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On the Hammerstein integral equations in Banach spaces 

JANUSZ JANUSZEWSKI 

Abstract This paper contains some existence theorems for L\ -solutions of nonlinear in
tegral equations in Banach spaces. In our assumptions and proofs we employ measures of 
noncompactness. 

Keywords: Integral equations, measures of noncompactness 

Classification: 45N05 

1. Introduction. 
Assume that K, F are Banach spaces and D is a compact domain in the Euclidean 

space Rv. Denote by Lp = LP(D,E) (p > I) the space of all strongly measurable 
functions u : D —> E with fD r(t)\\u(t)\\p dt < oo, provided with the norm ||u||P)r = 
(JDr(t) | |u(t) | |pd t)1 / 'p , where r : D —* R is a nonnegative, bounded and integrable 
function such that mes{* € D : r(t) = 0} = 0. 

In this paper we give sufficient conditions for the existence of a solution x € Lp 

of .the integral equation 

(1) *(*) = g(t) + A / r(s)K(t, s)f(s, x(s)) ds 
JD 

or 

(2) x(t) = g(t) + / r(s)K(t, s)f(s, x(s)) ds. 
Jo 

Our results extend some theorems from the papers [8], [9], concerning Lp-solutions. 

Throughout this paper we shall assume that: 

1° p,q are real numbers such that p,o > 1 and p > min(#,2); let / = T^,rn = 

max(p, /) and let k be a number such that 1 < k < oo and | + —• + ^ = 1; 
2° g€LP; 

3° (s,a:)—.•/($,a:) is a function from D x E into F such that 
(i) / is strongly measurable in s and continuous in x\ 
(ii) ||/(.s, x)\\ < a(s) + b\\x\\plq for s G D and x € E, where a € Lr(D,R) and 
&>0; 

4° K is a strongly measurable function from D X D into the space of continuous 
linear mappings F —* E and 

/ / r(s) r(t)||K(t, a) | |m dsdt<oo. 

DxD 
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Denote by a and ap the Kuratowski measures of noncompactness in E and Lp, 
respectively. For any set V of functions from D into E denote by v the function 
defined by v(t) = a(V(t)) for t e D (under the convention that a(A) = oo if A is 
unbounded), where V(t) = {x(t) : x 6 V}. 

Without loss of generality we shall always assume that all functions from Ll(D,E) 
or L\(DyE) are extended to Rv by putting u(t) = 0 outside D. 

Before passing to further considerations we shall quote two lemmas. 

Lemma 1 (Heinz [5]). Let V be a countable set of strongly measurable functions 
D -> E such that there exists M € LX(D,R) such that \\x(t)\\ < M(t) for all x eV 
and t e D. Then the corresponding function v is integrable and a({JD x(t)dt : x € 
V})<2fDv(t)dt. 

Lemma 2 (Szufla [8]). Let V be a countable set of strongly measurable functions 
D —> E such that 

(i) there exists M € L*(D,R) such that \\x(t)\\ < M(t) for allxeV and t € D; 
(ii) lim/^o supx€V JD \\x(t + h) - *(<)U' * == 0. 

Then 

ap(v)<2([ vP(t)dt)ll* 
JD 

Let us recall that in the last twenty years the measure of noncompactness has 
been employed for differential and integral equations by many authors (see [1], [3], 
W. [«], M, [9])-
2. The existence of LJ-solutions. 

Theorem 1. Let h be a nonnegative function belonging to L*(D,R). If 

(3) a(f(t, X)) < h(t) a(X) for t € D 

and for each bounded subset X of E, then there exists a positive number g such that 
for any X € R with \X\ < Q, the equation (1) has at least one solution x € Itf. 

PROOF : For simplicity put 

Q = ( / K*)( / r(«)Mff(t,,)||'A)*/'*)1/*, 
JD JD 

S = ( / r(t) (I r(s)\\K(t, s)\\m dsylm dtyl* 
JD JD 

and k(t) = \\K(t, -)lkr. It follows from l°and 4°that Q, S < oo and k € L*. 
Choose a positive number Q such that 

Q < min ( sup f-IЫI-,. 
,"o <?(Nlf.r + hí'/f),2ЯI*ll âr.r/ 
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Fix X £ R with |A| < g and choose c > 0 satisfying the inequality ||<l||p,r + 
|A|Q(||a||g r + bc?t*) < c. Let B = {x G L? : | |x||p, r < c}. We define a mapping F 

by 

(4) F(x) (t) = g(t) + A / r(s) K(t, s) f(s, x(s)) ds 
JD 

for x € B,t e D. 
By the Fubini theorem for vector functions, the Holder inequality for Lv

r spaces 
and 1°- 4°, for any x € B the function F(x) is strongly measurable on D and 

(5) \\F(x)(t)\\<M(t) for t€D, 

where M(t) = | |g(t)| |+|A|k(t)(| |a| |gj r+6c*/9). It is clear that F is a mapping B -> B. 
Using the standard argument it can be shown that 1°- 4°imply the continuity of F. 

Furthermore, from the conditions 1°- 4°and the Holder inequality it follows that 

\\r(t + h) F(x) (t + h)~ r(t) F(x) (t)\\ < d(t, h) fof all x € B, 

where 

687 

d{t,h)={ 

r(t)M(t) if teD and t + h<£D 

\\r(t + h)g(t + h)-r(t)g(t)\\+ 

+|A|(||a|| í ir + 6c"/») {JD r{s)\\r{t + h) K(t + h, s)-

{ -r(t)K(t,s)\\>dsy/' ift,t + hčD. 

Let r(t) < R for t £ D. Since 

lim / \\r(t + h) K(t + h,s)- r(t) K(t, s)\\m dt = 0 for a.e. s e D, 
h-+° JD 

lim / [ / r(s)\\r(t + h) K(t + h, s) - r(t) K(t, s)\\l ds)m/l dt < 
fc-*0 j D j D 

< | i m / [ ( m e s D ) ' ~ - / r(.s)||r(t + h)K(t + h,s)~ 
h~+<> JD JD 

-r(t)K(t,s)\\mds]dt = 

= ( m e s D ) + - ^ l i m / r(s)[[ \\r(t + h)K(t + h,s)~ 
fe-fO JD JD 

~r(t)K(t,s)\\mdt]ds = 0 

^ d p $ m , we see that 

(6) lim Í d*(ţ,h)dt = 0. 
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Moreover 

(7) f f dp(t,s)dtds 

DxQv 

where 0-. means the closed ball in R v with center 0 and radius rj. This implies that 

(8) lim sup / \\r(t + h) F(x) (t + h) - r(t) F(x) (t)\\p dt = 0. 
h^Qx€BJD 

Let V be a countable subset of B such that 

(9) V C conv(F(V) U {0}). 

Then rV C Lp and by (5) 

(10) \\x(t)\\ < M(t) for x € V 

and for a.e. t € D. Hence ||/(.s,x(.s))|| < r](s) = a(s) + bMplq(s) for x eV,s £ D 
and .7 € Lq(D,R). By the Holder inequality, from this we deduce that for fixed 
t £ D the function s ~» ||K(<,s)|| rj(s) belongs to Ll

r(D,E). Moreover, from (10) 
and Lemma 1 it follows that the function t —> a(rV(t)) is measurable on D and 
a(V(t)) < 2M(t) for a.e. t € D. 

Therefore, by Lemma 1 and (3), we obtain 

v(t) < a(F(V) (t)) < a({\ f r(s) K(t, s) f(s,x(s)) ds : x € V}) < 
JD 

< 2|A| / a({r(s)K(t,s)f(s,x(s)) : x € V})ds < 
JD 

< 2|A| / r(.s)||K(*, s)\\ h(s) v(s) ds for a.e. t € D. 
JD 

Consequently, by the Holder inequality, we have 

v(t) < 2|A| P|U, r | |H|P ,r( / r(s) \\K(t, s)\r A ) 1 / m 

JD 

As the above inequality holds for a.e t € D, we get 

| |«||F>r<2|A|5||fc|U, r | |V | | , f r. 

Since |A|25p|| f e , r < 1, from this we infer that \\v\\p,r = 0. It follows from (8), (9 
and Lemma 2 that ap(rV) < 2\\rv\\p < 2.R1""p||t;||l,>r = 0, i.e. rV is relatively 
compact in Lp. 

We shall show that V is relatively compact in Lp. Let un € V for n = 1,2,. . . . 
Then there exists a subsequence (unk) of (un) such that lim*--<,oo ||runfc — tfo||p = 0 
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for some u0 G Lp. Put u(t) = u0(t)/r(t) for t € D such that r(t) ^ 0. Without 
loss of generality (by passing to a subsequence if necessary) we may assume that 
l im f c_0 0(r(t)un f c(t)-r(t) u(t)) = 0 for a.e. t € D. From (10) it is clear that \\unk(t)-
w(t)|| < 2M(t) for a.e. t G t). Thus, by Lebesgue theorem, 

lim \\unk - tt||;fP = lim / r(t)\\unk(t) - u(t)\\* dt = 

= I r(t) lim |K,(t)~n(t)|rdt = 0. 
/ D fc-k°° 

Hence, V is relatively compact in L9
T. Applying now the Monch fixed point theorem 

[7, Theorem 2.2]we conclude that there exists x G B such that x — F(x). Obviously 
a: is a solution of (1). • 

3. The Volterra-Hammerstein integral equation. 
Consider now the equation (2), with D = [0, d\. Choose n G (0, | ) and an interval 

J = [0,a] C D in such a way that for each e, 0 < e < rj, the maximal continuous 
solution ze of the integral equation 

z(t) = e + 2*"1 / r(s) (\\g(s)\\ + k(s) ||a||f ,P + bk^y'^s))? ds 
Jo 

is defined on J and z c (0 < 2o(*) + 1 for t G J. Let c = max t € j(z0(t) + I ) 1 / ' , £{! = 
L?(J,£), H = {* € L? : ||a;||p,r < c} and 1/ = {x G L? : | |x| |Pt r < r?}. Put F(x) (t) = 
£?(*) + /o r(s)K(t,s)f(s,x(s))ds for ar G L?,t G J. Then | |F(x)(t) | | < M(t) and 
||r(t -f /i) F(x) (t + h)- r(t) F(x) (t)\\ < d(t, h) for a; G B, t G J , where d satisfies (6) 
and (7). Moreover F is a continuous mapping L£ —» L£. 

Theorem 2. l e t h be a nonnegative function belonging to L*(D,R). If 1°- 4° 
hold and a ( / ( t , K ) ) < h(t)a(X) for t G D and for each bounded subset X of E, 
then the equation (2) has at least one solution x G Lf.. 

PROOF : For any positive integer n we define a function u n : J —* E by 

f o(t) for 0 < t < an 

U W + J o ' ^ r W ^ M ) / ^ ^ ) ) ^ for a n < t < a , 

where an = a/n. From the Holder inequality and 3° it follows that 

IMOII < h(t)\\ + fc(*)||o||,,r + bk(t) ( f r(-) | | t i . .(-) | | ' da)1'* 
JO 

and 

(i i) 

\K(t)-g(t)- í r(s)K(t,s)f(s,nn(s))ds\\< 
Jo 

< *»(*) (| |a| | í i r + b ( / ' r(s) \\un(s)\\> ds)1'") for t € J, 
Jo 
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where 

< an 

for an <t <a. 
_ / *(*) for 0 < < < e 

* " ( < ) " I | | tf(tv)x ( .-an , .) | | . ,r 

Putting wn(t) = JJ, r($) ||un(.s)|pd.s we see that 

wn(t) < f r(s) (\\g(s)\\ + *(*)|M|f ,r + bk(s)wn^(s))*> ds. 
Jo 

By the theorem on integral inequalities this implies wn(t) < zo(t) + 1 < cp for t € J. 
Hence un € B and ||tin(i)|| < ||y(*)|| + Jb(t)(|Mlffr + hcP,q) = -V(0- Moreover 
l imn_oo^n(0 = 0 and kn(t) < k(t) for a.e, t € J- By (11), limn_.+oo(««(*) -
F(un) (*)) = 0 for a.e. t £ J and limn_oo \\un - F(un)\\Ptr = 0. Arguing similarly as 
in the proof of Theorem 1, we can show that the set {un : n = 1,2,... } is relatively 
compact in L*\ Thus we can find a subsequence ( w n j of (un) which converges in L£ 
to a limit u. Consequently 

||tl - F(u)\\p>r = lim ||t*niB - F(Unk)||p,r = 0, 
k—~>oo 

which proves that u is a solution of (2). • 

Combining the proofs of Theorem 2 and Theorem from [9], we can prove the 
following Aronszajn-type 

Theorem 3. Under the assumptions of Theorem 2, the set S of all solutions x € JLf 
of (2) is a compact R$, i.e. S is homeomorphic to the intersection of a decreasing 
sequence of compact absolute retracts. 
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