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On accretive multivalued mappings in Banach spaces 

JOSEF KOLOMY 

Dedicated to t he m e m o r y of Zdenek Frolfk 

Abstract Let X be a uniformly Frechet smooth Banach space such that X* is FVechet 
smooth , A : X —+ 2X a maximal accretive mapping with W = int D(A) £ 0. Then the set 
C(A) of all points of W, where A is singlevalued and norm to norm upper semicontinuous 
is completely characterized. A different result for monotone operators was proved by 
Fabian [9]. The asymptotic behavior of resolvents of accretive mappings is considered 
with the solvability of operator equations . 

Keywords: Multivalued mappings, accretive operators, resolvents, operator equation, solv
ability 

Classification: 47H06, 47H15, 47H17, 54C60 

In t roduc t ion . 
The theory of monotone and accretive mappings, intensively studied in the last 

period, has fruitful applications in the theory of nonlinear partial, ordinary differ
ential and integral equations. 

The purpose of this note is two-fold. We prove that in a uniformly .Frechet 
smooth Banach space X having the Frechet smooth dual X*, the set of all points 
of W where a maximal accretive mapping A : X —> 2X with W = int D(A) 5-= 0 is 
singlevalued and norm to norm upper semicontinuous, is strictly equal to a dense Gs 
subset of W of all points of W where the function of the minimum modulus of the 
operator A (the Kenderov function), is continuous. The proof of this result relies 
among others on the adaptation of the Kenderov [18] method and the modification 
of the Fitzpatrick [10] lemma for monotone operators. Recall that Kenderov proved 
the following important result: If X is a Banach space which admits an equivalent 
norm such that its dual norm on X* is rotund and T : X —• 2X is monotone with 
Do = int D(T) -^ 0, then there exists a dense G$ subset C(f) of D0 such that T is 
singlevalued at the points of C(f)y where C(f) is a set of all points of Do, where 
the function / of the minimum modulus of the mapping T is continuous. 

The second result of this note concerns the asymptotic behavior of resolvents of 
accretive mappings acting in Banach spaces with the suitable geometric structure. 
The second result is related to the results of Reich [25], [26], [28] and Morosanu [24]. 
Recall that the various properties of monotone and accretive mappings were stud
ied, for instance, by Calvert, Fitzpatrick and Solomon [4], Fabian [8], [9], Kato [17], 
Kido [19] and Vesely [31] (see also references in these papers), while the further 
properties of asymptotic behavior of resolvents of accretive operators were investi
gated by Gobbo [12], Reich [27], Takahashi and Ueda [30]. For the basic properties 
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of accretive mappings and their applications, we refer to Barbu [1], Cioranescu [5] 
and Kato [17]. 

Definitions and notation. 
Let X be a real normed linear space, X* its dual space, (, ) the pairing between 

X and X*, Br(u) the closed ball centered about u G X and with the radius r > 0, 
Sr(u) its sphere. For the given set M C X, int M(inta M) denotes the interior of M 
(the algebraic interior of M) . According to [17], we define |G| for a set G C X , as 
follows: 

/ inf{||«|| : « € G}, i f G ^ 0 
| G | = \ + o o i f G = 0. 

By R, .R+, we denote the set of all real and nonnegative numbers, respectively. 
We use the standard notions for rotund (i.e. strictly convex) and uniformly ro
tund normed linear spaces and Gateaux and Frechet derivatives of functionals. By 
symbols cr(X,X*) and a(X*,X) we mean the weak and the weak* topology on X 
and X*, respectively. Recall that X is said to be: (i) smooth (Frechet smooth), if 
the norm of X is Gateaux (Frechet) differentiable on Si(0); (ii) uniformly Frechet 
smooth, if the norm of X is uniformly Frechet differentiable on 5i(0); (ii) an (H)-
space, if for each (un) C X, un —• u weakly, u G X, ||wn|| —• IM|, we have u n —• u 
in the norm of X; (iv) a dual Banach space, if there is a Banach space Z such that 
X = Z* (in the sense of topology and the norm). We shall say that X satisfies 
the Opial condition (see for instance [13]), if for each un C X, un —> Uo weakly 
in X,i*o € X , there is lim inf | |un — u\\ > lim inf ||wn — Uo|| for all u ^ u 0 ,u G X. 

n — • o o n — • o o 

Let Ey G be topological spaces, A : E —• 2G (where 2G denotes a system of all 
subsets of G) a multivalued mapping, D(A) = {u G E : A(u) / 0} its domain, 
G(A) = {(uyv) G E x G : u G D(A),v G A(u)} its graph in the space E x G. 
A mapping A : E —• 2G is said to be: (i) upper semicontinuous at uo € D(-4), if 
for each open subset W of G such that A(UQ) C PV, there exists an open neigh
borhood V of w0 such that A(u) C W for each v G V f) D(A); (ii) sequentially 
closed at u0 G D(A), if (wn) C D(A),un —• UQ,vn £ A(un) and vn —» v0 imply that 
VQ € A(uo). Let X be a real normed linear space. A duality mapping J : X —* 2X 

is defined by J(u) = {u* € X*, (tx*, u) = ||u||2, ||u*|| = ||u||} for each u € X. Recall 
that J(u) is a nonempty convex weakly* compact subset of X* for each u G X and 
that X is smooth (FVechet smooth), if and only if J is singlevalued (continuous) 
on X (see [6]). Recall that a mapping A : X —• 2X is said to be: (i) accretive if 
14* XA, where I is an, identity mapping in X, is expansive for each A > 0, i.e. if for 
eachu,v € D(A) and each x € A(w),y € A(v) there is ||(u — v) + \(x — y)\\ > \\u — v\\ 
for each A > 0 (equivalently, if for each u,v G D(A) and each x G A(u),y G A(v), 
there exists a point x* G J(u — v) such that (x — y,x*) > 0); (ii) maximal accre
tive, if A is accretive and if (u,x) G X x X is a given element such that for each 
v £ D(A) and y G A(v) there exists a point x* G J(u — v) such that (x — y, x*) > 0, 
then « G D(A) and a? G -4(u); (iii) m-accretive, if A is accretive and the range 
R(I + XA) of I + XA is equal to X for some A > 0. If A : X -+ 2X is an ac
cretive mapping with D(A) C X , then the so-called resolvent J\ = (I 4- AAl)""1 of 
A exists for each A > 0 and is singlevalued with the .domain D(J\) = R(I 4- AA) 
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and the range R(J\) = D(A). The Yoshida approximations (see [17]) A\ of A are 
defined by A\ = A"*1 (J — JA) for each A > 0. A mapping A : X —• 2X is said 
to be locally bounded at UQ € D(A), if there exists a neighborhood U of Uo such 
that A(U) = {A(u) : u € U H D(A)} is bounded in X. Notice (see [2]) that each 
accretive mapping A : X —• 2X can be extended (by the Zorn lemma) to a maximal 
accretive mapping. 

Results. Let X, Y be normed linear spaces, Y a dual Banach space {i.e. Y = Z* 
for some Banach space Z), A : X —• 2 y a mapping with D(A) C X. We shall say 
that A has a property (P) at uo € D(A), if the following condition is satisfied: If 
(ua) E D(A) is a net, ua —• uo in the norm of X, va € -4(utt) is such that | |va | | < C 
for some constant C > 0, then there exists a subnet (vai) of (v a) with the weak* 
limit point VQ such that vo € A(uo). 

Clearly, if A is closed at u0 from the norm topology of X to the weak* topology 
of Y, then A has the property (P) at UQ. 

Lemma 1. Let X,Y be normed linear spaces, Y a dual Banach space, A : X —* 2Y 

a mapping with D(A) C X. Suppose that A is locally bounded and possesses the 
property (P) at u0. Then A is norm to weak* upper semicontinuous at UQ. 

PROOF : Standard. Assume that A is not norm to weak* upper semicontinuous 
at u0. Then there exists a weak* open set V in Y such that A(UQ) C V and that for 
each open neighborhood U of UQ there is a point u € U such that A(u)D(X\V) ^ 0. 
For every n > 1 there exists un € int2?i/n(uo) such that A(un)C\(X\V) ^- 0. Then 
un —• uo and we choose vn G A(un) such that vn & X\V. As A is locally bounded 
at u0, vn is bounded and therefore there exists a subnet (vn<M) of (vn) and a point 
vo € Y such that vn a —• VQ weakly* in Y. Since A satisfies the condition (P) at uo, 
vo € A(uo) C V. On the other hand, (vn) C X \ V and X \ V is weakly* closed. 
Hence VQ € X \ V, a contradiction. • 

Note that a direct proof of a similar result was given in [22]. 

Lemma 2 [31] • Let X be a Banach space, A : X —• 2X an accretive mapping with 
W = in tD (A ) ^ 0. Then A is locally bounded on a dense open subset of W. 

Lemma 3 . Let X be a reflexive Banach space, A : X —• 2X an accretive mapping 
with W = int D(A) ^ 0. If A has the property (P) on W (in particular, A is norm 
to weak closed at the points of W), then there exists an open dense subset QofW 
such that A is norm to weak upper semicontinuous at the points of Q. 

PROOF : It depends on Lemma 1 and Lemma 2. • 

Let X be a Banach space, A : X —• 2X a mapping with D(A) C X. Define 
the Kenderov function (of the minimum modulus of A) f : X —• R+ U {+00} by 
/ (u) = i n f { | | x | | : x 6 A ( u ) } , u € K . 

Lemma 4. Let X be a dual Banach space, A : X —• 2X a mapping such that 
W = int D(A) ^ 0 and that A(u) is bounded for each u€W. If the graph G(A) of 
A is closed in (X, || • ||) x (X, a(Z*, Z)), then f is lower semicontinuous on X and 
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finite on W. Moreover, there exists a dense G$ subset C(f) of W such that f is 
continuous at the points of C(f). 

PROOF : Let a € R be arbitrary, we show that M = {u 6 X : f(u) < a} is 
closed. Suppose that u G M and let (un) C M be such that un —> u. For each n 
there exists xn € A(un) such that f(un) < \\xn\\ < f(un) + 1/n < a + 1/n, Hence 
there exists a point x £ X and a subnet (xHa) of (a:n) such that x*a —• x in the 
<r(Z*,Z)-topology of X. Since G(A) is closed in (X, | | • ||) x (X, cr(Z*, Z)), we see 
that (u,x) 6 G(A) and ||g|| < lim inf | | x n J | < a. As a: € -4(u), we conclude that 

f(u) < \\x\\ < a and therefore u € M. Moreover, A(«) is a(Z*, Z)-compact for each 
u £ W and since the norm in X is <r(.Z*,Z)-lower semicontinuous, we conclude 
that f(u) = min{||x|| : x G A(u)} for each u € W and / : W —> .R+. The rest is 
well-known. • 

Lemma 5. Let X be a reflexive smooth Banach space, A : X —• 2X an accretive 
mapping such that W = intD (A ) ^ 0 and that A(u) is a bounded set for each 
u € W. If G(A) is closed in (X, || • ||) x (X,<x(X,X*)), then for each (fixed) 
u £ C(f) there is f(u) = ||a:|| for each x € A(u). 

PROOF : See [21, Lemma 5]. • 

Lemma 6. Let X be a reflexive smooth and rotund Banach space, A : X —> 2X 

an accretive mapping with W = intD (A ) -̂  0. Suppose that A(u) is convex and 
bounded for each ueW. If G(A) is closed in (X, || • ||) x (X,or(K,X*)), then A is 
singlevalued at the points of the dense G& subset C(f) of W. 

PROOF : It is based on Lemmas 4, 5, and the fact that a convex set in the rotund 
space has at most one point with the minimum norm. • 

Proposition 1. Let X be a reflexive smooth rotund Banach space, A : X —> 2X 

an accretive mapping such thatW = intD(A) ^- 0. Suppose that A(u) is bounded 
convex for each u € W. If G(A) is closed in (X, || • ||) x (X,a(X,X*)) , then there 
exists a dense Gs subset WQ of W such that A is single valued and norm to weak 
upper semicontinuous on WQ. 

PROOF : According to Lemma 6, A is single valued at the points of the dense Gs 
subset C(f) of W. Since G(A} is closed in (X, || • ||) x (X, <J(X, X*)), A is norm to 
weak closed at the points of W. In view of Lemma 3, we conclude that A is norm 
to weak upper semicontinuous on a dense open subset Q of W. Now it is sufficient 
to set Wo = Q PI C(f), which proves our result. • 

Let X be a normed linear space, then each accretive mapping A : X —• 2X can be 
extended by the Zora lemma to the maximal accretive mapping A (see [2]). Recall 
that if A : X —* 2X is maximal accretive, then the following assertions are valid 
(compare [5] and [17]): 

(i) If X is smooth, then A(u) is convex and closed for each u € D(A)\ 
(ii) if X is fVechet smooth, then the graph G(A) of A is closed in (X, || • ||) x 
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S. Fitzpatrick [10] proved the following result: Let X be a Banach space, T : 
X —> 2X* a maximal monotone mapping with Do = mt D(T) ^ 0. Suppose that 
u0 6 Do is a point of continuity of the Kenderov function <p : D0 —• R+ defined by 
<p(u) = min{||u*|| : u* € T(u)},u G Do- If un G D0,un -> u0,un € T(un)^ € 
T(u0), then \\un\\ -> ||u0*||. 

We prove the following lemma 

Lemma 7. Let X be a uniformly Frechet smooth Banach space such that X* is 
Frechet smooth, A : X —* 2X an accretive mapping such that W = intD(AL) ^ 0 
and that G(A) is closed in (X, || • ||) x (X,a(X,X*)) . / / u0 € C ( / ) , u n € W,un -> 
uo,xn € A(un),a:o € A(u0), then \\xn\\ —> ||xo||, where C(f) is the set of all points 
of W, where the function f is continuous. 

PROOF : Since X* is Frechet smooth, X is a reflexive rotund (H)-space. As 
X* is uniformly rotund, we conclude that A is locally bounded at each point of 
W ([11]). In particular, A(u) is bounded for each x of W. First of all, we show 
that lim inf | |xn | | > ||a:o||. Suppose that lim inf ||a:n|| < ||a:o||. Without loss of 

n— ôo n— 0̂0 

generality, one can assume that ||a:n|| < ||x0|| — a for some a > 0 and infinitely 
many indexes n. Then there exists a subsequence of (a:n), say (a:n), such that 
a:n —> x weakly in X . Since G(A) is closed in (X, || • ||) x (X,<r(X,X*)),aT G A(u0) 
and ||aT|| < lim inf ||a:n||. According to Lemma 5, we have that ||aT|| = ||xo|| and 

n— ôo 
hence ||a:o|| < lim inf ||a:n|| < ||xo|| — a, a contradiction. 

n— 0̂0 

According to Lemma 4, the set C(f) of all points of W, where / is continuous, 
is a dense G& subset of W. Assume that lim sup||a;n|| > ||a:o||. Without loss of 

n - ~ • « > 

generality, one can assume that ||a:n|| > ||a:o|| + a for infinitely many indexes n 
and some a > 0. Let zn G X* be such that ||z*|| = 1 and (zn,xn) = ||a:n||. 
As X is reflexive and smooth, then the duality mapping J is singlevalued and 
surjective. Hence there exists zn G X such that zn = J(zn) and | |zn | | = 1. Now 
choose vn G int Bi/n(zn) such that u n + n_ 1 t ;n G C(f) for sufficiently large n. 
Note that this choice is possible, since u n + i n tn~ 1 5 i / n ( ^ n ) is open and C(f) is 
dense in W. Choose yn G A(un + n~~lvn). According to Lemma 5, we have that 
llVnll — f(un + n~~lvn) —> f(u0) = ||xo|| as n —> oo. Since A is accretive, we have 
that 0 < (yn - x„, J(un + n" 1 vn - un)) = n""1 (yn - x n , J(vn)). Hence 
(1) (yn, J(vn)) > (xn, J(vn)) = (*n, J(zn)) + (*n, J(vn) - J(zn)) > 

> (*„,*;> - | |xn | | ||J(VW) - J(*w) | | . 

Since A is locally bounded on W, we get that ||a:n|| < k for each n and some k > 0. 
But the uniform Frechet smoothness implies that a duality mapping J is uniformly 
continuous on bounded subsets of X (see [6]). As vn G mtB!/n(-?n), | |2n | | = 1, for 
a given a/(2k) there exists an integer no such that ||J(*>n) — J(*n)|| < a&^fc""1 for 
each n > n0 . l?Vom (1) and from the inequality ||a:n|| > ||x0 | | + a which is valid for 
infinitely many indexes, we conclude that (yn , J(vn)) > \\x0\\ + f for each n > n0 . 
On the other hand, (yn, J(vn)) < \\yj \\vn\\ < \\yj(\\zn\\ + n"1) = | |yn | | (l + n " 1 ) . 
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Hence 

llxoll + I < lim sup % : / > ! ! ) > < ifan sup ||?„||, 
«* n-+oo 1 + n l n—•oo 

a contradiction, since lim ||y || = ||x0 ||, which proves the assertion. • 
n—+oo 

Let X be a reflexive Banach space, A : X - • 2X a mapping such that 
i n t a D (A ) ^ 0. We shall say that A is (i) hemiclosed (i.e. closed from the 
line segments of X into the weak topology of X) at u0 € inta D(A) if for each 
u € X and each null sequence of positive numbers (tn) and xn € -4(un), where 
un = uo + t n u , u n € D(A) for sufficiently large n > no, | |xn | | < C for some 
C > 0, there exists a subsequence (a?njk) of (xn) with the weak limit point XQ 
such that xo € A(UQ); (ii) hemicontinuous (see [5]) at u0 € inta D(A), if for each 
sequence ( t n ) , where tn > 0,*n —> 0, and each u 6 X and .zn € -4(un) with 
u n = uo F tnu,un € D(A) for a sufficiently large n, we have that xn —• a;0 weakly 
in K and x0 € A(uo). 

Lemma 8. Let X be a reflexive Banach space, A : X —> 2X a mapping with 
in tD (A ) =fi 0. Then: (i) If A is singlevalued and hemiclosed and locally bounded 
at UQ € int D(A), then A is hemicontinuous at u0 ; (ii) If X is smooth rotund, 
A : X —• 2X is an accretive locally bounded mapping on in tD (A ) such that A(u) 
is convex for each u € in tD (A ) and G(A) is closed in (X, || • ||) x (X,a(X,X*)), 
then A is singlevalued at the points of the dense Gs subset C(f) C in tD (A ) and A 
is norm to weak upper semicontinuous on int D(A). 

PROOF : (i) Let (tn) be a sequence of positive numbers, tn - > 0 , u n = u0 + tnz, 
where z € X is arbitrary, u0 £ intD(A) . Then u n € D(A) for sufficiently large 
n > no. Let xn € A(un),n > no- Since u n —• u0 and A is locally bounded at uo, 
we have that (xn) is bounded and hence there exists a subsequence (xnk) of (xn) 
and XQ € X such that xnk —> x0 weakly in X. According to our hypotheses, A is 
singlevalued and hemiclosed at u0. Therefore x0 = A(UQ) and the whole sequence 
(x n ) converges to A(uo), and thus A is hemicontinuous at uo. 

(ii) According to Lemma 6, A is singlevalued on a dense G$ subset C(f) of 
int D(A). By Lemma 1, A is norm to weak upper semicontinuous on int D(A). • 

Theorem 1. Let X be a uniformly Frechet smooth Banach space such that X* is 
Frichet smooth, A : X —> 2X a maximal accretive mapping with W = int D(A) ^- 0. 

Then the set C(A) of all points of W, where A is singlevalued and norm to norm 
upper semicontinuous, is equal to the dense Gs subset C(f) of all points of W, 
where the function f is continuous. 

PROOF : Since X is smooth, A(u) is convex and closed for each u 6 W. Moreover, 
A is locally bounded at each point of W, in particular, A(u) is bounded for each 
u € W (see [11]). As X is EYechet smooth and A is maximal accretive, we have that 
the graph G(A) of A is closed in (K, || • ||) x (X, a(X,X*)). According to Lemma 4, 
the function / (defined in Lemma 4, where W C X) is lower semicontinuous and 
finite on W. Hence there exists a dense Gs subset C(f) of W such that minimum 
modulus function / of A is continuous at the points of C(f). Let u0 € C(f) be 
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arbitrary, we show that UQ € C(A). According to Lemma 8, we have that A(uo) 
is a singleton and A is norm to weak upper semicontinuous at UQ, i.e. whenever 
un —• uoyun £ TV, and xn € A(u0), then xn —> XQ = A(uo) weakly in X. By 
Lemma 5 (with W C X), we conclude that ||a:n|| —• ||x0 | |. As X* is Frechet smooth, 
X is an (H)-space and therefore xn —• #0 in the norm of X. Hence UQ € C(A ) and 
we have proved that C(f) C C(A). Suppose now that UQ € C(-4)- Since / is 
lower semicontinuous on K, it is sufficient to prove that / is upper semicontinuous 
at UQ. Assume that (un) C W,un —• UQ,XH € A(un). By our assumption, for 
a given e > 0 there exists an integer no such that | |xn — A(«o)|| < £ for each 
n > no. According to Lemma 5, we have that f(u0) = ||A(uo)|| and /(t*n) < lkn||-
Therefore /(tzn) < \\xn\\ < | |A(u0)| | + e = /(wo) + £ for each n > no, which gives 
that C(A) C C(f). Hence C(A) = C(f) and Theorem 1 is proved. • 

R e m a r k 1. Let X = L$(G) be an Orlicz space provided with the Orlicz norm, 
where G C jRn,mesC < +oo,_Rn denotes an n-dimensional Euclidean space and 
mes G is the Lebesgue measure of G. If N-function $ is strictly convex on [0, +00) 
and # and its dual function $* satisfy the A2-condition for the large arguments 
and, moreover, if $* is uniformly convex on [0, +00) in the sense that for a given 
e £ (0,1) there exists a constant p(e) € (0,1) such that 

* ' ( ! L r - ) ^ 1 ^ - 1 (•*(«)+•'(«)) 

for each u € [0, +00), then the assumptions of Theorem 1 are satisfied for the Orlicz 
space X = L$(G). Recall that L<t>(G) provided with an Orlicz norm, is uniformly 
rotund, if $ is uniformly convex on [0, +00) and satisfies the A2-condition (compare 
Hudzik [14], [15], Kaminska [16] and Shutao [29]). 

Recall that the continuity properties of accretive mappings were studied in re
flexive Frechet smooth spaces (see [31] and [22]). M. Fabian [8] proved a similar 
result under the additional assumptions on X and X* and a given operator A, see 
also [9]. 

We prove the second result of this note. First of all we shall use the following 
two lemmas. 

Lemma 9 ([5]). Let X be a normed linear 3pace} A: X —» 2X an accretive mapping 
withD(A)CX. Then: 

(i) \\Jx(x) - JA(y)|| < \\x - y\\ for each x, y G D(AX); 
(ii) Axx £ AJxx and \AJx(x)\ < \\A\x\\ for each x € D(AX). If x € D(A) 0 

D(AX), then \\Axx\\ < \Ax\. 

Lemma 10. Let X be a Banach space, K C X a closed subset, T ; K ~* X a non-
expansive mapping. Assume that one of the following two conditions is satisfied: 

(i) X is uniformly rotund, K is convex and bounded (see [3]); 
(ii) X satisfies the Opial condition (see [7]). 

Then I — T is sequentially weak to norm closed on K (i.e. if un -* uo weakly in X, 
u0 € K,un € K and (I — T)un-~* w0, then (I — T)UQ=* WQ). 
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Theorem 2. Let X be a Banach space, A: X —* 2X an accretive mapping. 

(i) If X is reflexive, A""1(0) ^ 0,A~~1 is strong to weak closed at 0, J : X —• 2X* 
is sequentially weak to weak closed at 0 and D(A) C f]{D(A\) : A > 0}, then 
the strong lim J\x exists for each x G D(A) and belongs to A-1(0). 

A->+oo 
(ii) Suppose that A.""1(0) is a singleton and (An) is a sequence of positive numbers 

such that An —> -foo as n —• oo. 
(a) If X is uniformly rotund and A is m-accretive, then J\nx —> x0 weakly 
for each x £ X and Ax0 = 0. 
(b) If X is reflexive and satisfies the Opial condition, D(A) is weakly closed 
and D(A) C f){D(A\) : A > 0}, then J\nx —• x0 weakly for each x € D(A) 
and Ax0 = 0. 

PROOF : (i) Let (An) be a sequence of positive numbers such that An —• +oo as 
n —j> oo. Take x € D(A) and set xn = J\nx. Then A"1 (a? — xn) = A " 1 ^ — J\nx) = 
A\nx € AJ\nx. Choose v € A^(0). By accretivity of A there exists xn € J(v — xn) 
such that 0 < (-(x - .xn)An"

1,acn). Therefore ((v - xn) + (x - t>),<) < °> w n l c n 

gives that 

||* - * n | | 2 < ( * - * , xn) < \\v - aril IKH = ||t; - x\\ \\v - xn\\. 

Therefore ||v—xn\\ < \\v—x\\ and hence (xn) is bounded. There exists a subsequence 
of (xn), say (xnk), such that xnk —> x0 weakly in X. Setting yn = x — xn, we get 
that yn 6 AnArn and An"

1yn —> 0 as n —> oo. As (xn, An
1yn) € G(A), we have that 

(An
1yn>a:n) € G^A""1). Since A""1 is norm to weak closed at 0, we conclude that 

XQ € A^(0), i.e. Ax0 3 0. Setting v = x0, there exist elements in J(x0 — a;n), 
say xn, such that ||x0 — xn\\

2 < (x0 — x, xn) for each n > 1. As (xn) is bounded, 
x* € J (# 0 — a:n), we see that (xn) is bounded. By reflexivity of X*, there exist 
a subsequence (a:* jfe) of (xn) and a point x0 € K* such that xnk - • xj weakly in X*. 
Since #0 — xnk —* 0 weakly in X and J is sequentially weak to weak closed at 0, 
we get that x0 = J(0) = 0. Hence xnk —• 0 weakly in X* and we conclude that 
the whole sequence (xn) converges weakly to 0. From the last inequality we obtain 
that xn —> x0 in the norm of X, which proves (i). 

Now assume (ii). Let (An) be a sequence of positive numbers such that lim An = 

+00. Put xn = J\nx, where x £ X in the case (a) or # € D(A) in the case (b). As 
in (i), we obtain that (xn) is bounded and hence there exists a subsequence of (xn), 
say (xnk), such that xnk —> x0 weakly. There exists R > 0 such that (xn) C BR(0). 
Moreover, x0 € BR(Q) and xn € D(A) and D(A) is weakly closed, x0 € D(A) in 
the case (b). Now we consider the nonexpansive mapping J\, where A = 1. Put 
J° = J\\B in the case (a), and J ° = Jij in the case (b). We have that 

||jrtt - J°a:n | | = \\xn - Jxxn\\ = | |i4i*n | | < |Axn | < Kl\\Vn\\ by Lemma 9, since 
KlVn € Axn and yn = x - xn. As A "̂1 ||2/r»|| ~* 0,xn - J°a;n -4 0 and we apply 
Lemma 10 to the restrictions J^B and Jij , respectively. As xo € -9^(0) and 

x0 € 5 ( 1 ) C f){D(A\) : A > 0} C I2(J + A) = D(J i ) in the case (b), we have that 
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(I—J\)XQ = 0 in the cases (a) and (b). Hence 0 = XQ— J\XQ = A\XQ = AJ\XQ =- AXQ 
and, moreover, the whole sequence (xn) is convergent to XQ weakly, which proves 
the assertion. • 

Recall that Reich [28] proved the following result: Let X be a smooth uniformly 
rotund Banach space with a duality map that is sequentially weak to weak con
tinuous at 0, A : X —> 2X an accretive operator such that D(A) is convex and 
R(I + XA) D D(A) for all A > 0. If 0 € R(A), then the strong lim Jxx = Qx for 

A—*4-oo 

each x € D(A), where Q is the unique sunny nonexpansive retraction of D( A) onto 
A""1(0). Compare also Reich [25], [26]. Another result concerning the asymptotic 
behavior of resolvents of accretive multivalued mappings acting in smooth Banach 
spaces X having X* FVechet smooth, has been proved in [23]. 

R e m a r k 2. 
If X is a uniformly Gateaux smooth Banach space such that for each sequence (xn) 

which is weakly convergent in X to XQ, there is lim inf | |xn — x|| > lim inf ||a?n — a?o|| 
n—•oo n—^oo 

for all x € K, then the duality mapping J is sequentially weak to weak* continuous 
at 0 (see Gossez and Lami Dozo [13]). Note [28] that each smooth OrliCz sequence 
space has a duality mapping which is sequentially weakly continuous at 0. 
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