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On measures of noncompactness in general 
topological vector spaces 

LOTHAR KANIOK 

Abstract. This paper presents some examples of v>-measures of noncompactness and some 
fixed point theorems for multivalued mappings in general topological vector spaces. An ex
ample of a (y>, 7)-condensing mapping in a general topological vector space which has a fixed 
point is given. 

Keywords: Fixed point, measure of noncompactness, condensing mapping, topological vec
tor space 

Classification: 47H10 

1. In t roduc t ion . 
In the fixed point theory in locally convex spaces, the invariability of the formation 

of the convex hull of a measure of noncompactness is of great importance. But the 
known nontrivial measures of noncompactness ([1], [2], [9], [10]) in locally convex 
spaces are not measures of noncompactness in nonlocally convex topological vector 
spaces, since we have 7(coM) / 7(M), in general. In [3], [4], [5], [6] and [7] 
Halm and Hadzic proved that for some mappings <p : [0, oo) — [0, oo) the inequality 
7(coM) < v?(7(M)) on special sets of Zima's type ([5]) in paranormed spaces is 
true, where 7 is the well-known Kuratowski's or the inner HausdorfFs measure of 
noncompactness. To this, Hadzic introduced in [5] the notion of the </?-measure of 
noncompactness. We shall give some examples for </?-measures of noncompactness 
on a set of Zima's type in a general topological vector space. 

Using this result, we obtain further fixed point theorems for multivalued mappings 
([5], [6], [7]). Finally, we shall give a nontrivial example of a (<p, 7)-condensing 
mapping in a general topological vector space which has a fixed point. In this 
paper, every topological vector space will be assumed to be Hausdorff and real. 

Let E be B, topological vector space and K C E. By il(£?) we denote a funda
mental system of circled, closed neighbourhoods of zero in E, by $u the set of all 
nonnegative functions on tt(E) with the natural order and by pu the Minkowski 
functional of U € ii(E). Moreover, we denote by K,coK,coK and SK the closed 
hull, the convex hull, the closed convex hull and the boundary of K. We de
fine 2K := {M C K : M / 0},6(K) := {M € 2K : M is bounded },cc(K) := 
{M € 2K : M is closed in K, M is convex} and fucc(jEJ) := {K C E : K = 
U t € / K i , I is finite,K, € cc(JEJ) for all i € / } . 

K is said to be admissible, if for every compact subset M of K and every neigh
bourhood U of zero in E, there exists a continuous mapping Tu : M —> K such 
that 6imTu(M)lin < 00 and x - Tu (x) € U(x £ M). 

The set K will be called locally convex ([8]), iff for any x € K there exists in K 
a base of neighbourhoods U(x) of x with U(x) = W(x) H K and W(x) is a convex 
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subset of E. Jerofsky proved that every locally convex set K € incc(E) is admissible 
([8, Satz 1.5.3.]). 

We say that K is starshaped. relative to some u € K. iff tx -f (1 — t)u E K for all 
x € K and alU € [0,1]. 

Finally, K € fucc(.E) is said to be pseudoconvex ([8]), if there is a finite dimen
sional subspace EQ of K, such that for all finite dimensional subspaces E' D Ko> the 
set K 0 E' is a retract of E'. Especially, K is pseudoconvex, if K is starshaped, 
relative to some u € K and K € fucc(K) ([7]). 

2. ^-measures of noncompac tness in topological vector spaces. 
Let E be a topological vector space, K € 2^, M € b(coK) and (7 6 H(K). Let us 

define: 

n 

a (M, U) := inf {a > 0 : There exist xt,..., xn e E such that M C \J(Xi + aC1)}, 
t = l 

n 

0(M, 10 := inf {a > 0 : There exist X\,..., xn € M such that M C ( J (a,; + aU)}, 
t'=i 

n 

X(M, U) := inf {a > 0 : There exist Di,..., Dn C E such that M C ( J Di 
«=i 

and Di - Di C aU (i € { l , . . . , n } ) } 

and 

J(M, (7) •== sup{a > 0 : M contains a countably infinite set {xn : n 6 N} 

with Xi —XktfiaU for i ^ k) 

(sup 0 == 0, by definition). 
By [7ii(-^)](^7) := y(M,U) there is defined a mapping 7a : 6(coK) —> Su for 
7 € {a,0>X,«O-

If (Ei || • ||) is a normed space, M a bounded subset of E and U := {x € E : 
\\x\\ < l}> then the well-known measures of noncompactness — the HausdorfFs, the 
Kuratowski's and the Istratescu's measure of noncompactness — of the set M are 
defined by 7 ( M , U) for 7 € {a, /?, x, / } ([1], [2], [9], [10]). As [1, Proposition 1] the 
following lemma shows that an, /?u, xn and Ju are, in a sense, all equivalent. 

Lemma 1. Let E be a topological vector space, K € 2E, U € il(j£), V € il(-£7) anc? 
V + V C IT. Tfcen, for every M € 6(coK) : a(M,U) < P(M,U) < J(M,U) < 
X(M1U)<a(M1V). 

PROOF : ([1, p. 404]) The first inequality is easy. Let a > J(M,U). We choose a 
maximal family of elements x\,..., xn € M such that Xi — Xk $ aU for i 7-- k. Then 
M C U L i ^ + a t 0 a114 therefore /?(M, II) < J(M, U). 
Let us suppose that J(M,U) > a > x(M,U). Then there are Di,...,Dm C E 
such that M C U;Li ^ i ^ d Di~ Dj --- a C / 0 ' € {-•»•-•»"»})• Moreover, there is 
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a countably infinite subset {xn : n G N} of M with X{ — Xk £ aU for i =̂  k. At least 
one of Dj's contains an infinite number of elements xni G {xn : n G N} . Hence there 
are xnnxnk G {xn : n € N} with a:n. — #nj. $ at/ and xn. — a;njk € Dj — Dj C all 
for some j . This is a contradiction. Therefore J(M, Ll) < x(M, 17). 
Let a (M, V) < a. Then there exist xx,...,xn € E, such that M C Ur=i(x- + aV)-
Put A := Xi + aV. Then Dt - D> C a(V + V ) C a [ / ( i € { 1 , . . . ,n}) and M C 
UiLi &%. This means that x(M, II) < a (M, V). The proposition is proved. • 

Now we shall state some properties of Ju. Most of them are well-known for the 
Istratescu's measure of noncompactness([l]) in normed spaces. 

Proposition 1. Let E be a topological vector space, II, V € tt(E), V + V C U, 
K G 2 E , M , N € b(coK) and s, t > 0. Then 

(1) J(MUN,ll) = max{J(M,tI) ,J(N , tI)}7 

(2) N C M => J(N, II) < J(M, U), 
(3) M + N G 6(coK) => J(M + N,U)< J(M, V) + J(N,V), 
(4) sM G 6(co-^) ± J(*M, tU) = s-t~l J(M, II), 
(5) J(M,II) = J(M,II), 
(6) Jic(M) = 0 iff M is precompact. 

PROOF : (1) The inequality max{J(M, II), J(N, II)} < J(M U N, II) follows from 
M , N C M U N and from the definition of J. Let 0 < a < J(M U N,U). Then 
there is a countably infinite set {xn : n G N} C M U N with Xj — x/k ^ aU for 
t ^ k. The set {xn : n G N} contains an infinite number of elements of M or 
of N. Hence there is J(M, U) > a or J(N, II) > a. So we obtain the inequality 
max{J(M, U), J(N, II)} > J(M U N, II), too. 

(2) follows from M = N U (M \ N) and (1). 
(3) Suppose that J(M + N, U) > J(M, V) + J(N, V). Without loss of generality, 

we may assume that J(N, V) < J(M, V). We choose a > 0 with J(M, V) < a < 
J(M + N, U). Then there is a countably infinite set {zn = xn + yn : xn G M, yn G 
N, n G N} such that z; - ^ £ aC7 for i y- k. Since a > J(M, V), there is an infinite 
subset {xnj : j G N} of {arn : n G N} with arn. - xnk G aV for i ^ k. Then there 
must be yn. - xnk £ aV for t ^ k, where yny = znj - arn/. G N(i G N). Therefore 
J(N, V) > a. It is contradictory to J(N, V) < J(M, V) < a. So (3) is true. 

The properties (4) and (5) can be established easily. 
(6) Let a > 0 and M precompact. Then there are x i , . . . , a ; n G M such that 

M C UILi(arf + a-V). Let M0 be an arbitrary infinite subset of M . At least one of 
the sets Xi + aV contains an infinite number of elements of Mo- Hence there are 
*,y G M 0 ,x 7- y, such that x-y G a(V + V) C alI. Therefore J(M,II) = 0. If 
J(M, £/) = 0, then there are a?i,... ,arn G M such that M C Ut-L^^- + ^ ) - Prom 
this, the assertion (6) follows. Thus, the proposition is proved. • 

Remark. The mappings an and xu satisfy also the properties (1) to (6), /3n only 
(3), (4), (5) and (6), in general ([1, p. 404]). In [5], Hadzic introduced the following 
notion. 

Definition 1. Let E be a topological vector space, K G 2E,A a partially ordered 
set with the partial ordering <,(p : A —> A and 9Jt a system of subsets of coK such 
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that: 

M € an -> (M € an,coM ewi,Mu{u}e m(u e K),N G 9tf(N c M)). 

Let 7 be a mapping of 9Jt into A. The mapping 7 is said to be a (^-measure of non-
compactness on K« iff the following conditions are satisfied: 

(1) 7 ( M ) = 7(MU{w}) = 7 ( M ) > 7 ( N ) , (M G 9K,N C M,u G K), 

(2) 7(coM)<<^(7(M)) , ( M 6 9K). 

Remark. Let c be a real number with c > 1. If <p(t) = c-t(t G A), then 7 is said 
to be a c-measure of noncompactness on K ([7]). For c = 1, the mapping 7 will be 
called a measure of noncompactness on K. 

Definition 2 ([5]). Let E be a topological vector space and K G 2E. The set K 
is said to be of Zima's type, iff for every U G ii(E) there exists V € ii(E) such that 
co(V fl (K - K)) C U. 

Some examples of the sets of Zima's type in paranormed spaces ([3, p. 34]) can 
be found in [3], [4], [5], [6], [7]. Let (E,p) be a paranormed space. It is well-
known that E is a metrizable topological vector space in which the topology is 
introduced by the family 0 = { v r : r > O } o f neighbourhoods of zero in E, where 
Vr := {x G E : p(x) < r } . Let K € 2E and <p : (0,00) -> (0,00). The set K is said 
to be of Z r-tvpe. iff, for every r > 0, co(Vr fl (K - K)) C Vv(r) ([5]). We say that 
K satisfies the Zima condition (with the constant r) , iff there exists r > 0 such that 
p(tx) < rtp(x) for all t G [0,1] and ail x G K - K ([3]). 

It is clear that a set is of Z^-type, if it satisfies the Zima condition. Moreover, 
every set which is of Z^-type, is of Zima's type also, if the mapping <p is such that 
i n f r > 0 ^ ( r ) = 0([5]). 

Lemma 2. Let E be a topological vector space and K G b(E) which is of Zima's 
type and starshaped, relative to some u G K. Then, for every U G ii(K) there is 
W € U(E) such that 

/3(coM,U)<l3(M,W) ( M C K ) . 

PROOF : If M is precompact, then co M is also precompact, because K is of Zima's 
type ([3]). It is clear that in this case the assertion is true. 

Now, we suppose that M is not precompact. We choose V € tt(E), W € iX(E) 
such that V + V C U, W C V,co(W f) (K - K) C V and /5(M, W) > 0. This is 
possible, because K is of Zima's type and M is not precompact. 

Without loss of generality, we may assume that fi(M, W) > 1. Otherwise, we 
choose c > 1 with c/3(M, W) = p(M,c~lW) > 1 and replace W by c"1 W. 

Let a > P(M, W). Then there exist xt,..., xm € M such that M C U£.i(*» + 
aW). 

Let y € coM. Then there are yk € M,Ck > 0(k € { 1 , . . . ,n}) with ^ ^ = 1 c* = 
1, so that y = YH=i ckVk- Since yk G M (k € { l , . . . , n } ) , there exists Xik 
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(ik € { l , . . . , r a} ) such that yk — Xik G aW. We put z := J2k=i ckXik. Then 
z € co{xi,...,xm} and y - z = E L i c*(y* ~ xik) € co(aW fl (K - K)) C aV, 
because K — K is starshaped and a > 1. 

From the precompactness of the set co{a?i,... , x m } it follows that there exists 
{zi,...,zp} C c o { * i , . . . , * m } such that co{a?i,...,a?m} C \Jj=i(zj + aV)-

Hence, there is j € { 1 , . . . ,p} such that y — Zj ~y-~z + z — Zj € a(V + V) £ aU. 
Therefore, we have fi(co M,U)<a and finally fi(co M, U) < fi(M, W). • 

From Lemma 1 and Lemma 2 we obtain the 

Corollary. Let 7 € {oc,x> J} and assume that the hypotheses of Lemma 2 are 
satisfied. Then, for every U £ iX(E) there exists W € &(E) such that 

7(coM, U) < 7(M, W) for all M C K. 

Let K be a nonempty bounded and convex subset of a paranormed space. Hadzic 
proved in [5] that the inner HausdorfTs and the KuratowskPs measure of non-
compactness satisfy the condition (2) from Definition 1, if K is of Z^-type and 
(p : [0, oo) —• [0, oo) is a right continuous and a continuous mapping, respectively. 
Special results of this kind can be found in [4], [6] and [7], Using Lemma 2 and 
the Corollary, we shall prove an analogous statement in general topological vector 
spaces. 

Proposition 2. Let E be a topological vector space,K € b(E) which is of Zima's 
type and starshaped, relative to some u € K, and 711 € {<2.u,Xib«Iu}- Then there is 
a mapping (p* : $u —• Su such that 7^ is a ip*-measure of noncompactness on K. 

PROOF : From Proposition 1 and the remark following it, it follows that 70 satisfies 
the condition (1) of Definition 1, 

We prove (2) of Definition 1 . For every U € iX(E), we can choose some Wu € il(K) 
(fixed) such that y(co M,U) < y(M,Wu) for every M C K (Lemma 2, Corollary). 
By v(U) := WV(U G 0(E)), we define a mapping v : tt(E) -> ii(E). Then we have 
[7a(M) o v)(U) = [<ya(M))(Wu) (U e il(K), M C K). 
Put ip*(f) := f ov for every / € 5a- Then (p* is a mapping of da into 5n. Since 

ba(co M))(U) = 7(coM, 10 < i(M,Wv) = ha(M))(Wu) = l<P*(iii(M))](U) 

for every U € i*(K) a n < i every M C K, we obtain 

7u(co M) < <p*(>yu(M)) (M C K). 

Remark. Of course fin satisfies (2) of Definition 1 relative to (p*, too. However fin 
is not, in general, a y?*-measure of noncompactness ([1, p. 404]). 

3. Fixed point theorems. 
Let E be a topological vector space, MCE and K C E. We consider multivalued 

mappings of the kind F : M —> 2K. A point x € M will be called a fixed point, 

483 
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iff as € F(x). F : M —*• 2K is said to be upper semicontinuous. iff for every closed 
subset A of K the set F~l(A) := {x € M : F(x) fl A ^ 0} is closed in M. We 
say that F ; M —> 2 ^ is compact, iff F is upper semicontinuous and F(M) is 
compact. Finally, a mapping G : M -* K will be called a generalized contraction 
([9, Definition 2.3]), iff for every U G &(E) there exists a real function qu with 
0 < sup{(^[//[a, b])(c) : c € [a, 6]} < 1 (0 < a < 6 < oo) such that we have 

pu(G(x) - G(y)) < qu(pu(x - y))pu(x - y) 

for all x € M, y € M. 

Definition 3 ([4, Definition 6]). Let £? be a topological vector space, M G 2E, K € 
2s? M £ K> -^ : M -* ccK an upper semicontinuous mapping, <p : A —• A (see Defi
nition 1) and 7 a (^-measure of noncompactness on K. We call F a (y-7)- condensing 
mapping, iff for every N C M the following implication holds: 

7(N) < v?(7(F(N))) => F(N) is compact. 

Remark. H ip(t) = ct(t £ A), where c > 1, then F is said to be 7-pseudo-con-
densing ([6, Definition 5]). Using a theorem of Jefrosky ([8, Folgerung 4.3.5]), the 
following theorem can be proved in the same way as Theorem 1 from [5]. 

T h e o r e m 1. Let E be a topological vector space and K an admissible subset of 
E with K € fucc(£7) which is starshaped, relative to some u € K. Let U C K be 
an in K closed neighbourhood of u, 7 a ip-measure of noncompactness on K and 
F :U —> cc(K) a (<p,y)-condensing mapping with 

x $ tF(x) + (1 - t)u (x€6KU,t€ (0.1)). 

Then F has a fixed point. 

Hadzic stated in [5] a special variant of Theorem 1 for a convex subset K of 
a paranormed space, where K is a special set of Zima's type (Corollary to Theorem 
1 from [5]). The following Corollary is a generalization of this result. Since every set 
of Zima's type is an admissible set, we obtain (using Proposition 2 to Theorem 1) 
the following 

Corollary. Let E be a topological vector space and K € fucc(l£) fl b(E) which is 
of Zima 's type and starshaped, relative to some u € K. Let U C K be an in K 
closed neigbourhood of u, 7 € {ot&iXUiJu}} <£* the mapping defined in the proof of 
Proposition 2 and F ;U —> cc(K) a (tp*,7)-condensing mapping with 

x i tF(x) + (1 - t)u (x € SKUy t € (0,1)). 

Then F has a fixed point. 

The next statement can be proved in the same way as Theorem 2(5) from [7]. 
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Theorem 2. Let E be a topological vector space, K € 2E a pseudoconvex and 
locally convex set, 7 a (p-measure of noncompactness on K and F : K —* cc(K) 
a (<p,y)-condensing mapping. Then there exists x £ K such that x € F(x). 

Corollary. Let E be a topological vector space, K € b(E) of Zima's type and 
starshaped, relative to some u € K. Let <p* be the mapping constructed in the proof 
of Proposition 2, let 7 € {atf,Xa,Jtf} and F : K -» cc(K) a (<p*,y)-condensing 
mapping. Then F has a fixed point. 

PROOF : Since every set of Zima's type is a locally convex set ([6, Proposition 1]) 
and every starshaped set is pseudoconvex, the assertion follows from Theorem 2 
and Proposition 2. • 

Harm gave nontrivial examples of x-pseudo-condensing mappings in paranormed 
spaces in [6] and [7], where \ *s ^ne m metric spaces well-known Kuratowski's 
measure of noncompactness. Now we shall give an example of a (</>*, Ju)-condensing 
mapping in a general topological vector space. 

Proposition 3 . Let E be a topological vector space, M£2E,Ke2E,MCK and 
coK € b(E). Moreover, letF : M -*2K be a mapping with the following properties: 

(2) Fi : M —» K is a generalized contraction, 
(3) F2 : M - • 2K is compact. 

Then for every U € ii(E), every V € U(E) with V + V C U and for every N CM, 
the inequality 

J(F(N),U) < sup{qv(pv(x - y)): x,y € N} • J(N,V) 

holds. 

PROOF : Suppose that J(Fi(N), V) > a > 0. Then there exists a subset {xn : n € 
IM} of N such that 

Pv(Fi(xi) - Fi(xk)) > a for i ^ k. 

Because N is bounded, we have the estimate 

0 < pV(xi - xk) < sup{pv(x - y): x, y € N} < 00 for all t, k € N. 

Since Fi is a generalized contraction, there is 

a < pV(Fi(xi) - Fi(xk)) < qv(Pv(xi - xk))pv(xi - xk) 

< sup{qv(pv(x - y)) : x, y € N} • pV(xi - xk) for t ^ k. 

This means that 

J(Fi(N), V) < sup{qv(pv(x - y)) : x, y € N} • J(N, V). 

Since F(N) C Fi(N) + F2(N) and F2(N) is compact, now we obtain from Propo
sition 1 

J(F(N),U) < J(Fi(N), V)+J(F2(N), V) < sup{qv(Pv(x-y)) : x , y e N}.J(N, V). 
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Proposition 4. Let E be a quasicomplete topological vector space, K 6 b(E) which 
is of Zima's type and starshaped, relative to some u € K, M € 2K,(p* : Six —* 5u the 
mapping constructed in the proof of Proposition 2 and F : M —> cc(K) a mapping 
with the properties (1), (2), (3) from Proposition S. Moreover, for every U € tt(E), 
every V € ii(E) with V -f V C U and every N C M, <he following conditions are 
satisfied: 

(1) sup{gv(pv(z - y)) : x,y € N} • J(N,V) < sup{qu(pu(x - y)) : a;,y G N} • 
J(N,£0, 

(2) [<pm(Ju(F(N)))](U) < [s*j>{qu(pu(x -y)) : x,y e N}]"1 • J(F(N),U), 
ifJ(F(N),U)>0. 

Then F is a (y>*>> J\x)~condensing mapping. 

Remark. (1) and (2) are conditions on the real functions qu and qy which charac
terize the mapping F\. Especially, (2) can be compared with the properties of the 
contractions in Proposition 4 from [6] and Theorem 3 from [7]. 

Proof of Proposition 4. The mapping 3a is a <£>*-measure of noncompactness on 
K (Proposition 2). Let N C M and 

(i) <P*(MF(N))) > Ju(N) 

We suppose that F(N) is n©t compact. Since E is quasicomplete, there exists 
U G ii(E) such that J(F(N), U) > 0. We choose a neighbourhood V € il(K) with 
V + V C I 7 . From (1), (2) and Proposition 3 we obtain 

J(N u) > suP<^M*-y)):*,yeN}. J(N v) > 
J{N>U) - sup{qu(pu(x - y ) ) : *,y € N} J{N>V) ~ 

> [*Mqu(pu(x - y ) ) - *,y e N}]"1 • J(F(N),u) > 1<P*(MF(N)))](U), 

contradictory to (i). Therefore, F(N) is compact and F is a (<^*,Ja)-condensing 
mapping. • 

REFERENCES 

[1] Danes J., On the Istr&tescu's measure of noncompactness, Bull. Math. Soc. R.S. Roumanie 
16(64) (1972), 403-406. 

[2] Danes J., On densifying and related mappings and their application in nonlinear functional 
analysis, in Theory of Nonlinear Operators, Proceedings of a Summer School 1972, Neuen
dorf, GDR (1974), 15-55. 

[3] Hadzic O., Fixed Point Theory in Topological Vector Spaces, Novi Sad, 1984. 
[4] Hadzic O., Fixed point theorems for multivalued mappings in not necessarily locally convex 

topological vector spaces, Zb. rad. Prir.- mat. fak. Novi Sad, ser. mat. 14,2 (1984). 
[5] Hadzic O., Some properties of measures of noncompactness in paranormed spaces, Proc. of 

the American Math. Soc. 102 (1988), 843-849. 
[6] Hahn S., A fixed point theorem for multivalued condensing mappings in general topological 

vector spaces, Zb. rad. Prir.- mat. fak. Novi Sad, ser. mat. 15 (1985), 97-106. 
[7] Hahn S., Fixpunktsdtze fur limeskompakte mengenwertige Abbildungen in nicht notwendig 

lokaXkonvexen topologischen Vektorrdumen, Comment. Math. Univ. Carolinae 27 (1986), 
189-204. 



On measures of noncompactness in general topological vector spaces 487 

[8] Jerofsky T., Zur Fixpunkttheorie mengenwertiger Abbxldungen, Dissertation A, TU Dresden, 
1983. 

[9] Sadovski B.N., On measures of noncompactness and densifying operators, Probl. Mat. Anal. 
Slozhn. Sistem (Voronezh Gos. Univ.) 2 (1968), 89-119, (in Russian). 

[10] Sadovski B.N., Asymptotically compact and densifying operators, Usp. Mat. Nauk 27 (1972), 
No. 1, 81-146, (in Russian). 

Sektion Mathematik der Padagogischen Hochschule "Karl Friedrich Wilhelm Wander", Wigard-
strasse 17, 8060 Dresden, DDR 

(Received December 15,1989) 


		webmaster@dml.cz
	2012-04-28T19:28:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




