ±1 , such that \x\(t)±- • .±xn(t)\ < m a x ^ ^ n !-Vt(OI> 
we have 
(!) < ^ « i ( Q - - - ± « . ( « ) \ < ^ ^ » » u « | , < ( « ) | \ < 

n 

-$(<,max |x.(*)|) = - max$( . , x,(*)) < - V ) $(*, x., (*)), 
n n n r~-/ 

1=1 

for every t £ B. For the remaining 211""1 — 1 choice of signs ±l ,by the convexity of 
$, we have 

(2) # / x . ( « ) - - ± . - . . ( « ) ) ^ I J 2 « ( t , x . ( t ) ) , for every t € B. 

Combining (1) and (2), we get (**). Integrating the inequality (**) both-sides over 
B, we get 

!>n—1 

Hence, we obtain 

y ^ r {(x1±...±Xn)XB\ ^ 2 " - 1 - l + p r - ^ r , 
2 > ( n ) < n L1*^**)* 
±i v ' t=i 

btain 

.^t«^-g*(---i---) 
o n - 1 ___. 

2 n - 1 J-1-, 2"""1 — 1 + a * ^ 
S* - j j - X. J*(x»Xa) - 22h(xiXB) 

i = i ť=i 
- n -j 

= -—^y\h(^iXB) > ——h(*iXB) 
n f—' n 

1=1 

>, - - » 
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Thus, we have 

Y,I*({Xi±-n
±Xn))^-r, = 2"-\l-q), 

where q = r//2n~1 and it depends only on x\. Therefore, for a certain choice of 
signs ± 1 , we get 

u(Xl±-n
±x»)<i-q. 

In virtue of the A2 -condition, we have 

ir *;'**•" 11* <i-/^ 
for a certain choice of signs ± 1 , where 0 is a function from (0,1) into (0,1) such 
that ||a:|| < 1 — ft(q)<, whenever I$(x) ^ 1 — q (see [1]). 

Necessity. If $ does not satisfy the A2-condition, then L*(fi) contains an isomet

ric copy of /°° (see [5], [6]). Therefore, in view of Lemma 1, L*(/i) is not locally 

uniformly non-In • The proof of the Theorem 6 is finished. • 

REFERENCES 

1] Bombal F., On l\ sub spaces of Orlicz vector-valued function spaces, Math. Proc. Comb. 
Phil. Soc. 101, 107 (1987), 107-112. 

2] Fuentes F. and Hernandez F.L., On weighted Orlicz sequence spaces and their subspaces,, 
Rocky Mount. Math. J. 18, 3 (1988), 585-599. 

3] Grzaslewicz R., Hudzik H. and Orlicz W., Uniformly non-ln ' property in some normed spa
ces, Bull. Acad. Polon. Sci. Math. 34, 3-4 (1986), 161-171. 

4] Hudzik H., Locally uniformly non-ln ' Orlicz spaces, Proceed, of the 13th Winter School 
on Abstract Analysis, Srni, January 20-27, 1985, Supplemento ai Rendiconti del Circolo 
Matematico di Palermo Ser. I I , num. 10 (1985), 49-56. 

5] Hudzik H., Uniform convexity of Musielak—Orlicz spaces with Luxemburg's norm, Com-
mentationes Math. 23 (1983), 21-32. 

'6] Hudzik H., On some equivalent conditions in Musielak—Orlicz spaces, Commentationes 
Math. 24 (1984), 57-64. 

7] Hudzik H., Strict convexity of Musielak—Orlicz spaces with Luxemburg's norm, Bull. Acad. 
Polon. Sci. Math. 29, 5-6 (1981), 235-247. 

8] Hudzik H., Orlicz, spaces containing a copy of Ll, Math. Japonica. 
9] Hudzik H. and Kaminska A., On uniformly convexifiable and B-convex Musielak—Orlicz 

spaces, Commentationes Math. 25 (1985), 59-75. 
[10] Hudzik H., Kaminska A., Kurc W., Uniformly non-rn ' Musielak—Orlicz spaces, Bull. Acad. 

Polon. Sci. Math. 35, 7-8 (1987), 441-448. 
[11] Krasnoselski M.A. and Ruticki Ia.B., Convex functions and Orlicz spaces, Groningen 1961 

(translation). 
[12] Luxemburg W.A.J., Banach function spaces, Thesis, Delft 1955. 
[13] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., Springer-Verlag, 

1034 (1983) . 



On the non-/n ' and locally uniformly non-/« ' properties, and I1 copies . . . 4 4 3 

[14] Musielak J., Orlicz W., On modular spaces, Studia Math . 18 (1959), 49-65. 
[15] Milnes H.W., Convexity of Orlicz spaces, Pacific J . Math . (1957), 1451-1486. 
[16] Schaffer J .J . , Geometry of spheres in normed spaces, Lecture Notes in Math. , Springer-Ver-

lag, 20 (1976) . 

University of Aleppo, Faculty of Sciences, Department of Mathematics, Aleppo, Syria 
Insti tute of Mathematics, A. Mickiewicz University, 60-769 Poznan, Poland 

(Received November 9,1989) 


		webmaster@dml.cz
	2012-04-28T19:24:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




