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Note on approximate non-Gaussian filtering 
with nonlinear observation relation 

TOMÁŠ CIPRA 

Abstract Masreliez's theorem [3] on approximate non-Gaussian filtering with linear state 
and observation relations is generalized for a simple case of nonlinear observation relations. 

Keywords: Approximate conditional-mean filter, non-Gaussian nonlinear filter, robust Kal-
man filter 

Classification: 60G35, 62M10 

1. Introduction. 
The well-known Kalman filter (see e.g. [1], [2]) deals with recursive estimation 

of an n-dimensional observations {z\> Z2,..., Zk} in a discrete linear system 

(1.1) Xfc+i = FkXk + Wk, 

(1.2) zk = HkXk+Vk, 

where Fk is a known state transition matrix of the type n x n in the state rela
tion (1.1), Hk is a known observation matrix of the type r x n in the observation 
relation (1.2) and Wk and Vk are disturbance vectors of the type n x 1 and r x 1, re
spectively, which form'zero mean uncorrelated and mutually uncorrelated sequences 
with known covariance matrices. Moreover, some initial conditions are given. 

Under the assumption of normality the Kalman filter gives the optimal minimum 
variance state estimator which is equal to the conditional expectation 

(1.3) xk = E(xk | Zk), 

where the denotation Zk = {z\, * 2 , . . . , Zk) is used. However, in many practical situ
ations one must face highly non-Gaussian densities or the ones which have Gaussian 
shape in the middle but differ from normality in the tails so that robustification of 
the Kalman filter is necessary to protect the state estimator against outliers. Since 
non-Gaussian minimum variance filters are usually difficult to implement one looks 
for various approximations which retain the numerically simple recursive structure 
of the Kalman filter also in non-Gaussian cases. 

One of successful approaches to non-Gaussian filtering in the linear system (1.1) 
and (1.2) consists in the assumption that the predicted state density p(xk \ Zk~~l\ 
is approximately Gaussian although the observation disturbances Vk may be non-
Gaussian (see [3]): 
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Let us denote 

(1.4) £k
k-

1=E(xk\Z
k-1), 

(1.5) P* = E{(xk - xk)(xk - £*)' | Zk), 

(1.6) P * - 1 = E{(xk - f * - 1 ) ^ - i * " 1 ) ' | Z * - 1 } . 

Further let p(2* | Zk"x) be the predicted observation density which is assumed to 
exist twice differentiable. 

Theorem 1. (MasreHez [3]) Assume that the -predicted state density p(xk \ Zk~~l) 
is Gaussian with mean x\~x and covariance matrix P£~1. Then it holds 

(1.7) £k = xk-1+Pk-1Hkgk(zk), 

(1.8) P * = P * " 1 - P * - 1 H'kGk(zk)HkP
k-\ 

where 

(1-9) 9^) = -W>\Z^Tld*ZklZp, 
(1.10) Gk(zk) = *£&. 

Theorem 1 has important applications. For example, it presents a theoretical 
background for so called ACM (Approximate Conditional-Mean) filters which are 
useful instruments in robust time series analysis (see [4], [5]). 

The aim of this note is to generalize the MasreHez's theorem for the discrete 
systems with nonHnear observation relations. This generalization can be looked 
upon as a theoretical result for possible non-Gaussian nonHnear filtering. 

2. Nonlinear observation relation. 
We consider the simple scalar case 

(2A) Zk~-h(xk) + Vk 

with a function h : R1 —• R1 which can be approximated sufficiently by the second-
-order Taylor expansion so that 

(2.2) zk = Kx'-1) + h^-^xt - i*"1) + ifc„(**-1)(** " ^J"1)2 + »*> 

where 

M l * >~ dx ' ft"(X* >~ dX2 • 
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Theorem 2. Under the assumption of Theorem 1 it holds 

f £k
k-\ +Bkgk(zk) 

(2.3) 4 = < 
-Jk-i , M * î " ) 

" ** + ťлï^) 

forhxx(x
k
k-

l) = 0, 

p - l Лlo **P(Bïlu)p(u\Zk-1) du 
k ~*9{Bïlxh)p{zk\Z

k-*) _ 

for h^xţ'1) > 0, 
^ iJ^00exP(B;1ц)p(ц|žГ*--1)dц 

~Bk k

exp(B-lzk)p(zk\Z^) l 

forhxx(xk

k-
l)<0, 

where p(u \ Zk 1) denotes the predicted observation density in the integrand and 

(2.4) вk = PГ1Һ„{*k

s-1). 

PROOF : One can write according to Bayes law 

řj - x*-1 = Г (xк - î t - píi* | Zк)dxк = 
J—oo 

= pЦ-^Ыzk I г*-1)]-! Г (P^- -Ҷx* - Ą-^PІXk | .г*-1)^-* | Xt)dxt. 
J—oo 

;.ь~l Since the density p(xk \ Zk~~l) is Gaussian with mean xj^1 and variance Pk \ one 
has 

^ - ^ =- - ( n f e - 1 r 1 ( ^ - *t_1)K. fc I z*-1) 

so that 

-£ >-p(zk\xk)dxk. 

Integrating by parts one obtains 

ii-*i-1=-^,w*.d-*-1)]-1 f ^r^Pixkiz^dxk. 
J—oo 
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Further one can write according to (2.2) 

л.k zk-î 

= JÝ-1 Wn I Z'-1))-1 /^[-fc-(xri)-k„(ž*-1X«»-xri)]-^[^p(xJk | Z*"1)^ 
= -Pk-1hx(xk-1Mzk\Zk-l))-1x 

x ^ { P ( - - I Z t ~ 1 ) / ^ p ( z * I **)P(X- I ^*~1)[P(-- I Z*"1 ) ] _ 1 <***}-

-př-i/.-.(xS-i)w*-i-;*-1)r1x 
x gj-W*- I 2* _ 1 ) j T (x* - x*."1)*** I .-*)p(x4 I Z*-1)!,*-* I Z*" 1)]" 1 dx t} = 

t - i M - i - M - . ! - ? * - 1 ) 
= - І Г 1 M X Г 1 ) [ P ( - - І - ? * - 1 ) ] dz* 

iү-iA.,(xj-i)[p(-* i ^ " ' и - ^ w - * i -**-1x**. - x*гî)] 

/°° p(xt I Z*)dxt = 1, r°(xk-xk
!-1)p(xk I Z*)dxt = xk

k-x
k-1. 

J—oo J—oo 

Due to (1.9) and (2.4) we have finally 

(2.5) xk - xk~- -= Pt1 *.(*J"1 )<?*(**) - Bk[^(xkk - x\-1) -gk(zk)(x\ - x*"1)]. 

The relation (2.5) can be looked upon as the differential equation of the first order 
for the unknown function xj — x*"1 of the argument zk- By solving this differential 
equation of the type y' -f- u(x)y — v(x) one obtains (2.3) as its particular solution 
fulfilling the initial condition 

(2.6) ^ ( x j - x * - 1 | z * " 1 ) = /""(xj . - x*"1)p(-jt | Z f c- 1)«fa t--0 . 
J — OO 

For example, if hxx(x\~~l) > 0, i.e.2?* > 0, one can verify (2.6) in the following way 

r(x\-xk
hrl)p{zk\Z

k'-l)dzk--
J—oo 

h (Tk~l) T f°° tZk 

- '\.\-i\V / expf-Br/1-*) / exp(J3r/>«.)p(« | z * - 1 ) ^ - 1 = 
"arxV^fc / - J—oo J—oo 

u (zk-l\ r foo -too 

= rT^\ *M-Bk-
1y)r(zk-y\Zk-i)dy 

hxx(Xk ) [JO J , 

= 0, 

where we have used the integration by parts and the substitution y -*= zk ~ u« 
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Remark 1. If hx^x^"1) = 0 then (2.3) reduces to (1.7) from Theorem 1. 

Remark 2. Proceeding similarly as in the proof of Theorem 1 one obtains after 
some tedious manipulations the following differential equation of the second order 
for P* 

(2.7) P£ - BU^PH - 9t(zk)£-kPt ~ [Gk(zk) - (gt(zk))
2]Ph = 

= Pt1 " (/^{(M**-1))2^**) - (9k(zt))
2] - h^x^g^z,)-

-2ftI(x*-1)A„(^-1)tp(^ | ̂ -1)]-1^[p(z i | Z*"1)^-**-1)]-

-(Mx**-1))2^ I ^-1)]-1^[K^ I z'-'Xij. - it'1)2]} - (4 - *J-1)2. 

The explicit formula for P% is very complicated. For simplicity one can accept the 
formula (1.8) from Theorem 1 which is the special case of (2.7) for hxx(x*~~1) = 0. 
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