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On weak solutions to a viscoelasticity model 

JAROSLAV MILOTA, JINDŘICH N E Č A S , VLADIMÍR ŠVERÁK 

A bstract. The existence of global in time weak solutions of a viscoelasticity model is proved. 
There is no restriction on the dimension but it is supposed that the memory response is 
linear and a kernel has special properties. 
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1. I n t r o d u c t i o n . 
The purpose of this paper is to prove the existence of global in time weak solutions 

of equations of motion for a model of viscoelastic body. We assume that the body 
occupies a reference configuration £1 C R N ( 0 is a bounded domain with smooth 
boundary) and has unit reference density. We denote by u(x, t) the displacement 
at the time t of the particle with the reference position x. The strain e is given by 

(1.1) e(x,t) = Vxu(x,t) 

and the equation of balance of linear momentum has the form 

(1.2) uu(x, t) = divx cr(x, t) -f f(x, t), 

where a is the stress and / is a body force. The body is characterized by constitutive 
assumptions which relate the stress to the motion. General constitutive theories 
are discussed for example in Coleman & Noll [2], Coleman & Mizel [1] and Saut & 
Joseph [11]. For the comprehensive account see the recent monograph Renardy & 
Hrusa & Nohel [10]. 

We shall limit our attention to constitutive relations of the type 

(1.3) a(x, t) = f k(t - s)G(e(x, *), c(x, .s))d.s. 
J—oo 

Here k is a given nonincreasing positive function which satisfies certain growth 
conditions at 0 and oo. We suppose that the tensor function G has the special form 

(1.4) G(a,b) = g(a) + h{b). 

Moreover, our crucial assumption is that h is linear. Assumptions on g are stated 
below. 
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Substitution of the constitutive relations into (1.2) yields 

(1.5) utt(x, t) = div* g(Vu(x, t)) - / k(t - s)Au(x, s)ds + f(x, t), 
J—oo 

x 6 0 , t > 0. We consider this equation together with the Dirichlet boundary 
condition 

(1.6) tt|0Q = O. 

We shall write (1.5) and (1.6) in the form 

(1.7) tt„ + <£(tt) + fc*Att = / . 

We seek a vector function ti which satisfies (1.7) in weak sense together with the 
initial conditions 

(1.8) ti(0) = tt„, 11,(0) = !*!. 

We remark that little is known about the existence of weak solutions for viscoelastic 
models. Recently, Nohel & Rogers & Tzavaras [9] established the global existence 
of weak solutions to the initial value problem above in the special case 0 = R and 
g = h in (1.4). 

In Section 2 we introduce appropriate function spaces. Section 3 is devoted to the 
proof of the existence of weak solutions. The proof is standard: we use the Galerkin 
method to construct approximate solutions, establish a priori estimates and use 
compact imbeddings and the theory of monotone operators to prove convergence. 
The method of monotone operators was used in similar situation in [6]. 

The authors are indebted to John A. Nohel for the discussion of the preHminary 
version of this paper. 

After this paper was finished we learned about the work of H.Engler [3] dealing 
with more general equation than (1.5) in one space dimension. 

2. Appropriate spaces and operators-
Let 0 C R N be a bounded domain with smooth boundary. The spaces V = 

Ho^O), H = L2(Q) and V = H"l(Sl) of R e v a l u e d functions are defined in the 
usual way. We denote by (•, •) and ((•, •)) respectively the scalar product in H and 
V. The corresponding norms are denoted by | • | and || • ||. The duality between V 
and V is denoted by (•,•). The Laplace operator A : V —• V1 is defined by 

( - Au,v) = / Vtt • Vt; = ((u,v)), 
Jӣ 

u,vev. 
Consider the orthogonal basis of H consisting of the eigenfunctions wn e V o£ 

—A. We assume 

-Aw>n = AnM?n, | w ; n | = l , n = l , 2 , - - - , 

where 0 < Ai < A2 < A3 is the sequence of eigenvalues of —A. 
We denote by Pm the orthogonal projection (in H) of H onto the linear hull Vm 

of the first m eigenfunctions. The following statement is obvious: 
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Lemma 1. The operators Pm can be extended to the orthogonal projections in V1. 

The extension of Pm to V1 will be denoted also by Pm . 
Let u € V and let c* = (wk,u). We define 

*=1 

We shall assume — \ < s < \. We can consider [•], as a norm on V and the 
completion of V in this norm is denoted by H*(Q). 

Let E be a Hilbert space and let a < b € R. The space I? (a, b; E) is defined in 
the usual way. For 0 < v < \ and u € L2(a, b; E) we define 

|| u ||*= f dt • t-<2"+'> / I u(r - t) - u(r) | | dr. 
JO JR. 

(We extend u by zero outside (a, 6).) The space of all u € L2(a, b; E) for which 
|| u ||„ is finite is denoted by Hv(a,b;E). For u € It2(a,6; j?) we denote by u the 
Fourier transform of u. It is well-known (see e.g. [5]) that 

(2.2) l[(l-r<r2y\u(*)\2
Ed*}i 

JR. 

is an equivalent norm on Hv(a,b;E) .We put HP (a, b;E) = L2(a, b;E) and for 
0 < a < \ define H1"¥a(a, b; E) as the space of all u € L2(a, b; E) with distributional 
derivatives u' belonging to Ha(a, b; E). The norm on Hl+a(a, b; E) is defined by 

|| « | |1+B=|| u ||L, + || u' |U . 

We also introduce the spaces 

Hl+a(a, b; £?) = {«€ H^a(a, b; E), u(a) a 0} 

ft0
+o(a, b; E) = {u £ W1+a(a, b; E), u(a) = u(b) = 0}. 

Throughout this article we assume 0 < v < \. 

Lemma 2. The natural imbedding 

Hl+V(a, b; V) n i°°(a, 6; H) --» «L(o, 6; V ) 

is compact. 

PROOF : Let («m) be a bounded sequence in 

« L + > , W n i ~ ( a , i 5 J - 0 . 
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We fix a smooth function 0 vanishing on (b + 1, oo) and = 1 in a neighbourhood of 
b and define 

m f «mW» t€[a,b] 
VmU \0(t)um(b), te [6,6+1]. 

The sequence t;m is bounded in H\+V(a,b + 1; V7) fl L°°(a,b + 1;H). Let 0 G 
(0,1), v' G (0, v) satisfy 0(1 + v) > 1 + i/'.We notice that 

A-^l + ^ ^ ' ^ A ^ H l + ̂ ^ + l 

and using the definition of the norm [• ]„ and the expression (2.2) we see that 

H\+V(a, b + 1; V') (1 L°°(a, b + 1; H). 

is continuously imbedded into H]^~v (a, 6+1; if ~"^(0)). The last space is compactly 
imbedded into Wj(a» 6+1; V').(See the proof of Theorem 1.5.2. in [4],for example.) 

• 
To construct the operator <f> in (1.7.) we fix a convex function F : RiVx/V —• R 

of the class C2 satisfying 

dF 
F(0) = 0, —-(0) = 0, t , i = l , . . . ,N , 

optj 

, d2F 
- | < M , t,i ,k , / = l , . . . ,N , dpijdPki 

N fflr 

for some positive ^ and M. We define the operator <p : V -• V' by the formula 

<"<•*•"=/„|:<v°>£p 
w,v G V Clearly 9 is Lipschitz continuous and satisfies 

(2.5) n || tt - v ||2< (y,(tt) - 9(t0, u - t;) < M || tt - b f, 

u,v £V. For fixed T G (0,00) we introduce the operator 
^ : I 2 ( 0 , T ; V ) ^ L 2 ( 0 , T ; V ' ) b y 

(2.6) (<t>(u),v)T= I (<f(u(t)),v(t))dt, 
Jo 

u,v G £2(0,T; V), where (., . )T denotes the duality between 
L2(0,T;V)andL2(0,T;V). 
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Lemma 3 . The operator <j> maps Hv(0,T;V) into H"(0 ,T;V ' ) and 

II <KU) \\nv(o,T}v')< M II w Wn^io^v) 

for allu€Hv(0,T;V). 

PROOF : This follows easily from (2.5). • 

Let us fix a, 0 > 0 and let 

(2-7) *>={!Uв-, 
for t < 0 

for t > 0. 

In what follows we could replace k by any function vanishing on (—oo,0) and sat
isfying together with its derivative the same growth conditions at 0 and oo as the 
special k above. 

We define the operator K : L2(0, T; V) -> I 2 ( 0 , T; V') by 

Ku(t)= I -k(t - s)Au(s)ds. 
Jo 

It is not difficult to see that 

(2.8) (Ku, u) <K\\U Hi2(0,T;V) > 

where K = f£° k. 

Lemma 4. The operator K maps Hv(0, T; V) into Hv(0, T; V') and 

II £ " \\nv(0}T;V')< « || ti \\n»(0,T;V) • 

PROOF : This is easy. 

Lemma 5. Let E be a Hilbert space and letv:H.--*E satisfy 

v(t) = 0 for t < 0, 

(2.9) lim v(t) = VQO (strong limit), 

u ' € L 1 f l . t 0 0 ( R ; E ) . 

Then 

(2.10) / (k*v(s),v'(s))Bds 
Jo 

= f K>H + |jT°«fa * ' « J" dt K«) - v(t - s)\%. 
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PROOF : It is not difficult to see that the following computation is legal 

ľooІE /
°° K 

(k*v(s),v'(s))Eds--\v0 
i»oo /»oo 

= I ds I dtk(t)(v(s-t)-v(s),v'(s))E 
Jo Jo 

i»00 i»00 J 

= j ds J dtk(s-t)(v(t)-v(s),Ts(v(s)-v(t)))E 

=~ \ rds rdt Ks ~ t]TsHs) ~ "^ 
= -j dt J dsk'(s-t)\v(s)-v(t)\2

E 

= ll°°da j f ° * *'(*)K-) - v(* - *)&• 
The proof is finished. • 

3. Construction of solutions. 
Our next step consist in the construction of Galerkin approximations for the 

problem (1.7),(1.8). We assume that the forcing term / satisfies 

(3.1) / € I2(0, T; H) n ft"(0, T; V) 

for some fixed T € (0, +oo). 

Lemma 6. Suppose fi > K. For each m € N there is a unique function um € 
H|(0,T;Vm) satisfying 

(3.2) ((u'm(t) + <p(um(t)) + k * Atiw(*)), wj) = (/(*), Wj), j = 1, . . . , m, 

for a.e. t €(0,T) an<* 
«m(0) = u m (0 ) = 0. 

The functions um satisfy 

(3-3) || Um ||£,oo(o,T;H) + II um | | L « ( 0 , T * V ) - £ C1 

(3-4) || «m|&*(o,r;V)<c> 

w&ere c 4oej not depend on m. 

PROOF : It is standard that (3.2) has a solution on a small interval (0,6). (See 
e.g. [7]). Let us derive a priori estimates. Let t € (0,T) and suppose um is defined 
on (0, t). Replacing Wj by t*m in (3.2) and integrating over (0, t) we obtain 

( = l«'J* + / *tV«m))|S = A(* * «m,«'m)) + A/,«'m). 
-- Jn Jo Jo 
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From Lemma 5 we see that 

(3.5) / ( ( * * u m , « m ) ) 
Jo 

= \ II -«(*) II2 +\ J^ dr k'(r) J~ da || um\s - r) - »<?(,) | |2 , 

where 

m W \ « w ( ť ) , if s>t. 

Since the second term on the right-hand side is negative (or nonpositive) and 
um(0) = um(0) = 0, we see that 

(3.6) | | u m ( < ) | 2 + JQ F(Vum(t)) - | || « w (t) f< j f (/,«»)• 

Now if fi > K then 

JQ F(Vum(t)) - | || um(t) ||2> l ^ || «w(t) ||2 , 

and by the standard use of the Gronwall lemma we infer 

(3.7) |u ' w (t) | 2 + || «m(t) | |2 

51o d T f c ' ( T ) / 0
 d s H u ( ^ - T ) - u m ) ( S ) | | 2 < c , 

where c is independent of m and t <T. 
To estimate the Hv norm let us define 

• , v ґ "m 00, Іf -S < * 
w m(*) = < n . . ^ .. 

L 0, lf S > t. 
By Lemma 5 the H"(Q, T; V) norm of u m is estimated by 
/ R ( ( * * u m , u m ) ) . But this integral equals to 

- ( ( * * um(t), um(t))) + / ( ( * * u m , u'm)) 
Jo 

since, roughly speaking, u'm gives the Dirac measure at t. By (3.5) this amounts to 

I II -«(«) H2 + | j~dTk'^J~ds ii «-(- - r ) - «»(-) II2 

- ( ( * * u w ( t ) , u w ( f ) ) ) 

and this expression is bounded by (3.7). Hence 

II um llw(0,T;V)-$c> 

where c does not depend on m and t < T. The proof is finished. • 
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Lemma 7. The sequence um is compact in L2(0,T; V ) . 

PROOF : We notice that (3.2) can be rewritten as 

um+Pm4>(u) + K:um=Pmf, 

where Pm : L2(0,T;V) - • L2(0,T;Vm) is defined by (Pmu)(t) = Pm(u(t)) (see 
Lemma 1). We can now use Lemmas 1-4 together with the estimates (3.3) and 
(3.4) to infer that the sequence um is bounded in Hl+V(a, b; V) H L°°(a, b; H) and 
hence compact in HL(a,b;V). This implies that um is compact in L2(0,T;V'). 
The proof is finished. • 

Passing to a subsequence, if necessary, we can assume that 

ttm-tt in L2(0,T;V), 

ttm-W' in I 2 ( 0 , T ; V ' ) . 

Theorem. Let K < p. Then u is a weak solution of (1.7). 

PROOF : The only problem is to show that 4>(um) —- <£(tt) in L2(0,T; V). Since 
clearly Kum —- Ku it is enough to show Bum —- Bu, where B = <j> — K. By our 
assumptions, B is strongly monotone and Lipschitz continuous. We can suppose 
Bum ~- x in L2(Q,T; V). Clearly u" + X = / • For any v € L2(0,T; V) we have 

(X — Bv, u — v)T = ( — tt" + f — Bv, u — v)T = (by Lemma 7) 

= lim (w'm + f -Bv,um~ v)T = (Bum - Bv, um - v)T > 0. 
m—*oo 

From this we can infer x = Bu by "Minty's trick". (See, for example, [8]). The 
proof is finished. • 

Remark. If T -= oo and / € L1(0, oo;H) the procedure above yields a weak 
solution tt on the interval (0, oo) which belongs to the space ^ " ( 0 , oo;V). This 
follows easily from the estimate 

II «m ||w(0,oo;V)<|| / IUHO.OOJH) > 

which can be obtained in a similar way as (3.7). 

REFERENCES 

[1] Coleman B.D., Mizel V.J., On the general theory of fading memory, Arch. Rat. Mech. 29 
(1968), 18-31. 

[2] Coleman B.D., Noll W., An approximation theorem for junctionals with applications in con
tinuum mechanics, Arch. Rat. Mech. Anal. 6 (I960), 355-370. 

[3] Engler H., Weak solutions of a class of quasilinear hyperbolic integro-differential equations 
describing viscoelastic materials, (preprint). 

[4] Lions J.L., Quelques methodes de resolution problemes aux limites non lineaires, Dunod, 
Paris, 1969. 



On weak solutions to a viscoelasticity model 565 

[5] Lions J.L., Magenes E., Problemes aux limiies non homogenes et applications, Vol I, Dunod, 
Paris, 1968. 

[6] Londen S.O., An existence result on a Volterra equation in a Banach space, TAMS 235 
(1978), 285-304. 

[7] Miller R.K., Nonlinear Volterra Integral Equations, Benjamin, 1971. 
[8] Minty G., Monotone (nonlinear) operators in a Hilbert space, Duke Math. J. 29 (1962), 

341-348. 
[9] Nohel J.A., Rogers R.C., Tzavaras A.E., Weak solutions for a nonlinear system in viscoelas

ticity, Coram. Part. Diff. Eqs. 13 (1988), 97-127. 
[10] Renardy M., Hrusa M.J., Nohel J.A., Mathematical problems in viscoelasticity, Longman, 

1987. 
[11] Saut J.C., Joseph D.D., Fading memory, Arch. Rat. Mech. Anal. 81 (1982), 53-95. 

Faculty of Mathematics and Physics, Charles University, Sokolovska 83,186 00 Praha 8, Czechoslo
vakia 

(Received March 27,1990) 


		webmaster@dml.cz
	2012-04-28T19:35:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




