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On evolution inclusions associated with 
time dependent convex subdifferentials* 

NIKOLAOS S. PAPAGEORGIOU 

Abstract. In this paper we study evolution inclusions driven by a time varying convex 
subdifferential and a multivalued perturbation. We have two existence theorems; one for 
nonconvex valued perturbations and the other for convex valued perturbations. Then we 
compare those two solution sets ("relaxation theorem"). Our results extend earlier ones 
by Attouch—Damlamian, Aubin—Cellina, Moreau, Watanabe and Yotsutani. 

Keywords: Convex subdifferential, evolution, maximal monotone operator, demiclosed op­
erator, measurable selector, graph measurability, strong solution, relaxation theorem* weak 
norm 

Classification: 34G20, 47H20 

1. Introduction. 
In this paper we study nonlinear evolution inclusions of the form 

f -x(t) € d<f>(t,x(t)) + F(t,x(t)) a.e.1 
W I x(0) = x0 J 

where </>(-, •) is a normal integrand convex in a:, d<f>(t,x) denotes the convex subdif­
ferential of <t>(t,') at x and F(t, x) is a set valued perturbation. 

Problems of this form have been studied by several authors, because they appear 
in various applications. Moreau [13] studied the case where </>(t,x) = 8x(t)(x) and 
no perturbation is present. Inclusions of that form appear in problems of theoreti­
cal mechanics. The case of a </>(•) independent of t and of a single valued Lipschitz 
in x, perturbation / ( t , x) is treated in the monograph of Brezis[4]. Watanabe[20] 
considered the same problem, but with a time varying ^(*,*)* The problem with 
multivalued perturbation was first considered by Attouch—Damlamian [1]. In their 
work, the integrand <£ is independent of t and the multivalued perturbation has con­
vex values. Their result was extended by Vrabie [18], who instead of the convex 
subdifferential d<j>(x) considers a general m-accretive operator A(x), while the mul­
tivalued perturbation is still convex valued. 

In this paper, using the results of Kenmochi [11] and Yotsutani [21], we extend all 
the above mentioned works. On the one hand we allow <j> to be time dependent and 
on the other hand we consider nonconvex valued perturbations. We also establish 
the existence of solutions for the case when the perturbation is convex valued and 
finally we compare the solution sets of the two problems ("relaxation theorem"). 
An example from control theory is also presented. 

•Research supported by N.S.F. Grant D.M.S. - 8802688 



5 1 8 N .S. Papageorgiou 

2. Preliminaries. 
Let (0 , E) be a measurable space and X a separable Banach. A multifunction 

F : Q, -> 2X \ {0} is said to be "graph measurable", if GrF = {(w,x) £ 9, x X : 
x € F(u)} € E x B(K ) , where B(X) is the Borel cr-field of X. Let /*(•) be a finite 
measure on (ft, E). By S\> we will denote the set of all Bochner integrable selectors 
of F(-), i.e. S\ = {/ € Ll(X) : f(u) € F(w)fi - a.e.}. This set may be empty. It 
is nonempty if and only if F(*) is graph measurable and u> —> inf{||a;|| : x 6 F(w)} 
belongs in L\. 

Let F, Z be Hausdorff topological spaces. A multifunction G : Y —• 2 Z \ {0} is 
said to be upper semicontinuous (u.s.c.)(resp. lower semicontinuous (l.s.c.)) if and 
only if for every U C Z open, G+(U) = {y € Y : G(y) C 17} is open in F (resp. 
G'(U) = {y € F : G(y) VI (7 ^ 0} is open in F ) . If F, Z are first countable, then 
the above definition of lower semicontinuity is equivalent to saying that if yn —> y, 
then G(y) C lim(7(y-T) = {z € £ : z = limzn , zn £ An , n > 1}. When Z is a Banach 
space with the strong topology, we write G(y) Q s — lim(y(y»). Also if .Z is regular 
and G(-) is closed valued, then upper semicontinuity implies that for all yn —» y in 
F,iimG(yn) = {z € Z : z = l imzn^ri! < n2 < • • • < n* < ...} C G(y). When Z is 
a Banach space with the weak topology, then we write that w — limG(yn) Q G(y). 
For details we refer to Delahaye—Denel [6]. 

Let <f> : X —* R = RU{+co}. We say that <j>(-) is proper if it is not identically +oo. 
Assume that <£(•) is proper, convex and l.s.c. (usually denoted by <f> € ro(K ) ) . By 
dom^ we will denote the effective domain of <£(•), i.e. 6\om<j> = {x € X : <j>(x) < oo}. 
Also d<f>(x) = {x* € X* : (x*, y — x) < <f>(y) — <f>(x), y € dom </>} is the subdifferential 
of <j>(-) at x. We say that </>(-) is of compact type if for every A € R, the level set 
{x € X : ||a;||2 + <f>(x) < A} is compact. For more information concerning those 
convex analytic concepts we refer to Laurent [12] and Rockafellar [16]. 

3 . Nonconvex perturbation. 
Let T = [0, b] and H a separable Hilbert space. By a "strong solution" of (*), we 

understand a function x(') € C(T,H) s.t. x(-) is strongly absolutely continuous on 
(0,b),x(t) € dom<£(*,-) a.e. and satisfies - i ( t ) € d<f>(t,x(t)) + f(t) a.e. ,x(0) = x0 

with /(•) € Sp, x,}y Recall that an absolutely continuous function from T into H 
is a.e. strongly differentiable (see for example Diestel—Uhl [7]). 

The following hypothesis on <f>(t,x) will be in effect throughout this work (see 
Yotsutani [21], hypothesis (A)). 
H(</>) :<j>:TxH - • R = R(7{+oo} is a function s.t. 

(1) for every t € T, <f>(t, •) is proper, convex, l.s.c. and of compact type, 
(2) for any positive integer r, there exists a constant Kr > 0, an absolutely 

continuous function gr : T —* R with gr € L&(T) and a function of bounded 
variation hr : T -+ R s.t. if t € T,x € dom^(*, •) with ||z|| < r and s € [*, 6], 
then there exists £ € dom ^(6, *) satisfying 

P - *H < \9r(*) ~ 9r(t)\(<l>(t, X) + Kr)" 

and K«, f ) < # i , x) + \hr(s)\(t(t, x) + A",) 
where a € [0,1] and 0 = 2 if a e [0,1/2] or 0 = 1/1 - a if a € [1/2,1]. 
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This hypothesis on <j>(t, x) is more general than the corresponding ones in Watan-
abe [20] and Kenmochi [11], and was first used by Yotsutani [21]. 

In this section we prove an existence result for (*), for the case where F(t,x) 
is not convex valued. We will need the following hypothesis on the multifunction 
f ( v ) . 
H(F)t :F:TxH -> Pf(H) is a multifunction s.t. 

(1) (t, a:) —• F(t, x) is graph measurable, 
(2) x --»F(t,x) isl.s.c, 
(3) \F(t,x\ = sup{||&|| : h € F(t,x)} < tj>(t) a.e. for all x € X, with 0(.) € L\. 

Theorem 3.1. ijf hypotheses H(<j>)\H(F)\ hold and xQ € dom<£(0,•), tfcen (*) 
admits a strong solution. 

PROOF : Let h(-) € L2(H) s.t. \\h(t)\\ < tp(t) a.e. and consider the evolution 

, , (~x(t)ed</>(t,x(t)) + h(t)*.e. \ 
W* 1 x(0) = xQ J' 

FVom the existence theorem of Yotsutani [21] (p. 626), we know that (*)h has 
a unique strong solution p(/.)(•) 6 C(T,H). Let B(0) = {/* € JS2(-fiT) : \\h(t)\\ < 
tp(t) a.e. } and set W = p(B(%l>)) C C(T,H). We claim that W is compact in 
C(T, H). To this end first we will show that W is equicontinuous. So for every 
t,t' € T,t < t* and every x(>) € W we have: 

\\x(t') - *(«)|| < f \\x(s)\\ ds = J ||X[M'](*)*(*)II ds < 

( f X[t,t<](s)2 dsfl2 • ( f \\x(s)\\2 dsfl2 < (S - tfl2M 
Jo Jo 10 

with M independent of x € W, since B(t/>) is a bounded subset of L2(H)(see 
Yotsutani [21], Lemmata 5.3 and 6.1). Hence, W is indeed an equicontinuous 
subset of C(T, H). Also if t = 0, we get ||x(f)|| < M for all x € W and t' € T. 

Next we will show that for each t € T, W(i) = {x(t) : x(-) € W) is relatively com­
pact in H. From inequality 7.9 of Yotsutani[21] and again since B(t/>) is bounded 
in L2(H), we have for all x(-) € W: 

||x(<)||2 + </>(t,x(t)) < M2 + M!(6+ P | | r v + HtflU + |M|2) + #0,* 0 ) = M2, 

where Mi depends only on ||^||2, ||xo|| and <j>(Q,xo) (see Yotsutani [21]) and || * ||rv 
denotes the total variation norm. So 

W(t) C L(M2) = {x€H: \\x\\2 + <t>(i,x) < M2) 

and the larger set L(M2) is compact, since by hypothesis H(<I>)(1), <f>(t, •) is of com­
pact type for every t € T. Hence for all t € T, W(*) is relatively compact in H. 
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Finally we will show that W is closed in C(T,H). So let {xn}n>i C W and 
assume that xn —> x in C(T, H). By definition we have: 

-xn(t) € d<f>(t,xn(t)) + hn(*) a.e.,a?n(0) = «0 ,^» € B(^)n > 1. 

From inequality of 7.5 of Yotsutani [21], we know that §xn\\2 < M3 for all n > 1. 
Since in the Hilbert space L2(H) bounded sets are sequentially w-compact (Alaoglu 
and Eberlein—Smulian theorems), by passing to a subsequence if necessary, we 

w w _ 

may assume that xn —> y and hn —> h in L2(H). It is clear that y = x. Note 
that from Lemmata 3.2 and 3.4 and inequality 7.8 of Yotsutani [21], we deduce 
that <£(*,#n(.)) € L1 for all n > 1. So from Lemma 4.4. of that paper we get 
that for all n > 1 - xn(-) - hn(>) G dl+(xn(-)), where I+(z) = jQ

b <j>(t,z(t))dt if 
<£(•, £(•)) € X1, -foo otherwise. Recall that the convex subdifferential being maximal 
monotone, is demiclosed (see for example Barbu [3], Proposition 3.5, p. 75). Since 

axw „ 0 

(:rn, —xn — hn) > (x, —x — h) in L2(H) x 1/(H), in the limit as n —• oo we get 
—£(•) — /i(.) € ^I^(x(-)). A new application of Lemma 4.4 of Yotsutani [21] (see also 
proposition 1.1 of Kenmochi [11]), tells us that — x(t) G d<t>(t,x(t))+h(t) a.e.,x(0) = 
XQ, h € B(t/>). So W is closed in C(T,H). Invoking the Arzela—Ascoli theorem, we 
conclude that W is compact in C(T, H). Hence by Mazur's theorem (see Diestel— 
Uhl [7], Theorem 12, p. 51), we have that W = convJV C C(T,H) is compact, 
too. 

Next let G : W -> 2Ll<H> be defined by G(x) = Sl
F(.M.)y Clearly, since F(-,x(*)) 

is closed valued, so is G(-). Also we claim that for all x G W,G(x) ^ 0. To this 
end, consider the map k : T —* T x H defined by k(t) = (£,:r(tf)). Clearly this is 
measurable. Then let 0 : T x H -> T x H be defined by 0(t,y) = (k(t),y), i.e. 
#(•) = (&(•),id(-)). So B(-) is measurable. Now observe that: 

GrF(-,x(-)) = {(t,y) € T x H : (*(<), y) G GrF} 

==>GrF(.,s(.)) = {(<,y) € T x H : 0(*,y) € O F } 

=>GrF( . ,x ( . ) ) = ^ 1 ( G r F ) . 

But by hypothesis H(F)i(l), GrF G H(T) x H(H), while we just saw that $(-, •) is 
measurable. So 0~1(GrF) G B(T) x B(Y). Hence by Aumann's selection theorem 
(see Wagner [19]), we have that F(-,x(-)) admits a measurable selector, which 
because of hypothesis H(F)t(3) belongs in L2(H). Thus G(x) ^ 0 for all x G W. 

Next we will show that G(-) is l.s.c. So let xn —• x in W". Because by hypothesis 
H(F)2(2)F(t,•) is l.s.c. on H, from Theorem 4.1 of [14], we have G(x) C s -
UmG(xn) -=I> (?(•) is l.s.c. Apply Fryszkowski's continuous selection theorem [10] 
to get g : W -> £ * ( # ) continuous s.t. y(x) € G(aO for all x € JV. For *(•) G TV 
consider the following Cauchy problems: 

-Ў(t) € дф(t, y(t)) + g(x)(t) a.e. 

У(0) = x0 
}• 
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From Yotsutani [21], we know that this problem has a unique solution g(#)(-) € 
W. Then W —• W and we claim that it is continuous. So let xn —• x in W. Then 
because of the continuity of the selector g(-), we have g(xn)(-) —• 5f(x)(*) m L2(H). 
Also —yn(-) — g(xn)(-) 6 dl^(yn). Since {t/n}n>i C IV and the latter is compact 

in C(T, H), by passing to a subsequence if necessary, we may assume that yn —• y 
in L2(H). So in the Hmit as n —• oo, we get (y, —y — g(x)) £ Grdl<f> =-=-> — y(t) € 
d(j>(t,x(t)) -f g(x)(<) a.e., y(0) = x0 -=-> y = g(x). So q(-) is indeed continuous on 
W. Apply Schauder's fixed point theorem to get x € W s.t. x = #(£). Clearly this 
x(-) 6 C(T, H) is the desired solution of (*). • 

4. Convex perturbation. 
In this section we prove an existence theorem for the case where the multivalued 

perturbation is convex valued. The hypothesis on F(-, •) is now the following: 
H(F)2 :F:TxH -> Pfc(H) is a multifunction s.t. 

(1) t —> F(t,x) is graph measurable, 
(2) x —• F(t, x) is u.s.c. from H into Hw (here H^, denotes the space H with 

the weak topology), 
(3) \F(t, x)\ < x^(t) a.e. for all x € H and with t/>(-) € Z/.V-

Theorem 4.1 . If hypotheses H(<j>),H(F)2 hold and x0 € dom^(0,-), then (*) 
admits a strong solution. 

PROOF : Again let B(t/>) = {h £ L2(H) : \\h(t)\\ < *j>(t) a.e.} and for h 6 B(t/>) 
consider the following evolution equation: 

(~x(t)ed<t>(t,x(t))-rh(t)*.e. \ 
Wfc I *(0) = *o J 

We know that this has a unique solution p(h)(-) € TV C C(T,H) where W is 
as in the proof of Theorem 3.1. Consider the multifunction L : B(tf)) —• 2Ll^ 
defined by L(h) = ^F(-,p(/»))())- ^et s*(') be simple function s.t. sn(t) —• p(/i)(t) 
a.e.. Since by hypothesis H(F)2(2),F(t,-) is u.s.c. from H into #«,, we have that 
w -limF(t,sn(t)) C F(t,p(h)(t)) a.e.. Hence Theorem 4.2 of [14] tells us that 
w — HmS]^, ^ ( > ) ) C SLfP(h)()y Since for each n > l ,sn(-) is a simple function 
and by hypothesis H(F)2(l)F(-,:r) is graph measurable, t —• F(t,sn(t)) is graph 
measurable and so by Aumann's selection theorem it has measurable selectors which 
by H(K)2(3) belong in L2(H). Also since for every n > 1,5J.(. (>)) C H(^) 
and the latter is to-compact in L2(H), we deduce that w — limSL a ,.\\ ^ 0 ==> 
^F(-,p(h)()) ¥" 0- Hence L(h) ^ 0 for all h € £(V0 and in fact it is easy to check 
that L(h) is closed and convex since F(-,-) is Pfc(H)~valued. Let B(ip)w denote 
B(tp) with the relative L2(H)-topology. We claim that L(-) is u.s.c. from B(tp)w 

into itself. Given that B($)w is sequentially w-compact in L2(H), it suffices to 
show that GrL is sequentially closed in B(il?)w x B(xj))w (see Aubin—Cellina [2] 

and Delahaye—Denel [6]). So let {(hn , fn)}n>i C GrL,(hn,fn) • (h,f) in 
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L2(H) x L2(H). Since for each n > l,p(hn) € W and the latter is compact in 
C(T, H), by passing to a subsequence if necessary, we may assume that p(hn) —> q 
in C(T, H) and as before exploiting the demiclosedness of dl^(-) and the uniqueness 
of the solution of (*)*, we can easily see that q = p(h). Using Theorem 3.1 of [14], we 
have f(t) € convw ~}mF(t,p(hn)(t)) C F(t,p(h)(t)) a.e. ===>/€ -Sj.(.fF(fc)(.)) ==> 
(h,f) € GrL = > £(•) is u.s.c. Apply the Kakutani—KyFan fixed point theorem 
to get h € B(j>) s.t. L(h) = h. Clearly then p(h)(>) € C(T,iT) is the desired strong 
solution of (*). • 

5. Relaxation. 
To the multivalued Cauchy problem (*), we associate the one with convexified 

dynamics, i.e. 

f -x(t) € d<f>(t, x(t)) + ccSvF(t, x(t)) a.e. \ 
(*)c I x(0) = x0 r 

Let S(x0) C C(T,H) be the solution of (*) and Sc(x0) C C(T,H) the solution 
set of (*)c. It is natural to ask how much we increase S(x0~) by convexifying the 
orientor field. We have a nice answer to this question for a large class of evolution 
inclusions that appear often in applications (in particular in control theory). 

For this we will need the following hypotheses. Here Y is a separable Banach 
space 
#(<l)i : g :T x H xY —* H is & map s.t. 

(1) (t, u) —* g(t, x, u) is measurable, 
(2) for every u € U = bounded subset of Y, \\g(t, x',u)- g(t, x, u)\\ < ku(t)\\x' -

x\\ a.e. with ku(') € L\ and x',x € X, 
(3) ||0(*,*,ti)|| < a(t) + b(t)\\u\\ for all x G X, with a(-)-K-) € L\. 

H(U)t : U : T -+ 2 y \ {0} is a graph measurable function s.t. U(t) C V € P«,ifcc(F) 
a.e.. 

Set JF(t,ar) = U{^(*,ar,u) : u € ^(t)}- This will be the orientor field in our 
evolution inclusion (*). Note that because of Aumann's selection theorem and 
hypothesis H(U),S\j ^ 0. Let u £ Sv and define g(t,x) = g(t,x,u(t)). Because 
of hypothesis H(g),g(', •) is measurable in t, Lipschitz in X and ||g(f,x)|| < a(t) + 
b(t)\V\ = %l>(t) a.e., tj>(t) € L\. Then by Theorem 3.1 of the evolution equation 
x(t) € d<f>(t,x(t)) + g(t,x(t)) a.e., a:(0) = x0 has a solution and so S(a?o) ?-= 0-
Furthermore since clearly S(x0) C Sc(x0), we also have 5c(xo) ^ 0. 

Theorem 5.1. If hypotheses H(<j>),H(g)1,H(U)1 hold and x0 € dom<£(0,-), then 

0 ^ 5(^o) = Sc(x0) both closures taken in C(T,H). 

PROOF : Let x(-) € Sc(x0) and consider F(t) = F(t,a;(t)). We have: 

GrF = {(t, z)£TxH:ze F(t) = F(t, x(t))} 

= {(t, z)€TxH :z = g(t, x(t), u) for some u 6 «7(t)> 

= proj T x H [ { (M,u) € T x H x V : z = ^(t, x, u)} 0 r(Grl1 x fT)] 
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where r:TxYxH-+TxHxY is defined by r(t, u,z) = (t, z, u). Since U(-) is 
graph measurable, r(GrU x H) € B(T) x B(H) x B(V), while because of hypothesis 
H(g)i, we have that {(t,z,u) € TxHxV : z = g(t, x(t), u)} G B(T)xB(H)xB(V). 
So {(t ,z ,u) eTxH xV :z = g(t,x,u)} Hr(GrU x H) € £ ( T ) x B(fT) x B(V) . 
Note that since Y is separable, Theorem 3. p. 434 of Dunford—Schwartz [8] tells 
us that V with the relative weak topology, denoted by Vw is compact, metrizable. 
Also since Y is separable, it admits a Kadec norm and so by Corollary 2.4 of 
Edgar [9] we have B(YW) = B(Y) = > B(VW) = B(YW) n V = B(Y) H V = H(V). 
So finally using the Arsenin—Novikov theorem (see Saint—Beuve [IT]), we get 
that pro')TxH[{(t,z,u) eTxHxV:z= g(t,x,u)} n r(GrU x H)] € B(T) x 
B(H) = > GrF € B(T) x B(H). So we can apply Theorem 2 of Chuong [5] 
to get that -5j?v. */.)) is dense in S^—F( ^ for the weak norm | • |u, on Ll(H) 

defined by | / | w = sup{|| / / ' f(s)ds\\ : 0 < t < t' < b}. So if *(.) = p(k)(-) with 

/l £ ^JonvFf-x())> W e C a n ^n(^ ^ n ^ *^F(- r(«)) S'̂ * ^ n * ^ as W -+ OO. Let 
Ln(t) = {u e U(t) : hn(t) = g(t,x(t),u)}. Using hypotheses H(g) and H(U), it 
is easy to check that GrLn € B(T) x B(Y). Apply Aumann's selection theorem 
to find un : T -» Y measurable s.t. un(t) € Ln(t) for all t € T. Then hn(t) = 
g(t,x(t),un(t)) a.e. n > 1. 

Next for every n > 1 consider the following evolution equation: 

| - i n ( t ) € d<f>(t,xn(t)) + g(t,xn(t),un(t)) a.e. 1 

I £n(0) = X0 J 

We know (see for example Theorem 3.1), that this has at least one solution xn(') € 
C(T, H). We claim that this solution is unique. To see this suppose t;n(-) G C(T, H) 
is another solution. Making use of the monotonicity of the subdifferential operator, 
we have 

0 < (~~xn(t) - g(t, xn(t), un(t)) -r vn(t) + g(t, vn(t), un(t)), xn(t) - vn(t)) a.e. 

'^\jt\\
xn{t) - vn(t)\\2 < (g(t,vn(t),un(t)) - g(t,xn(t),un(t)),xn(t) - vn(t)) a.e. 

=>| |xn ( t ) - vn(t)||2 < 2 / (g(s,xn(s),un(s)) - g(s,vn(s),un(s)),xn(s) - vn(s))ds 
Jo 

< 2 / kv(s)\\xn(s)-vn(s)\\2ds. 
Jo 

Invoking GronwalPs inequality, we deduce that xn = vn for all n > 1. So indeed 
the solution is unique. Note that {xn}n>i C W (see the proof of Theorem 3.1). So 
by passing to a subsequence if necessary, we may assume that xn —* y in C(T, H). 
Let zn(-) € W C C(T,H) be the unique solution of 

f - i „ ( . ) Є дф(t,z„(t)) + hn(t) a.e. ì 

1 zn(0) = xo / ' 
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So zn = p(hn). We claim that since hn • h, then hn -—.> h m L2(H). To see 
this let s € L2(H) be a step function. Then we have 

|(«, fc* - *)| < £ | ^ (M*) - AM) Cb| • ||**|| < \K ~~h\w-J2 IMI - 0. 
* = 1 ^ f c - l j k = l 

Since step functions are dense in L2(H), we get our claim. Then since h n —• h 
in L2(H), as before exploiting the demiclosedness of dI«>(•)> we have zn = p(lin) —> 
p(/i) = x in C(T, H). Then we have: 

0 < (~xn(t) - g(t, xn(t), un(t)) + zn(t) + hn( t ) , a?„0O - zn(t)) a.e. 

= > ~ l k n ( < ) - *«(*)ll2 < (9Mt),un(t)) - g(t,xn(t),un(t)),xn(t) ~ zn(t)) 

=>\\xn(t) - *n( t ) | |2 < / kv(s)\\x(s) - * n (*) | | • ||*n(*) - zn(s)\\ ds 
Jo 

=>||y(*) - z(*)||2 < / " M')llv(') - *MII2 A 
JO 

y 
=>xn —> a: in C(T,H) and a;n € Síaro)^ > 1. 

So we conclude that S(XQ) = Sc(xQ) the closures in C(T, H). • 

Strengthening our hypotheses on the data, we can guarantee that Sc(a?o) is closed, 
hence compact in C(T, H). 

H(g)2 : g :T x H xY is a map st. 

(1) t —• g(t,x,u) is measurable, 
(2) for all u € U = a bounded set of F, | |g(t,z',ii) - g(t,x,w)|| < ku(t)\\x' - *|| 

a.e. with ku(') € JD+ and x, x' e H, 
(3) (x,u) —> g(t,x,u) is sequentially continuous from H xYw into Hw, 
(4) ||^(t,ar,u)|| < a(t) + 6(i)||t*|| for all a: G # , with <*(•),&(*) € L +-

H(ll)2 :U :T-> Pwk(Y) is a graph measurable function s.t. (7 (*) C V € P«,*C(Y) 
a.e.. 

Theorem 5.2. If hypotheses H(<f>),H(g)2,H(U)2 hold and XQ € dom<£(0,-) then 
Sc(xQ) is compact in C(T,H) and 0 / S(XQ) = Sc(a;o) the closure taken in C(T,H). 

PROOF : Since S c(s0) £ W € Pjkc(C'(r, if)) and having Theorem 5.1, all we have 
to show is that SC(XQ) is closed in C(T,H). To this end, let {a;«}n>i £ Sc(xo) and 
assume that xn -* x in C(T, H). Then we have 

í - i . ( ( ) € ð ^ , i n ( 

l xa(0) = x0 

,(*)) + /.„(') a.e. 
»(0) 
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with S j L - - ^ . ^ . ) ) . Observe that for all n > l,hn € £ ( T / 0 > ^ O = a(.) + 6(-)|V| € 
u» 

L5_. So by passing to a subsequence if necessary, we may assume that hn —• h in 
L2(H). From Theorem 3.1. of [14], we have h(t) € convu; — limF(t,xn(t)) a.e.. 
We claim that F(t, •) is u.s.c. from H into Hw. Observe that F(t,x) C I?(^)(tf) = 
{z 6 H : ||zj| < ^ ( 0 ) a e - for all a: 6 K, and the latter is w-compact in H. 
So in order to prove our claim, it is enough to show that GrF(t, *) is sequentially 

sxw 
closed in H x Hw. Hence let (xn,zn) E GrF(t,-)n > l , (x n , z r t ) • (x,z) in 
H xH. Then zn = g(t, xn, un), un £ U(t). By passing to a subsequence if necessary, 

w 
we may assume that un —• u 6 U(t). Then from hypothesis ff(g)2(3) we get 

w 
that zn = g(t,xn,un) —• g(t,x,u) = z = > (a:,*) € GrF(t,-) ==> GrF(t,-) is 
sequentially closed in H x Hu, = > K(t, •) is indeed u.s.c. from H into Hw. Thus 
we get h(t) € convK(t,x(^)) a.e. ===> x = p(h) € 5c(-to) ==> -$c(-to) is closed in 
C(T,H). t • 
Remarks. Suppose that K : T —> P/C(H) is an absolutely continuous multifunc­
tion with modulus m(-) € L\, i.e. |d(x, K(*)) - d(y, K(r))| < ||a; - y\\ -f f* m(s) ds 
(where for any A G 2H \ {$},d(x,A) = infa€>4 ||x — a||). Set <£(<,x) = 8#(t)(.r) 
where S^^(x) = 0 if x 6 K(t),+oo otherwise. Thanks to the absolute continu­
ity hypothesis on K(-), it is easy to check that $(-,-) satisfies H(<f>) (in this case 
gr(.) = m(s),fi = l,hr = 0). Also from convex analysis (see Laurent [12] and 
Rockafellar[16]), we know that d<j>(t,x) = d8^(t)(

x) = NK(t)(aO = the normal cone 
to K(t) at x. So the evolution inclusion (*) takes the following form: 

f -*(<) € -Vjf(l)(s(<)) + F(<, *(*)) a.e. 1 
W I x(0) = o;o J 

Hence (*)' is a special case of (*). Inclusions of the form (*)' were studied by 
Moreau [13] (with F = 0, i.e. no perturbation), Aubin—Cellina [2] (with H = 
Rn,K(t) = K for al l* € T and F(-,-) convex valued; they are called "differential 
variational inequalities") and by Papageorgiou [15] (with H = Rn). All these works 
are extended by the present paper, as well as those of Watanabe [20], Yotsutani 
[21] and the ones mentioned in the introduction. So the results of this paper unify 
and extend a series of recent works on evolution inclusions. 

6. Example. 
Let Z be a bounded domain in Rn with smooth boundary dZ. Consider the 

following parabolic control problem: 

(«.*) / ^dT~.? J-(«o-(M)^^)+/*(*(M)) a /(.,^Ix(.)^),«(.,^))
, 

I x(0, Z)=XQ(Z), x(t, z)r=0 and u(t, z), u-measurable 

Assume that ay € L°°(T x Z ) , a 0 = a ii,X)n,i-=ia-i( t^)»7«^ £ chf f o r e v e r y 
(t,z)£TxZ and every n € Rn and |a t i(t , z) - ay (*, z)\ < k\t - s\ a.e. on Z, k > 0. 
Also f$ = dj where j : R —• R+ is proper, l.s.c. and convex. 
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Let H = L2(Z) and define < £ : T x H ~ > R = RU {+00} by 

^ x)J E^/zMMJ^t^/ . iW^))^^^ 
1 +00 otherwise. 

It is easy to check that <f>(t, •) is proper, convex and l.s.c. Also note that since 
j > 0 for each A > 0, the level set L\ = {x € L2(Z) : \\x\\\ + <f>(t,x) < A} is bounded 
in L2(Z) while from our strong ellipticity hypothesis {|Vx| : x € L\} is bounded in 
L2(Z). Therefore L\ is compact in L2(Z) and so we have that <j>(t, *) is of compact 
type. Let XQ = XQ(-) € -Qr

0(^)-
Next using Poincare's inequality we can check that <j>(t,x) > c\\x\\2

Hi,z)c > 0 

and that \</>(t,x) - <t>(s,x)\ < J ^ fz K ( M ) - ««j(*,*OII felll^* < k\t - s\ • 
\\x\\2

Hi(Zj < k\t — s\<f>(t,x). So <f>(t,x) satisfies hypothesis H(<f>). Furthermore as 
in Barbu [3], we can check that d<j>(t,x) = {£" i = = 1 ^ K ( M ) | | : ) + g(z) : g € 
L2(Z), g(z) G P(x(z)) a.e. }. Assume f(t, z, x, u) = g(t, z, x)+fz r(t, z, z', u(z')) dz' 
with 0 : T x . Z x R - - * R . Caratheodory function s.t. \g(t,z,x)\ < a(t,z) a.e. 
a(«, •) € L2(T xZ),Biidr:TxZ x Z x R -> R. Caratheodory s.t. r(t, z, z', u)\ < 
R(t,z,z')(a + b\u\) a.e. with R(-,.,.) € L2(T x Z x Z). Let g : T x L2(Z) -> 
L2(Z) and h : T x L2(Z) be the Nemitsky operators corresponding to g(t,z,x) 
and fc(<,2,u) = fzr(t,z,z',u(z'))dz' respectively. We know g(t, •) is continuous 
while &(£, •) is completely continuous (Krasnoselski—Ladyzenski theorem). Thus 
f(t,x,u) satisfies hypothesis H(g)2. Finally let U(t,z) = [mi(t,z),m2(t,z)] with 
mum2 € L°°(TxZ),mi < m2. Let U(t) = {u 6 2/2(-?) : mx(t,z) < u(z) < m2(z)}. 
Then U(-) is measurable with Pwkc(L

2(Z))-values and J7(t) C V = {u € £2(Z) : 
| |ti | |2<max(||m1 | |0O , | |m2 | |oo)61/2}. 

We can now write (**) in the following abstract form: 

(**) J "i(t) € d<t>^ X^ + fa *M> UW a*e' \ 
\ x(0) = x0,u(t) € #(*) a.e. u(-) 6 L2(T,L2(Z))j 

To those control system we associate its "relaxed" version with convexified dynam­
ics; namely the system 

r v j ~v) € d(j>(t,x(t)) + cowf(t,x(t),U(t)) a.e. í - i ( t ) € £<£(*,: 
\ x(0) = io 

Now suppose we are given a cost functional $ : L2(T, H) = L2(T x Z) —• R defined 
by 0(a;) = fzL(z,x(b, z))dz (terminal cost), with L : Z x R —• R proper, l.s.c. 
and L(z,x) > <f>(z) - M|x| a.e. <£(•) € Ll(Z),M > 0. Then $(-) is l.s.c. (Fatou's 
lemma). If we minimize #(•) over the set S(XQ) of trajectories of (**), we need not 
have a solution, since S(XQ ) need not be compact. However minimizing it over the 
set of trajectories of (**)r we will have an optimal solution since Sr(xo) is compact 
in C(T,H), hence in L2(H) too (see Theorem 5.1). Furthermore the values of the 
two problems are equal since S(XQ) = Sr(a?o) m C(T,H) (Theorem 5.2). So by 
convexhying the dynamics we captured the asymptotic behavior of the minimizing 
sequences of the original optimal control problem. 
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