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Support functionals and smoothness in Musielak-Orlicz 
sequence spaces endowed with the Luxemburg norm 

HENRYK HUDZIK, YINING Y E 

Abstract. Support functionals in Musielak-Orlicz sequence spaces endowed with the Lux
emburg norm are completely characterized. An explicit formula for regular support func
tionals is given. For obtaining a characterization of singular support functionals a gener
alized Banach limit is applied. Some necessary and sufficient conditions for smooothness 
of these spaces are given, too. 
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0. In t roduc t ion . 
This paper is divided into four parts. The first part is an introduction. The second 

part consists of some results concerning the existence and the general form of regular 
support functionals at points of the unit sphere _$"(/*) of Musielak-Orlicz sequence 
spaces /*. In the third part a general formula for singular support functionals at 
points of 5(/*) is given. In the last one a criterion for smoothness of Musielak-Orlicz 
sequence spaces is obtained. 

Smoothness and uniform smoothness of Orlicz spaces equipped with the Luxem
burg norm were first discussed by Rao in [13] and [14]. However, no completely 
full characterizations of these properties were obtained. Smoothness of Orlicz se
quence spaces was considered by Ye in [14]. Next, Pluciennik and Ye considered 
in [11] smoothness of Musielak-Orlicz sequence spaces obtaining almost complete 
its characterization. Moreover, Chen obtained in [2] a characterization of smooth 
Orlicz function spaces endowed with the Orlicz norm in the case of a non-atomic 
finite measure. These problems were also considered in [15]. 

In the sequel N denotes the set of natural numbers, R denotes the reals, Rc denotes 
the interval [~-oo, +oo] and is called the set of extended reals, R+ denotes the set 
of nonnegative reals and #j are Orlicz functions which means that #j are vanishing 
and continuous at zero, left-continuous on whole R+, convex and even on R, and not 
identically equal to zero. For any Musielak-Orlicz function # = ( $ t ) ^ j we denote 
by #* its complementary function in the sense of Young, i.e. $* = ( ^ J ) ? ^ , where 

*?(u) = sup{\u\v - *i(v)} (V u € R). 

If # is an Orlicz function and u £ R, we denote by \£"~(w) and $+(w) the left and 
the right derivatives of ^ at w, respectively. Given an Orlicz function V, we define 

&(#) = sup{tx e R+ : tf(ti) < +oo}, 
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a*(u) = [ * " ( « ) , * + ( u ) ] if u > 0 and u < 6(#) 

= [ ^ + ( u ) , V~(u)] if u < 0 and u > - 6 ( $ ) 

=[#"~(u), +00) if u = 6(#) and #"~(6(#)) < +00 

= ( - 0 0 , V+(u)] if ti = - 6 ( # ) and ^ + ( - 6 ( ^ ) ) > - 0 0 

={+00} if u = 6(#) and ¥~(6(*)) = +00 

={ -00} if u = - 6 ( # ) and # + ( - 6 ( # ) ) = - 0 0 

It is not difficult to show that for any u 6 R and v € d^(u) we have $f(u) -f 
$*(*;)=. uv. 

Moreover, if # is an Orlicz function with finite values then 

(0.1) d$(ti) = {v € R : tf (ti) + ¥*(v) = tit;} (V u € R). 

When # is an Orlicz function which jumps to +00, equality (0.1) holds only for 
these u 6 R which satisfy SI?(u) < -f 00. 

Let us denote by /° the space of all sequences of reals, and for any x = (xi)<?l1 £ 1° 
and A C N define xA = J3t€,4 xieii where e,- are the z-th basic sequences, i.e. 
e, = ( 0 , . . . , 0 ,1 ,0 , . . . ) , where 1 stands on the i-th place. For any x € /° we define 
also 

x ( n ) = ( x ! , . X 2 , . . . , x n , 0 , . . . ) . 

If $ = ( $ i ) £ i is a Musielak-Orlicz function and x -= (^ t )£ i € /°, we define 
d$(x) = (d^fai))^!- Moreover, we define 

bi = *{*#, 

ai = aj(#j) = 6j when $,(6j) < 1, 

= $~\l) when #,•(&<) > 1. 

Given a Musielak-Orlicz function # , we define on /° a convex functional I$ by 
the formula 

/•(*)-=f;*.(*.) (vI = (^)6/°). 
t= i 

The Musielak-Orlicz space /* generated by a Musielak-Orlicz function $ is defined 
in the following way 

/* = {x € *° : I*(\x) < +00 for some A > 0}. 

This space endowed with the Luxemburg norm 

||x||« = inf{A > 0 : I*(x/\) < 1} 

is a Banach space (cf. [6], [7] and [8]). 
For any Musielak-Orlicz function # we define h* to be a closure in /* with respect 

to the norm topology defined above of the set h of all sequences in /° with finite 
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number of coordinates different from 0. This space will be considered with the norm 
|| ||$ induced from /*, 

In the case when 6j = Oj($i) = -f-oo for any i € N, we have 

h* = {x € /° : h(Xx) < +oo for any A > 0} . 

Every functional x* £ (h*)* (=the dual space of h*) is of the form 

oo 

(0.2) x.{y) = Y,zm (Vy = (yi)€h*), 

where z = (z;) € /** (cf. [6], [7], [8] and [9]). It is obvious by the Holder inequality 

(0.3) l^(y)l<2|M|#.|Mk 
that every linear functional defined by formula (0.2) is also continuous on /*. Such 
functional are called regular. 

A functional x* 6 (/*)* is said to be singular if x*(y) = 0 for every y € h*. 
We denote by B(/*) and 5(/*) the unit ball and the unit sphere of /*, respec

tively. 
We say that $ satisfies the 8§-condition if there exist constants K, a > 0, a number 

m € N and a sequence (c») of nonnegative extended reals such that X ^ m c, < -f-oo 
and for any i € N and u € R satisfying the inequality $i(u) < a, we have 

$i(2u) < K$i(u) -r Ci. 

Let X be a Banach space and X* be its dual space. Then x* € X* is said to be 
a support functional at x € X \ {0} if ||x*|| = 1 and x*(x) = ||ar|| (cf. [10]). We 
denote by Grad(;r) the set of all support functionals at x. If X is a Musielak-Orlicz 
space and x € X \ {0}, we denote by RGrad(x) and SGrad(z) the sets of all regular 
and all singular support functionals at x, respectively. 

A Banach space X is said to be smooth if for any x € S(X) the set Grad(a:) has 
only one element (cf. [2] and [10]). 

1. Regular support functionals in /*. 
We start with the following 

Lemma 1.1. (i) For any x* G (/*)*, we have (x*(e,)) € Z*\ 
(ii) The functional x* defined by 

oo 

x*(x) = J^x*(ei)xi (V a; = ( * ; ) € / * ) 
i = l 

is continuous on /* and the functional x* defined by 

(1.1) x*(x) = x*(x)-x*(x) (Vare/*) 

is singular. 
(iii) For every x* 6 (/*)*, we have 

(1-2) s* = aT* + x*, 
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where x * and x* are the regular and singular parts of x* defined above, respectively. 
The representation (1.2) is unique for any x* € (/*)*. 

PROOF : (i) Let us denote by x* the restriction of x* to the subspace li* and let 
x e h*. Then ||x - a:<n>||* ~* 0 and 

n 

*•(*<">) = VV(e j ) j C l , 
t = l 

Therefore, 

n oo 

x*(x) = Hma;*(x(n)) = l im]TV(e t )a ; t = ] T V ( e t ) ; r t . 
i = i t= i 

In view of the general representation of linear continuous functionals over h* 
(cf. formula (0.2)), we conclude that (z*(e t)) 6 / * \ 

(ii) This follows immediately from (i) and from the Holder inequality (0.3). 
(iii) Equality (1.2) is obvious. It is obvious also that x* and x* coincide on h. 

Therefore, they coincide also on h*. Hence it follows that x* is a singular functional. 
The uniqueness of the representation (1.2) is obvious. • 

Lemma 1.2. Assume that x € 5(/*) and x* £ RGrad(x) is represented by a se
quence X = (At) € /* . Then: 

(i) At£t > 0 for any i € N, 
(ii) if Xi0Xi0 > 0 and \xi0\ < at0 for some i0 £ supp x*, then I$(x) = a, where 

a = sup{h(y*«™**):\\yU<l}. 

PROOF : (i) Assume that Atoxto < 0 for a certain io € N and define 

X = 2_^ xiei ~~ xioei0-
.-/io 

Then we have ||x||$ = 1 and x*(x) > x*(x), a contradiction. 
(ii) Assume that Atoxto > 0 and |art-0| < at0 for some i0 € N as well as I$(x) < a. 

There is a number c,c> |ar,-0|, such that 

£*(*0 + *.«(c)<a. 
* * t 0 

Defining 

x** J2xiei + csgn(Xio)eio, 
t#to 

we get p | | * < 1 and x*(x) > %*(x), a contradiction. This finishes the proof. • 
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Lemma 1.3. Let a = sup{I*(y) : ||y||* < l} ,x 6 S(/*) and x* € RGrad(-r). Then 
supp x* C i i = {i € N : \xi\ = a,} whenever I$(x) < a. 

PROOF : Denote by A = (Xi) the sequence in /* which generates the functional x*. 
Assume now that I$(x) < a and there is i0 € supp x* which satisfies \xi0\ < a;0. 
Then there is a number c, \xi0\ < c < a»0, such that 

(1.3) Y,*i(xi) + $io(c)<l. 
t # t 0 

Defining 

(1.4) x = ^2 x*ei + csgn(Aio)ei0, 
»?-= to 

we have ||:r||$ = 1 and x*(x) = YlZi ^*x* > -CSi ^*x* = * > a contradiction. 
Therefore, the Lemma is proved. • 

Lemma 1.4. Let x € S(l*) and x* € RGrad(x). Then for every i,j € supp x* 
there exist di € d$i(xi),dj € 0$J(XJ) such that 

(1.5) x*(ei)dj = x*(ej)di. 

PROOF : Denote shortly x*(ei) = A;. In virtue of Lemma 1.2(i) and the definition 
of d$i(xi) we know that A;aj and A^a; are of the same sign. Therefore, we may 
assume without loss of generality that Xi > 0,dj > 0, Xj > 0, and d, > 0. If the 
equality (1.5) does not hold, then 

(1.6) Aid, 7- Xjdi 

for every d, € d$(xi),dj 6 d$(xj), where i,j € supp x*. Hence it follows that 

(1.7) A.*7(x,-) > A,*+(.-.) 

for some i,j £ supp x*. Indeed, if condition (1.6) is not satisfied, then 

(1.8) Wjixj) > ^t(xi) or X&Jixj) < X^f(xi). 

The first inequality of (1.8) is exactly inequality (1.7). If in the alternative (1.8) 
the second inequality holds, then it must be also 

(1.9) >«*t(*i) < W(*o-
Indeed, in the opposite case it would be 

(1.10) A ^ t f o ) > XWi), 
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because the equality is not possible by inequality (1.6). However, inequality (1.10) 
together with the second inequality in (1.8) and the fact that 9$*(u) are connected 
sets (intervals) for every k £ N yield that 

Xidj = Xjdi 

for some di € 9#,(x,) and dj € d$j(xj), a contradiction. This proves that condition 
(1.6) implies the alternative of conditions (1.9) and (1.10). However, the meanings of 
these two conditions are the same. Only the roles of i and j are changed. Therefore, 
we may assume that condition (1.7) holds. This implies that $f(xi) < -foo and 
Xi > 0. Therefore \xi\ < 6j. First, we restrict ourselves only to the case when 
$f(xi) > 0. Then, in virtue of inequality (1.7), we have 

\i/*f(xi) > A,/$7(x,). 
Thus, there exists a number k > 0 such that 

A;/$+(x.) > k > \j/*J(Xj). 

Since $ + is right-continuous and $ 7 ls left-continuous, there exist x. and Xj such 
that Xi < Xi < +00, 0 < xj < Xj, and 

(1.11) A,/#+(*.) > k > \i/*J(xj), 

(1.12) / " « + ( * ) * = [ ' *J(t)dt. 
Jn JXJ 

Let x = (JrOJJLj, where 

xn = xn when n ^ i and n ^ j , 

= Xi when n = i, 

= Xj when n = j . 

In virtue of equality (1.12) we have 

= I*(x) + / ' $f (<) dt - [ ' $j(t) dt = h(x) = 1. 
Jxi JXJ 

Therefore, ||*||* = L M o r e o v e r > 
#*(#) - s*(aO =(XiXi - Aj.Xi) - (A^ j - Xfij) 

=k(xi — Xi)Xi/k — k(xj — x~j)^j/k 

=*/* ' [A . /* -*+(*)+ *<(<)]* 
JX, 

(L13) -* j f ' I*7C) + ( V * - *7 ( ' ) ) ] d< 

=*{/" ' (A./* - *+(*)) * - j f ' ( A > / f c " *7 ( < ) ) d<} 

+ { / ' * + ( t ) # - / ' $j(t)dt)-
Jxi JXj 
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In virtue of equality (1.12) the value of the last bracket is equal to 0. Moreover, 

A,-/Jfc>*+(t) (V *€[*•,•,*,•]), 

A>/fc<*7(*) ( V t € [*,•,*>]). 

Therefore, 

(1.14) [X'{\i/k-$t(t)]dt>Q, 
J Xi 

(1.15) fi[\i/k~-$J(t)]dt<0. 
JXJ 

Combining equality (1.13) and inequalities (1.14) and (1.15), we get 

x*(x) > x*(x) = 1, 

which contradicts to the fact that x* t RGrad(ar). This finishes the proof in the 
case of $f(xi) > 0. 

Assume now that $f (x t) = 0. Then it must be $f (aTt) > 0 for any a7t > x t . 
Indeed, in the opposite case we have $f(x~i) = 0 for some xt > a?,-. Defining 
* — Y^j^ixjej + ^*et? w e have x E 5(/*) and x*(x) > x*(x)> a contradiction. 
Therefore, we can find xt > xt and XJ < Xj in such a way that equalities (1.12) and 
(1.13) hold, A t/k > $f(t) for any t G (x t , x~i] and \j/k < $J(t) for any t € \XJ,XJ]. 

Now, we can repeat the proof from the case of $f(xi) > 0. • 

Corol lary 1.5. Let $ and x 6 5(/*) be such that 9$,-(a;,-) = -f-oo or d$ t(a: t) = — oo 
/or a certain i € N. Then /or every x* G RGrad(x) it ratt-at be supp a;* C {& € N : 

N = M-
PROOF : This follows immediately from equality (1.5) of Lemma 1.4. • 

L e m m a 1.6. (i) Let # and x € S(/*) 6e such that Ax = {i G N : |a?,-| = a t} ̂  0. 
Let (Ai)»€>-«- 6e a family of nonnegative numbers such that $3t€A At = 1. Then the 
functional x* defined by the formula \ 

(1.16) x*(y) = J2 *.W*- (V V = (2/0 € /*) 
ieAx 

is a support functional at x. 
(ii) If additionally Af = {i € Ax : |x t | = &,} ?- 0, then every i* € RGrad(z) is 

of the form 

(1.17) **(y) = £ *Vi/*i (V y = (y.) € /*) , 

»€Af 

where A, > 0 for any i € A£° and X^A 0 0 *« = -•• 
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PROOF : (i) We have x*(x) = £ i € A a r
 A* = L Assume that y € B(l*). Then 

\y%\ f- o. for every i € N. Therefore, 

l**(y)l < £ A.ly.l/ai < £ A. = 1, 
t*€ .4j- t*€v4-, 

which means that ||:r*|| = 1, i.e. x* 6 RGrad(x). 
(ii) Assume that A£° ^ 0 and x* € RGrad(ar). Then, in virtue of Corollary 1.5, 

we have supp x* C A£°. Therefore, 

(1-18) s'(s/) = £ * i y , (Vy = (yO € . * ) , 

te^s0 

where z,- are some reals such that 

(119) x*(x) = ^ ZiXi = 1, 
*e.4~ 

(1.20) | | * 1 = 1. 

In virtue of Lemma 1.2(i), we have Aj = z,x, > 0. Moreover, in view of (1.19), 
we have Y^i£A°° ̂ t = 1. Since Zi = A,/x, for every i € A£°, we can write formula 
(1.18) in the form (1.16). • 

Lemma 1.7. Let x € S(l*). If d(x,h*) = inf{||x - y||* : y £ h*} < 1, then 
Grad(ar) = RGrad(x). 

PROOF : We have \\x - y||* < 1 for some y € h*. Let x* € Grad(ar). If x* in (1.1) 
is nonzero, then 

1 = | | * 1 = | |S-1 + 11*1 = x*(z) = .*•(«) + x ' (z - y) < \\x*\\ + \\x*\\ \\x - yU 

< 11**11+ 11**11 II*-ylk 

a contradiction. • 

Remark 1.8. If # and x € 5(/*) are such that Ax = {i 6 N : |x,| = a,} ^ 0, then 
RGrad(x) ^ 0. 

Indeed, in view of Lemma 1.6, the functional x* is defined by the formula 

**(y) = y,V*. (V j / = ( y . ) e **), 

where i € Ax, belongs to RGrad(x). 
The problem arises whether or not for every x € 5(1*), the condition I*(x) = a, 

where a = sup{I.f(y) : ||j/||$ < 1}, implies that RGrad(a*) ^ 0. The answer to 
this problem is negative. A counterexample will be given after the theorem written 
below. 
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Theorem 1.9. Let $ be a Musielak-Orlicz function, x € 5(/*),x* € (/*)*, A = 
supp x*. Then x* G RGrad(a:) if and only if 

(1.21) U(x) = a, where a = sup{I*(y) : ||y||* < l ,supp y C A}, 

(1.22) x*(y) = (Y,diyi)/C£diXi) (V y = (y.) € /*) , 
t€A i£A 

where 

(1.23) d, € d$(xi) for any i € A and ^d ,a : , - < +oo. 
t€-4 

PROOF : If \xi\ = a,- for any i € A, then condition (1.21) is satisfied. If |$,*0| < a,0 

for some i0 € A, then the necessity of condition (1.21) was proved in Lemxna 1.2,. 
Let x* € RGrad(x) and denote ar*(e,) = A,-. In virtue of Lemma 1.4 there exists 

a constant k > 0 such that A, = kd, for i € A, where d, € 3#,(a,,). Therefore, a:* is 
of the form 

(1.24) **(y) = k£>y,- (V y = (y,) € /*) . 
i€A 

By the assumption, 

1 = x*(x) = k / J ^ t ^ t , 
i€A 

whence it follows that d = (d,),€y4 satisfies condition (1.23) and k = l/(YlieA d%Xi). 
Combining this with "formula (1.24), we obtain formula (1.22). 

Assume now that x* is a functional from (/*)* satisfying conditions (1.21), (1.22) 
and (1.23). Then we have 

*(*,•) + $*(di) = diXi (V i £ A). 

Therefore 

(1.25) h(xA) + I*.(d) = J^diXi, 
t€-4 

whence it follows that I$*(d) < -fee, i.e. d € /**, whence d/k € /* , where 
^ == V E t ' e A ^ - * Thus, the linear functional x* defined by formula (1.22) is 
continuous over /*. It is evident that x*(x) = 1. Moreover, for every y € # ( /* ) , we 
have I$(yA) < a. Thus, in virtue of equality (1.25) and the Young inequality 

l X > y , | < h(yA) + h*(d) < a - r l * * ( d ) , 
t€*4 

we obtain |a;*(y)| < 1. Therefore, x* € RGrad(x), which finishes the proof. 
• 

Now, we are ready to give a counterexample announced before Theorem 1.9. 
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Example 1.10. Let # = ($,•)£,., where 

*,(t«) = |u| if |w| < 2-*"1 

= 2'(|u| - 2-*"1) + 2 " ' - 1 if M > 2 - ' " 1 . 

Define x = («0Si» w h e r e x« = 2""'~1 + 2~2i'1. We have $,•(*,•) = 2 " ' for every 
i € N. Therefore U(x) = 1 = a, whence ||g||* == 1. It is easily seen that $ j are 
smooth at Xi for any t € N and d^ifa) = {2*}. Moreover, 

oo oo oo oo 

£ 2'a;. = Y, 2,'(2—J + 2-21-1) > 5 ] 2i2"*"1 = ]T 1/2 = + oo. 
t = l i=-l t = l *=1 

Therefore, in virtue of Theorem 1.9, we have RGrad(ar) = 0. 

2. Singular suppo r t functionals. 
We start with the following 

L e m m a 2 .1 . Let $ and x € 5(/*) 6e atich that U(x) < 1, |x,| < a; /or every i € N. 
Let x* € Grad(.r) and A be a subset o/N. I/O < ||*A | |* < 1, <&en a?*(yA) = 0 /or 
every y £ B(Z*). 

PROOF : It follows by Lemma 1.2(H) that x* € SGrad(x). We divide the proof 
into two steps. 

I . First, we shall prove that 

(2.1) x*(xA) = 0. 

Assume for a contrary that x*(xA) > 0. Define 

y = xA/\\xA\\*. 

We have ||y||# = 1. Choose k € N in such a manner that I$(yAk) < 1/2, where 
Ak = {n € N : n > k}, and define 

Vi = y% if i € A and i > k, 

= 0 otherwise. 

Since y — y has only finite number of coordinates different from 0 and x* is singular, 
we have 

* , (y) = **(y) = * , ( x * ) / | | » * | | # . 

Let B = N \ A and I e N, / > k, be such that 

£ * , • ( * . ) < 1/2. 

t>J 



Support functionals and smoothness in Musielak-Orlicz sequence spaces ... 671 

Define w = (wi), where 

Wi = yi if i £ A and i > k, 

= Xi if i e B and i > l, 

= 0 otherwise. 

Then I*(w) < 1/2 + 1/2 = 1, whence ||w||* < 1. Moreover, 

x*(w) = x*(yA) + x*(xB) = x*(xA)/\\xAU + x*(xB) > 

>x*(xA) + x*(xB) = x*(x) = l, 

because the elements w — (yA + xB) and x — (xA +xB) have only finite number df 
coordinates different from 0 and x* is singular. This contradicts to the fact that 
x* € Grad(z) . 

I I . Assume now that there exists y 6 -B(l*), y ^ x, y ^ 0, such that 
x*(yA) ?- 0. We may assume without loss of generality that x*(yA) > 0 and 
llw^ll^ = 1 (considering y'Vlly'4!!* instead of yA if it is necessary). Choose m 6 N 
in such a way that 

£ <ř.(y.) < 1/2. 
t=m 
i€A 

Define w = (to,)?^, where 

w, = yt' when i € A and f > m, 

= a:, when i £ B and t > /, 

= 0 otherwise. 

Then 

U(w) = ]T <->,(*/,) + E *«(*•') < 2/2 + 1/2 = 1, 
i=m i=/ 
i€A i£B 

whence \\w\\$ < 1. Moreover, in view of singularity of #*, we have 

(2.2) * » = x*(yA) + x*(xB). 

In virtue of equality (2.1), we have 

x*(xB) = x*(x) - x*(xA) = x*(x) = 1. 

Combining this with equality (2.2), we get 

x*(w) = x*(yA) + x*(x) = x*(yA) + 1 > 1, 
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what contradicts to the fact that x* £ Grad(#). • 

Define for any Musielak-Orlicz function $: 

Sg(/*) = {x € 5(1*) : d(x, h*) = 1}, where d(x, fc*) = inf{Ik - l/lk : y € &*}. 

Lemma 2.2. Xet x 6 Sg(/*),NX = supp x, and x* € SGrad(z). let y € 5(/*) and 

N+ = {t € Nx : XiVi > 0 } , 

N" = {t G Nx : Wi < 0} , 

N° = {t € Nx : XiVi = 0 } . 

Then: 

(i) x*(yQ) > 0 whenever Q C N+, 
(ii) x*(yQ) < 0 whenever <2 C N", 

(iii) ar*(y^) = 0 whenever QcN°. 

PROOF : (ii) Let Q C N~~ and t € Q- Then x{yi < 0 and therefore 

|x, + yi| <max(|a?i|, |yi|), 

whence 
$i(xi + yi) < max(»t-(a,i), ^.-(y,-)) < *,-(*,•) + ^«(y.). 

Thus, 

I*(* + V9)<I»(a0 + W * ) < 2 . 
There exists a natural number k such that 

£>(*<+2/?) ^1' 

Define w = ( w , - ) ^ , where 

tyi = Xi + y? if i > k, 

= 0 if t < fc. 

We have I+(w) < 1, whence ||ttf|| < 1 and x*(w) < 1. Therefore, 

1 > * » = x*(x + yQ) = **(*) + x*(y<>) = 1 + * ' ( y * ) , 

whence x*(yQ) < 0. 

(i) Take Q C N+. Replacing y by -2/, we obtain the situation as in (ii), whence 
* * ( - y Q ) < 0, i.e. x*(y<*) > 0. 

Statement (iii) follows by (i) and (ii). • 
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We are now near the position to give a formula for singular support functionals. 
In virtue of Lemma 1.7 it follows that for x 6 S(l*) singular support functionals at 
the point x may only exist if d(x, h*) = 1. Moreover, in view of the Hahn-Banach 
theorem we have SGrad(rr) ^ 0 whenever x G 5(/*) and d(x, h*) = 1. We should 
note here that for x G 5(/*), we have d(x, /i*) = 1 if and only if 

oo 

(*) Y j $i(^xi) = + ° ° f° r a n v m £ N and any A > 1. 
t=m 

To obtain a formula for x* G SGrad(.r) if a: € Sg(/*), we shall first define on /* 
a Banach functional gx generated by a; € Sg(/*). By using the analytical version of 
the Hahn-Banach theorem, we shall deduce that there is a linear minorant for gx 

which coincide with gx on the set {Xx : X G R}, and we shall prove that every such 
a minorant is a singular support functional at x. 

Definition 2.3. If x G Sg(/*) then the collection E(x) = (N i ,N 2 , . . . ,N*) of 
pair wise disjoint subsets of N such that supp x = (Ji=i ^* *s s a ^ ^° ^ e a ^n^e 

decomposition of supp x. 
The set of all finite decompositions of supp a: for a: € Sg(/*) denote by £(x). 

Lemma 2.4. Let x G Sg(/*) and E(x) = (Nu...,Nk) G S(x). Then \\xNi\\* = 1 
for some i G {1 , . . . , k}. 

PROOF : Since I$(Xx) = -f-oo for every A > 1, it follows that there exists a number 
i G { l , . . . , k } such that I$(XxNi) = -f-oo for every A > 1, whence the equality 
||xN<||* = 1 follows. • 

Denote by ext E(x) the set of all N{ G E(x) such that Card(Nj) = +oo and 
xNi € gy*y I t fonows from Lemma 2.4 that ext E(x) ^ 0 for any x GSg(/*). 

Take an arbitrary element x G Sg(/*) and define on /* the following functionals: 

ax(y,E(x))= sup j im (yi/xi) (V y = (y.) G /*) , 
f 2 3 v N,€extE(«) » € N , , i - o o 

gx(y) = inf *x(y,E(x)) (V y = (y.) G /*) . 
#(*)€£(*) 

Lemma 2.5. Let x G Sg(/*). Then the functional gx defined by formula (2.3) is 
a Banach functional on / , i.e. gx is subadditive and positively homogeneous. 

PROOF : The equality gx(Xy) = Xgx(y) for any A > 0 and y G /* is obvious. Now, 
we shall prove the subadditivity of 0*. Take arbitrary y,z £l* and e > 0. We can 
find Ei = Ex(x) = (N i , . . . ,N f c ) G S(x) and £ 2 = E2(x) = ( # 1 , . . . , ^ ) G £(*) 
such that 

4o«(y) + e>(7x(y,.£?i), 
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Define a new decomposition of supp x, K0 = {N/ VI Nm}f=:1^l_1. Denote N/ f) Nm = 
N[m. If \\xN,m ||* = 1, then the inclusions N/m C Ni and N/m C N™ yield | |xN ' ||* = 
||arNm||# = 1. Therefore, 

<7x(t/,JE?0)= sup lim (yi/xi)< 
/ 0 .v JV,m€ext£;o »6N,m,t—oo 
(2.4) 

- s u p v - J i m (yilxi):=zcrx(y,Ei). 
Ni£extE «€N|,t—oo 

We can prove in the same way that <rx(t,E0) < <rx(t, J.1J2). Therefore, 

^ ( y + *) = inf crx(y + *,K) < ax(y + z,E0) < <rx(y,E0) + ax(z,E0) < 
Ee€(x) 

< ax(yyEi) + <rx(y,E2) < ax(y) + crx(2r) + 2e 

The arbitrariness of e > 0 yields <xx(?/ + z) < crx(y) + <7x(z). • 

N o t e . The functional <rx defined by formula (2.3) and generated by an element 
x G Sg(/*) is linear over the subspace lx = {Ax : A G R} . 

Definition 2.6. Let x G Sg(/*) and gx be the Banach functional defined by for
mula (2.3). Denote by B-lim(x) the set of all linear minorants for gxi i.e. the 
set of all linear continuous functional x* over /* such that x*(y) = gx(y) for any 
y G lx = {Ax : A € R} and x*(y) < gx(y) for every y G /*. 

In virtue of the analytical version of the Hahn-Banach theorem such a linear 
continuous functional always exists. Therefore B-lim(x) ^ 0 for every x G Sg(/*). 

For every x* G H-Hm (x) and every y G /*, we write 

x*(2/) = B-lim(y,/xj). 

Lemma 2.7. Let x, y,N+ ,N~" and N° be as in Lemma 2.2 and let gx G H-lim(x). 
Then 

(i) Qz(y
N+) = Qx(y) whenever gx(y) > 0, 

(ii) Hx^ ||$ < 1 and gx(y
N ) = gx(y) whenever gx(y) < 0. 

PROOF : (i) For any finite decomposition E = E(x) of supp x, E = ( N i , . . . , N*), 
define a new decomposition E0 = (Nt^",N~ ,Nf )*==!, where N-+ = Nj fl N+,N~ = 
N, fl N~~,Nf = N,- fl N°. Note that we defined in such a way a mapping 7 from 
£(x) into itself. Define 

SQ(x) = 7JS? = {JS70 :E0 = jE for some £ G S(x)}. 

In the same way as in (2.4), we have 

'-(v,-3«) < * « ( » , £ ) ( V y e / * ) . 
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Hence it follows that 

inf ax(y,E0) < inf ax(y,E) = ax(y). 
Eo€So(x) E£So(x) 

Since £0(x) C £(x), i.e. for any A € £o(x) there is B € £(x) such that A C B, we 
have 

E 0 €fo(x) 

In the same way we can obtain 

fo(»w+)=E,inf/i<r,(yw+,JEio). 
£ 0 €£o(*) 

Since ^x(y) > 0 by the assumption, in virtue of the definitions of N~ and N°, we 
have (defining the limits over finite sets to be equal to 0) 

iim (yi/xi) < 0 and lim (yi/*i) = 0. 
t'€/Vr,t—oo t€IV?,t—oo 

Hence it follows that 

Qx(y)= inf Qx(y,E0) = inf L lim (yi/xi) = 
V / # 0 €£o(*) ' £ 0 €£o(*) t€/V+next £0,»~H-oo 

= inf a y + , f t ) ^ y + ) . 
£o€£o(*) 

(ii) Assume that £.r(y) < 0. First, we shall prove that N+ $ extE(x). Assume 
for a contrary that N+ € ext E(x). In virtue of Lemma 2.4, we have N* € ext E(x) 
for some j € { 1 , . . . k}. Therefore 

°x(y,Eo)> lim" ( y , / s , ) > 0 ( V E 0 € ^ o W ) . 
t"€/VP,t—>+oo 

Hence 

£*(y)= ,, inf 0x(y>Eo)>O, 
E0ee0(x) 

a contradiction. Therefore N+ £ extE(x). In the same way we obtain N° £ 
ext E(x), whence JV+ £ ext E(») and JV? £ ext j£(;r) for any ; € { 1 , . . . fc}. There
fore, 

<rx(y,.E0)= sup lim (yi/xi) = <xx(y
N~ ,Eo), 

iV~€extJ?0 »€iVT ,t—+oo 

and Qx(y) = Qx(yN ), which finishes the proof. • 
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Theorem 2.8. Let $ € Sg(r*). Then x* € SGrad(z) if and only if x* € H-lim(a;). 

PROOF : Sufficiency. Take an arbitrary x* € B- lim(.r). It is obvious that x* is 
singular. Since x*(x) = 1, we have ||x*|| > 1. Take an arbitrary y € S(l*)>e > 0, 
and define ; 

N! = {i e supp x : \yi\ > (1 +e)|a,f-|}, N2 = supp x \ N2. 

The pair Ee = (N i , N2) is a finite decomposition of supp x. Let y = (y,-)£i> where 
y{ = yi sgn(.r0 (sgn(0) = 0 by the definition). Obviously y € 5( l*). If | | * ^ | | = 1, 
then'Hy^H* > (1-f e)||xNl||<i> = 1 + e, a contradiction. Therefore, ||a?Nl||* < *» ^ ^ 

This yields 

^ ( y - ^ e ) = . lim (yi/xi) < 1 + e. 
»€N2,t—*-l-oo 

£x(y)< Іnf ö x ( y , E c ) = l , 
£>0 

whence the inequality ||x*|| < 1 follows. Thus, in virtue of ||.r*|| > 1, we have 
||a,*|| = 1, i.e. x* € Grad(z). 

Necessity, Take an arbitrary x* € SGrad(x). We shall prove that x* € H-lim(x), 
i.e. x*(y) < Qx(y) for any y 6 /*. If this inequality does not hold, there exists 
y € 5(/*) such that 

x*(y) > Qx(y)> 

We shall show that this yields a contradiction. Let us consider for this purpose two 
cases separately. 
1) Qx(y) > 0. Define N+ = {i e Nx : xiVi > 0} ,N" = {t € Nx : 
Xiyi < 0},N° = {i € Ni : Xiyi = 0}, where Nx = supp ar.? In view of Lemma 2.7, 
we have Qx(y) = Qx(y

N )• Moreover, by Lemma 2.2, x*(yN") < 0 and x*(yN ) = 0. 
Thus 

X*(yN+) = X*(y) - X*(yN~ ) - X*(yN°) > X*(y) > Qx(y) = gx(y
N+). 

Therefore, we may assume without loss of generality in this case that xiyi > 0 
for any i G Nx. By the definition of ox(y), there exists a finite decomposition 
E = {Ni}?=1 of Nx such that 

(2.5) x*(y)>Qx(y,E)>Qx(y)>Q. 

Take a positive number e such that A-}-£ < x*(y)i where A = <rx(y, E). Define a new 
finite decomposition of NXiEe = {Nf, Nf, where Nf = N* fl Ne, Nf = Nj 0 N'„ and 

Ne = {i £ Nx : 0 < yi/x{ < A + e}, N* = N* \ Ne. 

Since xiyi > 0, we have Nx = Ne U N^. If N^ € ext Ee, by Lemma 2.4, there exists 
i0 such that Nfo € ext E€. We have 

lim (yi/xi) > A-fe. 
t€iV« .»—+00 
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Since Nf0 C Nt0 > we have 

i>lkN 'Mk>ll^lk = ii 

whence 

A = <rx(y, E) = sup lim (yj/xj) > lim (yi/xi) > A -f e, 
Ni€extE i€/V,,i—TOO ieN^fi^+QO 

a contradiction. Therefore, Ne $ exti?e. By Lemma 2.4, we conclude that Nc 6 

ext Ee. In virtue of Lemma 2.1, we have x*(xN<) = 0. Therefore, 

x*(y) = x*(yN<) + x*(yN*) = **(t/N*). 

Moreover, 

l|y"' Ik < I P + e)x"* ||* -= (A + e)||x"* ||* = A + e, 

whence 
x*(yAr')<||y ;vc | i*|K||<A+-e , 

what contradicts to the inequality A -f e < x*(y) = x*(yN ) written just after 
inequality (2.5). 

2) Qx(y) < 0. It follows from Lemma 2.7(H) that Ha^H* < 1 and Qx(y
N") 

= Qx(y). In view of Lemma 2.1, we have x*(yN ) = 0. Therefore, x*(y) = x*(yN ) 
and 

(2.6) x*(-yN") = -x*(yN") = -x*(y) < -Qx(y) = -Qx(y
N"). 

Putting z = -yN\ we have .^ar, > 0 for any t 6 N. By (2.6), 

x*(z) < -Qx(-z) = inf sup lim (-ZJ/XJ) = 

= sup inf lim (ZJ/XJ). 
E££(X) -V.GextE j€/V,,j--H-oo 

So, there exists a finite decomposition i£ = {Nt}t==1 of Nx such that 

Ђ*(Z) < inf liffî (Zj/Xj). 
NiЄextE j£ң.j->+oo 

Take a positive number e such that x*(z) < A - e and A - e > 0. In virtue of 
2t*t > 0, applying Lemma 2.2, we get x*(z) > 0. Define a finite decomposition Ee 

of Nx by Ee = {Nf ,N-}f=1, where Nf = Nt H Ne,Ni = Nt n N', and 

N* = {»• € Nx : 0 < Zi/xi < A - e}, N = {« € Nx : z t /x t > A - e}. 
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Since XiZi > 0 for any i € N, we have Ne U N' = Nx. First, we shall prove that 
Ne £ ext Ee. If not, Ne £ ext Ee and by Lemma 2.4 there exists to € { 1 , . . . , k) 
such that Nfo € ext Ee. Thus, 

A < Hm (zi/xi)< Hm (zi/xi) < A - e, 

which contradicts to e > 0. Thus, Ne $ extKc . Since x € Sg(l*), applying 
again Lemma 2.4, we get N € ext Ee. By Ne $ ext Ee and Lemma 2.1, we have 
x*(xN*) = 0. So, x*(xN>) = x*(ar) = 1. We have for any i € N', 

[ZJ — (A — e)xi]/xi > 0 and [zj — (A — e)xi]xi > 0. 

Thus, in view of Lemma 2.2, we get x*(zN — (A — e)xN ) > 0, i.e. 

x*(zN ) > (A - e)x*(xN') = A - e . 

But, on the other hand, by Ne £ extKc and Lemma 2.1, we have x*(zN ) = 0. 
Therefore, 

x*(zN') = x*(z) - x*(zN') = x*(z). 

Combining this with the previous inequality, we get x*(z) > A —e, which contradicts 
to the inequality x*(z) < A — e. The theorem is proved. • 

Theorem 2.9. Let x* = x * -f x* be a linear continuous functional over /*, where 
x* and x* are its regular and singular parts, respectively. Then 

(2.7) 11*1 = 11*1 + 11*1. 

PROOF : As it was already proved, we have 

oo 

X*(x) = J2X*(ei)X^ 

and x*(x) = 0 for every x € h*. We need to prove the inequality ||x*|| > ||JC*|| -f 
||x*||. Take an arbitrary e > 0. There exist x^^x™ € S(l*) such that 

(2.8) x*(xM)>\\x*\\-£-, 

(2.9) ' x V 2 ) ) > ||**|| - | . 

We shall consider two cases. 

I . xW has infinite number of coordinates different from 0. Since the series 
x*(x^) = J ] ^ i * ( 2%*(e,) is convergent, there exists a number k € N such that 

(2.10) l l > . 2 ) s - * ( e O I < e / 4 . 
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We have I*(x(1)) = £ £ i ^ ( . c ^ ) < 1, because ||.r(1)|| = 1. Thus, there exists 
a number / € N, / > k, such that 

(2.П) E^-o.^^E*^)' 
t = / tt=*r 

oo 

(2.12) lE^ 1 ) з г *( в 0l<7-
i = / 

Define 

*(3) = (»?>)£, 
where x\ = x\ when i > /, 

(2) 
= x) when i < k, 
= 0 otherwise. 

Applying (2.11) and (2.12), we get 

k—1 oo oo 

/*(*<*>) = E * ^ 2 ) ) + E * ^ ) <• E*^2)) <• L 
t= i t=/ t= i 

whence | |x (3 ) | |* < 1. Therefore, in virtue of (2.8), (2.9), (2.11) and (2.12), we have 

| | * 1 > x*(x{z)) = z*(:r(3)) + x*(x(3)) = 
fc-l oo 

= x*(x^) + Ez .Voo + v\<V(e.) = 
t = l t = / 

= x*(z(1)) + z*(a:(2)) - £ x ( 2 ) * * ( e t ) - $ > j V ( e O > 
t = * t = / 

oo oo 

> x*(x(1)) + «*(x (2)) - | E *,2)-5*(ei)l - I E a s . 1 ) x * ( e . ) l --
i=t i=i 

> (11*1 - \) + (11*1 -1) - § - 1 = 11*1 +11*1"£-
Since £ > 0 was arbitrary, this means that ||x*|| > ||-c**|| + ||**||. 

I I . x (2 ) has only finite number of coordinates different from 0, i.e. there exists 
a number k £ N such that x\ ' = 0 for any i > k. Let e € (0,2) and A = 1 — e/4. 
We have I$(A.r(2)) < ||A;r(2)||$ < 1. Choose a natural number /, / > k, in such 
a way that 

oo &-i 

(2.13; E* ' (X . 1 ) )< 1 -AE*<(X . 2 ) ) ' 
t = / t = l 

(2.14) |E*jV(e<)|<e/4. 
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Define 

- ^ - - ( - F t e i , 
where x\ = x\ ' when i > /, 

= Ax̂  when i < k, 
= 0 otherwise. 

Then, in view of (2.13) and (2,14), we have 

i*(x<3>) = £*,(Aa :f>)+f;$1(x< I>)<i ) 
t = i ;=/ 

whence | |x( 3 l$ < 1. We have 

11*1 > **(*(3>) = ş*(x(3>) + ЗГ(x(3)) = 
J f c - 1 

= x*(x<V) + A £ *j V ( e , ) + ]Tx| V ( e t ) = 
t= i t=( 

oo 

= x*(x(1>) + \x*(XW) + ] T x f >x*(e,) > 
i=( 

>(k*ii-|)+(i-|)(irn-|)-|> 
> 11*1 +11*1-e. 

The arbitrariness of e in (0,2) yields ||x*|| > ||x*|| + ||x *||. • 

Note. For Orlicz spaces over a non-atomic measure space Theorem 2.9 was proved 
by T. Ando in [1]. For Orlicz sequence spaces Theorem 2.9 was proved by M. Nowak 
in [9]. 

Theorem 2.10. Let x € S(/*) and x* € Grad(x). Then x* € SGrad(x) if and 
only if 

(2.15) x* = ax* + /3x2 , 

where a,0 > 0;a + fi = l,x* € RGrad(x) and x£ € SGrad(x). 

PROOF : It is obvious that x* £ Grad(x) whenever x* = ax\ + /?xj, where 
x*,xj € Grad(x) and a,/? > 0,e* + £ = 1. 

Take an arbitrary x* € Grad(x). In virtue of Lemma 1.1, x* can be uniquely 
represented in the form 

X s j + X , 

where x* and x* are the regular and singular parts of x*, respectively. In view of 
Theorem 2.9, we get 

11*1 = 115*11 + 11*1. 
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Hence it follows that 

x*{x) = \\x"\\ and .-•(.-)--||.£l. 

Indeed, in the opposite case it would be 

x*(x) = x*(x) + x*(x) < 11*1 + ||**|| = 1 

whence x*(x) < 1, a contradiction. Denote a = ||x*|| and fl = ||x*||. Then x* = 
^x * € RGrad(x) and x*. = \x* € SGrad(x). It is obvious that x* = ax J + /3x*,. • 

3 . Smoothness of/*. 
The following theorem characterizes smooth Musielak-Orlicz sequence spaces. 

Theorem 3.1 . A Musielak-Orlicz sequence space /* is smooth if and only if % 

(i) $ satisfies the 62-condition, 
(ii) /or every i,j £ N , i ^ j , we have #»(&») + $j(fy) > 1? 

(iii) for every i 6 N such that $J
r(6») < +00 and $»(&») < 1 does not exist 

j £ N, j 7- i, ana* c > 0 auch that d$j(c) 7- {0} ana* $i(6i) + #j(c) < 1, 
(iv) $»• are smooth on the intervals [0,a»). 

PROOF : Sufficiency. First, we shall prove that /* = h* whenever $ satisfies 
the 82"cor-dition. We want to prove that for every x € /* there exists a sequence 
(a , ( n ) )£! with x(n> e h such that ||x - x ( n ) | |* -> 0 as n -> +00. Let x € J* and 

n 

x ( n ) = ^ x » e » ( V n € N ) . 
i = l 

There is a number A > 0 such that 

00 

U(Xx) = 5^$i(Az») < +00 , 
i = l 

whence it follows that 

00 

(3.1) I*(A(x - x ( n ))) = J2 *i(Xxi) ^ O a s n - 4 + 0 0 . 
i=.n+l 

We need to prove that condition (3.1) implies that 

(3.2) L*(2A(x - x(n>)) -> 0 as n -> +00. 

Let e > 0 be given. Condition (3.1) implies that there exists a number no € N, 
n0 > m, such that 

00 

] T $i(Xzi) < min(a,e/2fc), 
i-=n0+l 
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and 

-£ c -<5' 
Є 

Ci < 

i'=rto-|-l 

where a, k, m and ( c , - ) ^ are the numbers and the sequence from the o2-COI-dition. 
Therefore, 

$i(Xxi) < min(a,e/2k) (V i > n 0 4-1), 

and, in consequence of the 82-condition, w e Se* 

$ t(2Ax.) < *$,-(Aa,t-) 4- ct (V i > n 0 4-1), 

whence 

oo oo oo 

£ ^(2XXi)<k £ *<(>«i)+ £ c ' < | + | = £ -
t=no+l i=no-fl i=no+l 

Therefore 
I$(2A(x - x(n))) <e (V n > n0), 

which means that condition (3.1) implies (3.2). This implication yields 

U(a(x - x{n))) -> 0 as n -> oo (V a > 0), 

what is equivalent to 

| | (a;- .r ( n ))) | |$ -> 0 as n -*4 -oo , 

and the equality /* = h* is proved. 
Thus, condition (i) implies that Grad(x) = RGrad(x) for any x € 5(/*). 

Now, conditions (ii), (iii) and (iv), and the representation formulae for x* 6 
RGrad(a:) when x € 5(/*) given in Chapter 1 imply that Card(Grad(.r)) = 1 for 
any x € »->(/*), i.e. /* is smooth. 

Necessity, (i) If condition (i) is not satisfied then there are two elements ar,y € /* 
such that ||x ||$ = ||y||$ = ||# 4- y||$ = 1 and the supports of x and y are disjoint 
(cf. [5]). Therefore, the element x -fy is not smooth (cf. [4], the proof of Theorem 8). 

Therefore, in the remaining part of the proof of necessity, we may assume (and 
we do it) that $ satisfies the 82-conc--fc-on- Assume now that condition (ii) is not 
satisfied, i.e. there exist i, j € N,i y- j , such that $i(bi) -f $j(bj) < 1. Then the 
element x = &,et 4- bj€j belongs to S(/*) and the functional 

**(»)-= V./&. ( V y e i * ) , 

• *l(v) = Vj/bj ( V y 6 . * ) 

are two different elements of Grad(ar). Therefore, f* is not smooth. 
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(iii) Assume without loss of generality that condition (ii) holds. If condition 
(iii) does not hold, there exist j ^ i and c > 0 such that d$j(c) ^ {0} and 
<->i(&i) + $j(c) < 1. In view of (ii) there is k € N, k / i, k ^ j , and d > 0 such that 

* K M + *j(<0 + **(<f) = l. 

Define x = b^e; -f ce/ + <fe*. Then a: G 5(/*), because /#(#) = 1. Take rji E 
d$i(bi),rjk € 9$fc(<i) and a, 6 6 d$-(c) ,a -^ 5, and define the functional 

•"»>-£:.?,::;. <v^>-
Obviously, .r* ^ x\ and, in virtue of Theorem 1.9, x j ,x j € Grad(x), i.e. x is not 
smooth, and so l* is not smooth, too. 

(iv) Assume without loss of generality that condition (ii) holds. If condition (iv) 
does not hold, then there exist numbers i € N and u 6 [0, a;] such that $ , is not 
smooth at M, i.e. d$i(u) is a nontrivial interval. In view of condition (ii) there exist 
two natural numbers j,k;j -̂  t , j ^ k,k ^ j , and two positive numbers v,w such 
that 

$f-(u) + $j(v) + $*(uO = l. 

Define x = uej -f ve^ -f we*. Then I$(ar) = 1, whence \\x\\$ = 1. Take c,d € 
d$(ti), c T«- d, e G d#j(v), / € d#fc(w), and define 

cu + ev + fw 

du -f ev + / tv 

Then x* ^ £*. and, in virtue of Theorem 1.9, x\,x\ € Grad(.r). Therefore, x is not 
smooth, and so /* is not smooth, too. • 

Remark 3.2. If # does not satisfy the 82-condition, then li* ^ /*. 
PROOF : The assumption implies that I* contains an isomorphically isometric 
copy of /°° (cf. [5]). Since h is not dense in l°°, it follows that h* ^ /*. • 
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