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Generic chaos 

LUBOMÍR SNOHA 

Abstract. Due to A. Lasota, a continuous function / from a real compact interval I into 
itself is called generically chaotic if the set of all points [*,y], for which Urn inf |/n(ar) — 

n—»oo 
/ n (y ) | = 0 and lim sup|/n(*) — fn(y)\ > 0, is residual in I x I. In the paper the generically 

n—»oo 
chaotic functions are characterized in terms of behaviour of subintervals of J under iterates 
of / and also in terms of topological transitivity. Using this characterization some other 
properties of generically chaotic functions are proved. 

Keywords: Generic chaos, dense chaos, topological transitivity, topological entropy 

Classification: 58F13, 54H20, 26A18 

1. In t roduc t ion and main resu l t s . 
In this paper a function will always be a function belonging to the space C°(I , I ) 

of all continuous maps of a real compact interval I into itself, endowed with the 
topology of uniform convergence. For a function / and e > 0 define the following 
planar sets: 

C i ( / ) = {(*, v] € I2 : lim inf \f(x) - f(y)\ = 0}, 
n — • < » 

2 . W ) = {[*.V] 6 I2 : Um sup | / "0r ) - f (y)| > 0}, 
n—•oo 

C 2 (Le ) = {[x,y] 6 I2 : lim sup | / " (x) - f(y)\ > e}, 
n—*oo 

C(f) = c1(f)nc2(f), 
C(/,e)-C,(/)nC,(/,e). 

A function / is called chaotic in the sense of Li and Yorke (see [7]) if there is 
an uncountable set S such that C(f) D S x S\{[x,x] : x € / } . Clearly, S cannot 
contain more than one asymptotically periodic point, so our definition is equivalent 
to that in which S must be disjoint with the set of all asymptotically periodic points. 
Several conditions characterizing chaos in the sense of Li and Yorke are given in [5]. 

Recently A. Lasota (cf. [11]) proposed another definition of chaos, so-called 
generic chaos. Being inspired by his definition we introduce some other kinds of 
chaos. 

I would like to thank to J. Smital for encouragement and discussions, to M. Misiurewicz for 
a discussion on topological entropy and topological transitivity and to I. Mizera who is the author 
of Example 3.6. 
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Definition 1.1. A function / € C°(I,I) is called 

(i) (see [11]) genericaily chaotic if the set C(f) is residual in J2, 
(ii) genericaily e-chaotic if the set C ( / , e) is residual in I2, 

(iii) densely chaotic if the set C(f) is dense in J2, 
(iv) densely £-chaotic if the set C( / , e ) is dense in I2. 

Fix an integer r ^ 2 and a sequence 0 = a0 < a\ < • • • < a r = 1. Let / : [0,1] —• 
[0,1] be a map such that 

(i) (p{; = / | [ai_i,a,] is continuous and is differentiable in ]ai-i,Gi[ for i = 
l , . . . , r , 

(ii) </?i([ai_i,ai]) = [0,l] for i = 1 , . . . , r , 
(iii) there exists a q > 1 such that inf \y>\\ ^ q in ]ai_i,a,[ for i = 1 , . . . , r . 

J. Piorek [11] proved that such a function / is genericaily chaotic. 
The main result of this paper is the characterization of genericaily chaotic func­

tions given in Theorem 1.2. But first the notation used: Throughout the paper 
an interval will always be a nondegenerate interval lying in I. It will not neces­
sarily be compact. If J is an interval then diam J is its length. If A, B C I then 
dist(A, B) = inf {\x — y\:x£A,y£B}. We write dist(A, b) instead of dist(A, {6}). 
A compact interval J will be called an invariant transitive interval of / if it is / -
invariant and the restriction of / to the interval J is topologically transitive. For 
any set A C I, int A is the interior of A and Orb(/, A) = Unt=o fn(A). 

Theorem 1.2. Let f € C°(I,I). The following conditions are equivalent: 

(a) / is genericaily chaotic, 
(b) for some e > 0, f is genericaily e-chaotic, 
(c) for some e > 0, f is densely e-chaotic, 
(d) C\(f) is dense in I2 and C2(/) w a second Baire category set in any interval 

J2cP, 
(e) C\(f) is dense in I2 and for some e > 0, O2(/,£) is dense in I2, 
(f) the following two conditions are fulfilled simultaneously: 

(f-1) for every two intervals Ji, J2>-hn hrf d i s t ( / n (J i ) , / n (J 2 ) ) = 0; 
n— ôo 

(f-2) there exists an a > 0 such that for every interval J, 
lim sup d iam/ n (J ) > a, 

n~-*oo 

(g) the following two conditions are fulfilled simultaneously: 
(g-1) there exists a fixed point XQ of f such that for every interval J, 
l im n -oodis t ( / n (J ) ,x 0 ) = 0, 
(g-2) there exists a b > 0 such that for every interval J, 
lim inf d iam/ n (J ) > 6, 

n—*oo 

(h) the following two conditions are fulfilled simultaneously: 
(h-1) / has a unique invariant transitive interval or two invariant transitive 
intervals having one point in common, 
(h-2) for every interval J there is an invariant transitive interval T of f such 
thatOrb(f,J)ClmtTJ:(t. 
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Moreover, the equivalences (b)<£=> (c)<=>(e)<=>(f) hold with the same e and with 
a = e in (f-2). 

It is easy to see that in Theorem 1.2 we may without loss of generality assume 
that an interval always means a compact interval. 

The condition (h-2) is equivalent to the condition that the set of all x € I with 
Orb(/, {x}) VI int T = 0 for every invariant transitive interval T of / , is closed and 
nowhere dense in I. 

Any generically chaotic function is densely chaotic but not conversely (see Ex­
ample 3.6 below). 

As a consequence of (h)=>(a) we get that topologically transitive functions are 
generically chaotic. The converse statement is not true (see Example 3.1 and, for 
a stronger result, Example 3.2). 

Let e > 0. A function / is said to be Lyapunov e-unstable at a point x if for 
every neighbourhood U of ar, there is y € U and n ^ 0 with | / n (y ) — fn(x)\ > e. 
From (a)=>(f-2) it follows that if / is gemeric&lly chaotic then there exists an e > 0 
such that / is Lyapunov e-unstable at every point x € I (e does not depend on x). 
Consequently, any generically chaotic function has sensitive dependence on initial 
conditions (in the sense of [4]) and is topologically sensitive (in the sense of [3]). 
From (a)=>(g-2) and [12, pp . 83-84] we get the following stronger result: if / is 
generically chaotic, then there exists rj > 0 such that for each x £ I and for each 
typical point y chosen in I, we have | / n (y ) — fn(x)\ > *? for infinitely many n ^ 0. 

A function having positive topological entropy (and consequently a function 
chaotic in the sense of Li and Yorke) need not be generically chaotic, since it may 
be constant or identical in some interval. However, the converse statement is true. 
In fact, it is not difficult to show that every function satisfying the condition (g) 
has a horseshoe. Using the condition (h) we prove the following stronger result. 

Theorem 1.3. In the space C°(I,I) for every 0 < € < diam I the number 
(1/2) log 2 is the minimum of the topological entropies of all generically (or, equiv­
alent^, densely) e-chaotic functions (and hence also of all generically chaotic func­
tions). 

The position of generically chaotic functions in the Sarkovskii ordering (see [13]) 
is specified by the following 

Theorem 1.4. Let f G C°(I, I) be generically chaotic. Then f has a periodic orbit 
of period 2.3 and may or may not have periodic orbits of odd periods greater than 1. 

In connection with Theorem 1.3 and Theorem 1.4 we would like to emphasize 
that neither of the conditions (1) h(f) > (1/2) log 2 and (2) / has a periodic orbit 
of period 2.3, implies the other. 

It is well known (see [6] and [1]) that the set of all functions which are chaotic in 
the* sense of Li and Yorke is residual in the space C°(I, I). On the other hand, we 
have 

Theorem 1.5. The set of all generically chaotic functions is dense in itself but is 
nowhere dense in C°(I, I). The same is true for densely chaotic functions and also 
for generically (or, equivalently, densely) e-chaotic functions. 



796 L.Snoha 

2. Definitions, notations and known resu l t s . 
We recall some definitions not given in Section 1. The iterates of / € C°(I , I) 

are defined inductively by / ° =identity map and / n + 1 = fn o / , n > 0. A point 
x € I is periodic if fn(x) = a? for some n > 0. The least such n is called the 
period of x. A point of period one is called a fixed point. A point x is said to 
be an asymptotically periodic point of / if there is a periodic point p of / with 
limn^oo \fn(x) - fn(p)\ = 0. The orbit of x € I under / is orb(/ , x) = {fn(x) : n > 
0}. Thus orb(/ , x) = Orb(/ , {x}) since for A C I we put Orb(/, A) = (XLo / n ( ^ ) -
If no misunderstanding can arise we suppress / and shortly write orb(x) and Orb(A). 
If a; is periodic with period n then its orbit is also called periodic with period n. 
A function / is said to be topologically transitive if there is a point whose orbit 
under / is dense in I. Such points are called transitive. A set A C I is /-invariant 
if f(A) C A. A denotes the closure of A, / | A is the restriction of / to the set A. 
Functions / , g € C°(I>I) are topologically conjugate if there is a homeomorphism 
h : I —> I such that / = ho g o h~~l. In the sequel we will often write LSD(/, J) or 
LID(/, J) instead of lim sup d iam/ n (J ) or lim inf d i am/ n (J ) , respectively. 

n—oo n~-*°° 
We denote the topological entropy of / by h(f). If / is piecewise monotone then 

h(f) = limn_oo(l/n)4ogNn , where Nn is the number of monotone pieces of / n 

(see [8], [9]). Recall that the following conditions are equivalent (see e.g. [14] for 
references): 

0) *(/) > 0, 
(ii) / has a periodic orbit of period not a power of 2, 

(iii) / has a horseshoe, i.e. there are closed intervals J,K C I having at most 
one point in common, and positive integers ra,n such that JU K C fm(J) H 
f"(K). 

If / has positive topological entropy then / is chaotic in the sense of Li and Yorke 
but not conversely. 

The set of all fixed points of / will be denoted by Fix(/) and the set of all 
x € Fix(/) with limn-oo d i s t ( / n (J ) , s ) F- 0 by Fix( / ,J ) . 

Let m i n i = a0 < a\ < • • • < an = m a x / and 6, € I, i = 0 ,1 , . . . , n . Then by 
((ao, &o), • • * >(an5 bn)) will be denoted the piecewise linear function which sends â  
to biy i = 0 , 1 . . . , n and is linear on each interval [a,, at*+i], i = 0 , 1 . . . , n — 1. 
3 . Examples. 

We want to present some simple examples to illustrate Theorem 1.2. Here I 
will be the interval [0,1]. If / is one of the functions considered by J. Piorek (see 
Section 1) then for every interval J there is an n with fn(J) = [0,1]. Hence by 
Theorem 1.2, every such function is generically chaotic and is even topologically 
transitive and generically e-chaotic with any e < 1 (since (f)=>(b) holds with 
a = e). In particular, the standard tent map is such a function. 

Example 3 .1 . / = ((0,2/3), (1/3,1/3), (1/2,2/3), (2/3,1/3), (1,1/2)) is generi­
cally chaotic. In fact, it is generically e-chaotic with any e < 1/3, since for every 
interval J there is an n with fn(J) D [1/3,2/3]. The interval [1/3,2/3] is the unique 
invariant transitive interval of / . Slightly modifying this example, it is easy to find 
generically chaotic functions arbitrarily close to a constant function. 
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Example 3 .2 . / = <(0,0), (1/5,4/5), (2/5,1/5), (3/5,4/5), (4/5,1/5), (1,1)) is ge-
nerically e-chaotic with any e < 3/5. The interval [1/5,4/5] is the unique invariant 
transitive interval of / . One can easily find generically chaotic functions arbitrarily 
close to the identity map. The function / is not topologically transitive and though 
it is generically chaotic and onto, it is not possible to find a finite number of points 
x\,..., xn such that ( J ^ orb(x t) = [0,1]. 

Example 3.3. / = ((0,1/3), (1/6,0), (2/3,1), (1,1/3)) is generically e-chaotic with 
any e < 1/3. [0,1/3] and [1/3,1] are invariant transitive intervals of / . 

Example 3.4. / = ((0,0), (1/6,5/12), (1/4,11/12), (5/12,5/12), (1,1/8)) is gene­
rically e-chaotic with any e < 1/2. [1/6,11/12] is the unique invariant transitive 
interval of / . Here when investigating behaviour of intervals it is useful to consider 
the second iterate of / | [1/6,11/12]. 

Example 3.5. / = ((0,2/3), (2/9,1), (4/9,1/3), (5/9,2/3), (2/3,1/3), (1,0)) maps 
[0,1/3] onto [2/3,1] and vice versa. Thus it is not densely chaotic though, as one 
can show, there are two points xi,X2 with orb(xi) Uorb(a?2) = [0,1]. 

Example 3.6. ([10]) For n = 0 ,1 ,2 , . . . denote an = l - l / 3 n , bn = 1 —l/ (4 .3 n - 1 ) , 
cn = 1 - l / (2.3n) , In = [an, 1] and put 

/» = ((a0 ,a0) , (h, 1), ( c 0 , a 0 ) , . . . , (an , a n ) , (6n, 1), (cn,an), ( a n + i , a n +i) , (1,1)). 

Define the function / as the uniform limit of fn for n —• oo. Since all the intervals In 

are /-invariant, the function / does not satisfy the condition (f-2) from Theorem 1.2. 
Thus / is not generically chaotic. We are going to prove that / is densely chaotic. 
So let Ji, J2 be intervals. We need to prove that (Ji x J2) D C(f) ^ 0. But it is 
not difficult to see that for every interval J, Orb(/, J) 3 1 and consequently, there 
are nonnegative integers rys with /*(J i ) fl /*(J2) D I r- So it suffices to prove that 
(Ir x Ir)f)C(f) 7̂  0. But this is obvious, since / | Ir is chaotic in the sense of Li 
and Yorke (in fact, / ([a r ,6 r]) = f([br,cr]) = Ir and thus / has a horseshoe). 

Example 3.7. Let 0 < e < 1. Take e < 6 < 1 and define 

/ = ((0,8), (8/2,1), (8,8), (1,0)) 

Then / is generically e-chaotic and topologically transitive and a simple computa­
tion gives h(f) = (1/2) log 2. 

4. Preliminary results. 
To prove our main results we need several lemmas. Some of them are stated 

in stronger versions than necessary, since we hope that they themselves can be 
interesting. 

We omit the proof of the next lemma which follows easily from the uniform 
continuity of / . 
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Lemma 4.1. Let f € C°(I, I), g = fk for some positive integer k, J be an interval 
and A,B C I be nonempty sets. Then 

(i) limmf d is t ( / n (A ) , / n (B) ) = 0 if and only t/Hmmf dist(gn(A),gn(H)) = 0, 

(ii) liniXoo d i s t ( / n (A ) , / n (H ) ) = 0 if and only ifl!mn-*0o dist(gn(A),gn(B)) 
= 0, 

(iii) LID(/, J) = 0 if and only if LID(g, J) = 0, 
(iv) LSD(/, J) = 0 •/ and only if LSD(#, J) = 0, 
(v) / satisfies (f-2) if and only if g satisfies (f-2) (i.e. the condition (f-2) with f 

replaced by g and a > 0 replaced by some a' > 0 is fulfilled), 
(vi) / satisfies (g-2) if and only if g satisfies (g-2) (i.e. the condition (g-2) with 

f replaced by g and b > 0 replaced by some b' > 0 is fulfilled. Moreover, here 
we can put b' = b.). 

Lemma 4.2. Let / , F € C°(I, I) be topologically conjugate and let g = / * for some 
positive integer k. Then 

(|) C, ( / ) = CiO) <m<. C 2( / ) = Ct{g), 
(ii) / w generically or densely chaotic if and only if g is generically or densely 

chaotic, respectively, 
(iii) / is generically or densely chaotic if and only if F is generically or densely 

chaotic, respectively. 

PROOF : (i) is a consequence of Lemma 4.1 (i, ii) and (ii) follows from (i). We prove 
(iii). Let / = h o F o h"1 be a topological conjugacy. Then C(f) = {[h(x), h(y)] : 
[x,y] € C(F)} and the implication from the right to the left follows. The converse 
implication is a consequence of the symmetry of the relation of topological conju­
gacy. • 

Lemma 4.3. Let f € C®(I,I). Then the following three conditions are equivalent: 

(i) Ci(f) is residual in I2, 
(ii) C i ( / ) is dense in I2, 

(iii) (f-1) from Theorem 1.2. 

PROOF : The implications (i)=>(ii)=>(iii) are obvious. We are going to prove 
(iii)=>(i). So let (f-1) be fulfilled. Since Ct(f) = flZ^Lfal/n) where 
L(n,l/n) = {[x,y] € I2 : inf*>n \fk(x) - fk(y)\ < 1/n} are open sets, it suf­
fices to prove that for every n, L(n, 1/n) is dense in I2. So take any positive integer 
n and intervals Ju J2. We prove that L(n, l/n)fl(Ji x J2) / 0. From (f-1) it follows 
that there exists k > n with dis t( / f c(j1) , /*(j2)) < 1/n. This implies the existence 
of points x c= Jtly £ J2 such that |/*(a;) - fk(y)\ < 1/n. Hence [x,y] € L(n,l/n) 
and the proof is complete. • 

Remark 4.4. The equivalence (i)<=^(ii) follows also from the fact that Ci(f) = 
P C I flm-i U2 . .J I* , V] € I2 : \fk(x) - fk(y)\ < 1/n} is a G rse t . The sets C2(f) 
and C2(f,e) are of type G$9. 
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Lemma 4.5. Let f £ C (I,I) and let Jt,i = 1,2, . . . , n, be pairwise disjoint inter­
vals such that f(Ji) C Ji+i,z = 1 , . . . ,n - 1 and f(Jn) C Ji. Let the condition (f-1) 
from Theorem 1.2 be fulfilled. Then n < 2. 

P R O O F : Denote M = JJ* U • • • U Jn. 

Case 1. M is not an interval, i.e. M has at least two components. It follows from 
the assumptions that these components can be denoted by the symbols M\,..., M* 
such that f(Mi) C Mt-+1, t = 1 , . . . , k - 1 and f(Mk) C Mi. Since dist(Mi, Mj) > 0 
for i ^ j , we have lim inf d is t ( / n (Mi) , fn(M2)) > 0, a contradiction with (f-1). 

n — • o o 

Therefore Case 1 is impossible. 
Case 2. M is an interval. Let (Q\,..., Qn) be such a permutation of the intervals 
Ji,...,Jn that supQi < infQj for every i,j £ { l , . . . , n } , i < j . We are going 
to prove that n ^ 2. Assume on the contrary that n > 2. Then it cannot be 
that f(Qi) C Qn and f(Qn) C Qi simultaneously. Let, e.g., f(Qi) <£ Q„. Then 
f(Qi) C Qr for some 1 < r < n. Denote K = <22UQ3U- • -UQn. Then f(K)HQt ^ 
0, f(K) n Qn ^ 0, / ( K ) n Qr = 0. Since the set K \ K is finite and the set Qr is 
infinite, it is obvious that f(K) is not an interval. We have a contradiction because 
K is an interval. • 

Lemma 4.6. Let J be a bounded real interval and let f : J —> J be a conti­
nuous function without fixed points. Let K C J be a compact interval. Then 
l i m n ^ 0 0 d i a m / n ( K ) = 0. 

PROOF : Let f(x) > x for all x £ J (if f(x) < x for all x £ J, we proceed 
analogously). Denote sup J = 6. Let F be the continuous extension of / over the 
interval J U {b}. Then F(b) = b and for every x £ K, limn—oo fn(x) = 6. Let 
e > 0 and x £ K. Take a positive integer n(x) with fn{x\x) > b — e. Since / is 
continuous and for all y £ J we have f(y) > y, there exists an open neighbourhood 
U(x) of x such that for every n > n(x), fn{x)(U(x)) C)b - e,b[. Take xt,...,xk 

with \Jissl U(xi) D K and put N = max{n(.ri) : i = l , . . . , k } . Then for every 
n > N, fn(K) C ]b - e, b[ and the lemma follows. • 

Lemma 4.7. Let f £ C°(I,I) and J be a compact interval with LSD(/, J) > 0. 
Then Orb(J) contains a periodic point of f. Moreover, if the condition (f-1) from 
Theorem 1.2 is fulfilled then Orb(J) contains a periodic point of f with period 1 
or 2. 

PROOF : From the assumption LSD(/, J) > 0 it follows the existence of inte­
gers r ^ 0 and k > 1 such that fr(J) n fr+k(J) ^ 0. Then the sets Ki = 
U ^ o / r " f , > i * ( ' / ) ^ * = 0 , 1 , . . . , k - 1, are intervals. Thus the set Orb( / r (J ) ) = 
UisTo Ki has at most k components. Since / (K i ) = Ki+i for % = 0 , 1 , . . .,k — 2 
and /(Kfc-i) C KQ, it is possible to denote these components by the symbols 
Ji,J2,...,Jn,ft < k in such a way that / (J , ) = Ji+i for i = l , . . . , n - 1 and 
/ ( J n ) C Ji- (Here notice that by Lemma 4.5 the condition (f-1) would imply 
n < 2 . ) 

Denote g = fn. Then g(Ji) C Ji,« = l , - . . , n . The compact interval / r (J ) 
is a subset of Js for some s £ { l , . . . , n } . Since LSD(/,J) > 0 we also have 
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L S D ( / , / r ( J ) ) > 0 and by Lemma 4.1 (iv), LSD(g , / r ( J ) ) > 0. Now it follows from 
Lemma 4.6 that g = fn must have a fixed point in Ja. This point is a periodic 
point of / and lies in Orb( J ) since J3 C Orb( J ) . 

The proof of the lemma will be complete if we realize that (f-1) implies n < 2 and 
that the fixed point of g = fn where n = 1 or 2 is a periodic point of / of period 1 
or 2. • 

Lemma 4 .8 . Let f £ C°(I,I), let C\(f) be dense in I2 and let for every interval 
A C. I, the set C%(f) he of the second category in A2. Let XQ be a fixed point of f. 
Then there exists 6 > 0 such that no interval containing XQ and having diameter 
less than 6 is f-invariant. 

PROOF : Since the closure of an invariant interval is an invariant interval with the 
same diameter it suffices to prove the claim of our lemma for compact intervals. 
Assume on the contrary that for every 6 > 0 there is a compact interval J(6) with 
the properties: XQ € -̂ (̂ )» diam J(6) < 8, f(J(6)) C J(6). Infinitely many of the 
intervals J ( l / n ) , n = 1,2,... have the right endpoints greater than XQ or infinitely 
many of them have the left endpoints less than x0. Without loss of generality we 
may suppose the former possibility. Further take into account that the intersection 
of two compact invariant intervals is a compact invariant interval. Now it is not 
difficult to see that there exists a sequence of invariant intervals Jn^Ti = 1,2,. . . 
of the form J n = [xQ — an,xQ + bn] where limn_+00 an = 0,limn-H.oo bn = 0 and for 
every n, 0 < 6n+i < 6n,0 ^ an+i < an and an+i = an if and only if an = 0. 

Case 1. For every nyan > 0. Then for every n we have Jn+\ C int J n . Let m be 
a positive integer. By Lemma 4.3 the set C\(f) is residual in I x J m + i . Thus there 
exists a set Km C I such that Km is residual in I and for every x £ Km there is 
y £ Jm+i with lim inf | / n (x ) — fn(y)\ = 0. Since Jm+i C int J m and the interval 

n—>oo 

J m is invariant, we can see that for every x £ Km there exists a positive integer 
m(x) such that o r b ( / m ^ ( x ) ) C Jm- Now consider the set K = Hm-si ^ m * ^ *s 

residual in I and it is easy to see that for every x £ K,limn_+oo fn(x) = XQ. 
Case 2. For some n,an = 0 . Without loss of generality we may assume that ai = 0 
and consequently an = 0 for all n. Now we cannot use the inclusions J n +i C int J n 

from Case 1. But it suffices to take into account that / ( J i ) C Ji and analogously as 
in Case 1 we can prove that the orbits of points from Ji generically converge to XQ , 
i.e. that there exists a set K C J i , K residual in Ji such that limw-^oo fn(x) = xQ 

for all x £ K. 
We can see that in either case there are an interval A C I and a set K C A, 

K residual in A such that for any x £ K)Y\mn-+00f
n(x) = XQ. Consequently, for 

every [x,y] £ K2 we have llmn^00\f
n(x) — fn(y)\ = 0. Since K2 is residual in 

A2 we get that Ct(f) is a first category set in A2. This contradiction finishes the 
proof. • 

Lemma 4.9. Let f £ CQ(I, J), XQ be a fixed point of f and let the condition 
(f-1) from Theorem 1.2 be fulfilled. Let there exist arbitrarily small f-invariant 
intervals arbitrarily close to the point XQ. Then there exist arbitrarily small / -
invariant intervals containing the point x0. 
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PROOF : Let the assumptions be fulfilled. We have a sequence of points xn and 
a sequence of invariant intervals Jnin = 1,2,. . . , such that xn G Jn>firnn_-.>oo-Cn = 
XQ , limn-^oo diam J n = 0. Without loss of generality we can assume that XQ is not 
the right endpoint of I and that xn ^ x0 for all n. If for infinitely many n we have 
xn = XQ, the lemma is proved. So let us consider the opposite case. We may assume 
that xn > XQ for all n = 1,2, 

Case 1. For some i, inf J,- > XQ. Since limn._>oo xn = XQ and limn_KX> diam J n = 0, it 
is possible to find an interval Jj such that dist( Jj , Jj) > 0. Since the intervals Jj , Jj 
are /-invariant we have a contradiction with (f-1). Therefore this case is impossible. 

Case 2. For all i, inf J, < XQ. Then the intervals Jj are /-invariant, they contain 
the point x0 and limn_oodiam(J t) = 0. The lemma is proved. • 

Lemma 4.10. Let f G C°(I, I), xo be a fixed point of / , M be an interval con­
taining XQ. Let for every x G M, lim inf \fn(x) — XQ\ = 0 . Then 

n—•oo 

(i) if x € Orb(M) and x < XQ or x > XQ then for every positive integer 
k, fk(x) > x or fk(x) < Xj respectively, 

(ii) M U f(M) is an f -invariant interval. 

PROOF : (i) If the assumptions of the lemma are fulfilled, Orb(M) is an interval 
containing XQ and for every x G Orb(M), lim inf \fn(x) — XQ\ = 0. It follows from 

n—>oo 

it that it suffices to prove (i) with Orb(M) replaced by M. So let y G M, y < xQ 

(if y > XQ the proof is similar). Suppose on the contrary that fk(y) < y for some 
positive integer k. Denote fk = g. By Lemma 4.1 (i) we have lim inf \gn(y) — XQ\ 

n—->oo 

= 0. Hence gn(y) ^ y for n = 1,2, Thus there exists a positive integer r such 
that gr(y) < gr~1(y) < • • • < g(y) < y and gr(y) < gr^"1(y). Take a fixed point p of 
g between gr(y) and gr~1(y) and a point q between y and x0 with gr(q) = p. Then 
q G M and lim inf \gn(q) — x0\ > 0, which is a contradiction (see Lemma 4.1 (i)). 

n—•oo 

(ii) Clearly, K = M U / ( M ) is an interval. We are going to prove that f(K) C K. 
Suppose this is not the case. Then there exists an a € f(M)\M such that f(a) $ K. 
Since a £ M , we have a > supM or a < inf M. Without loss of generality we may 
assume that a > sup M. By (i) there is a b G M, b < x0 with f(b) = a. Further, 
by (i), f(a) < a. Since / (a ) $ K, we have f(a) < inf M. Hence f2(b) < o, which is 
a contradiction with (i). 

L e m m a 4 .11 . Let f G C°(I, J ) ,x 0 &e a ./ixed point 0 / / , J be a compact interval 
Let for every x G J,lim inf \fn(x) — XQ\ = 0. Then limn_+oodiam/n(J) = 0. 

n—>oo 

PROOF : Let the assumptions be fulfilled and let LSD(/, J ) > 0. Then according 
to Lemma 4.7, Orb( J ) contains a periodic point p of / . Since lim inf \fn(p)—#o| = 0 

n—*oo 

it must be p = XQ. Hence for some s we have XQ € / * ( J ) . Without loss of generality 
we may assume that XQ G J . Denote K = J U / ( J ) . By Lemma 4.10, f(K) C K. 
To finish the proof it suffices to show that limn_.*oodiam/n(K) = 0. Since K D 
f(K) D f2(K) D • • • D {XQ}, it suffices to prove that fXLo fn(K) = M' Deno^ 
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this intersection by A and suppose that A ^ {XQ}. Then A is a compact interval 
and it is easy to see that f(A) = A. Then (see [14, p. 45]) / has at least two 
periodic points in the interval A. We have a contradiction since for every a: € A, 
lim inf \fn(x) - x0 \ = 0. ~ • 

n—+oo 

Lemma 4.12. Let f € C°(I,I) and J be an interval. Then the following two 
conditions are equivalent: 

(1) there are x,y € J with lim inf \fn(x) - fn(y)\ > 0, 

(2) there are x,y € J with lim sup\fn(x) - fn(y)\ > 0. 
n—>oo 

Further, the following two conditions are equivalent: 

(3) L I D ( / , J ) > 0 , 
(4) L S D ( / , J ) > 0 , 

and either of the conditions (1), (2) implies either of the conditions (3), (4). More­
over, if J is a compact interval then all the conditions ( l)-(4) are equivalent 

PROOF : The implications (1) = > (3) = > (4) and (1) ==> (2) = > (4) are 
obvious for arbitrary intervals. Now let J be a compact interval. We are going 
to prove that then (4) -===> (1). So let LSD(/,J) > 0 and for every x,y € J, 
lim inf \fn(x) — / n ( y ) | = 0. According to Lemma 4.7 there exist a point XQ € I , 

n—•oo 

a nonnegative integer s and a positive integer r such that XQ € fs(J) and /r(-£o) = 
XQ. Denote f9(J) = K and fr = g. Then K is a compact interval, g(xQ) = x0 

and by Lemma 4.1 (i) we have lim inf \gn(x) — XQ\ = 0 for every x £ K. From 
n—^oo 

Lemma 4.11 we get LSD($r,J) = 0. By Lemma 4.1 (iv), LSD(/,J) = 0. This 
contradiction finishes the proof that for a compact interval J, all the conditions 
(l)-(4) are equivalent. To complete the proof of the lemma we need to prove 
that (2) = > (1) and (4) = > (3) for any interval J. The former implication is 
a consequence of the facts that it holds for compact intervals and for any x, y € J 
there is a compact subinterval of J containing x,y. The latter implication follows 
from the equalities LSD(/, J) = LSDf/, 7 ) and LID(/, J) = LID(/, J). • 
Remark 4.13. In several lemmas we have the assumption that some interval is 
compact. They do not hold without this assumption. For example if we take 
1* = [0,1] and f(x) = xll2, then (4) ==> (1) in Lemma 4.12 does not hold for 

J=]o,i]. 
Remark 4.14. Using Lemma 4.12 one can provg that the following conditions are 
equivalent (cf. Lemma 4.3): 

(i) Ct(f) is dense in J2 , 
(ii) for every interval J , LSD(/, J) > 0, 

(iii) for every interval J, LID(/, J) > 0. 
Example 3.6 shows that if the set Cz(f) is dense in I2 then it need not be residual 
i n / 2 . 

Lemma 4.15. Let f € C°(I, I) and let there be an a > 0 such that for every 
interval J, LSD(/, J) > a. Then there are e > 0 and 6 > 0 such that for every 
interval J, LSD(/, J) > a + e and LID(/, J) > b. 
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P R O O F : Let the assumptions be fulfilled and let J , , i = 1 ,2 , . . . ,k be intervals 
such that IJ,*=i Ji = I and diam J; < a/2 for every t. Denote a' = min{LSD(/, Ji) : 
t = 1,2, . . . ,*} and b' = min{LID(/, J t ) : i = 1,2,'. . . , * } . Then a1 > a and by 
Lemma 4.12, V > 0. Now take any interval J . Since LSD(/, J ) > a we have 
fn(J) D Jj for some j € {1,2, . . . , * } and some nonnegative integer n. Thus 
LSD(/, J ) > LSD(/, Jj) ^ a' and LID(/, J ) ^ LID(/, Jj) > 6'. The lemma follows. 

• 

Lemma 4.16. Let f £ C0(I,I). Then the following four conditions are equivalent: 

(i) there exists an a > 0 such that for every interval J , LSD(/, J ) > a (i.e. the 
condition (f-2) /rom Theorem 1.2), 

(ii) tf&ere exwts a b > 0 such that for every interval J, LID(/, J ) > b (i.e. the 
condition (g-2) from Theorem 1.2), 

(iii) there exists an a > 0 such that the set C2(/><*) M residual in I 2 , 
(iv) there exists an a > 0 such that the set O2(/>a) M den-se m J2 . 

The equivalences (i)4=J>(iii)<=^(iv) hold with the same a > 0. i£ach of these four 
conditions implies the condition 

(v) C2(f) is residual in I2 

and the condition (v) implies the condition 

(vi) O2(/) is a second Baire category set in J2 for every interval J. 

Moreover, if (f-1) from Theorem 1.2 is fulfilled then all the conditions (i)-(vi) are 
equivalent. 

PROOF : (i)=>(ii) follows from Lemma 4.15, (ii)===I>(i) is trivial. 
(i)=^(iii) Let (i) be fulfilled. By Lemma 4.15 there is an e > 0 such that for 

every interval J , LSD(/, J ) > a + e. Since C2(f,a) D (XLi ft(/-w,a + e) where 
C2(f,n,c) = {[x,y] £ I 2 : supfc^n \fk(x) — /*(y) | > c}, it suffices to prove that the 
sets C2(f, n> a + e) are residual for every n. But these sets are open, so it suffices to 
prove that they are dense in if2. Let n be a positive integer and J i , J2 be intervals. 
We are going to prove that there are x £ J i , y € J2 with [x,y] £ C2(f,n,a + e). 

Case 1. For some r, fr(J\) C fr(J2)- Since LSD(/, J i ) > a + e we can take k > 
max{r,n} with d iam/*(J i ) > a + e. Since / * ( J i ) C /*(J2) there are a? € J i ,y € J2 
with | /*(x) - /*(y) | > a + e whence [x,y] 6 C2(f,n1a + e). 

Case 2. For every r , / r ( J i ) \ / r ( J 2 ) 7- 0. Now take k > n with d iam/*(J 2 ) > a + e. 
Since /* ( J i ) is not a subset of/*( J2), there are a: € J i , y € J2 with |/*(«)— /*(y) | > 
a + e and again [x, y] € C2(f, n,a + e). 

(iii)=>(iv) This is trivial. 
(iv)=->(i) Let (iv) be fulfilled. Take any interval J . Since C2(/ ,a) is dense 

there are x,y £ J such that lim sup | / n (x ) — fn(y)\ > a. It foUows from it that 
n—>oo 

LSD(/, J ) > a, so we have (i). 
(iii)==.»(v)---=>(vi) These implications are trivial. 
((vi) k (f-l))==>(i) Now let (f-1) from Theorem 1.2 and (vi) be fuffiUed. We 

are going to prove (i). With respect to Lemma 4.1 (v) it suffices to prove that 
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g = / 2 satisfies (f-2), i.e. that there exists an a > 0 such that for every interval J, 
LSD(p, J) > a. 

Moreover, here it suffices to consider only the intervals containing fixed points of g. 
In fact, take any interval J. JThen (vi) gives LSD(/, J) > 0. Hence LSD(/, J) > 0 
and by Lemma 4.7, Orb(/, J) contains a periodic point of / with period 1 or 2. 
Thus for some s, g*( J) contains a fixed point of g. Now it suffices to take into 
account that LSD(g,J) = LSD($r, J) = LSD(g,g'(J)). 

So (i) will be proved if we show that inf {LSD(#, J) : J is an interval containing 
a fixed point of g} > 0. Assume on the contrary that there exist a sequence 
«i, t = 1,2,... of fixed points of g and a sequence K», i = 1,2,... of intervals such 
that for every t, Xi € Ki and lim,—oo LSD($f, Ki) = 0. Without loss of generality we 
can assume that there exists lim,-*oo *• = P- Clearly, p is a fixed point of g. Denote 
LSD(<7, Ki) = e,\ For every t there is a ibt- such that for all k > fcj, diam^k(K"i) < 2e<. 
Denote J»- = U*.L*i 0*O^t)- Then Xi € Ji,diam Ji < 4ei and g(Ji) C J|. Rirther, 
the sets J,- are intervals. In fact, by Lemma 4.2 (i) we have C2(f) = C2(g) and now 
(vi) and Lemma 4.12 imply that for every t and fc, the set gk(Ki) is not a singleton. 

We have shown that arbitrarily close to the fixed point p of g there are arbitrarily 
small ^-invariant intervals J,-. Further, by Lemma 4.1 (i), g satisfies (f-1). Now 
it follows from Lemma 4.9 that there exist arbitrarily small ^-invariant intervals 
containing the point p. 

On the other hand, by Lemma 4.2 (i), Cx(f) = d(g) and C2(f) = C2(g). Now 
using (vi), Lemma 4.3 and Lemma 4.8, we get that there is a 6 > 0 such that no 
interval containing p and having diameter less than 6, is ^-invariant. So we have 

s a contradiction and the proof of the lemma is complete. • 

Lemma 4.17. Let f € C°(I,I), J be an interval and S be a family of intervah. 
Then 

(i) there are a, b € Fix(/), not necessarily a < 6, with Fix(/, J) = {x € Fix(/): 

(ii) in (i), Fix(>, J) \ {a, 6} C Orb(/, J) ; 
(iii) if Fix(/, Ji) H Fix(/, J2) ^ 0 for every JUJ2 £ S, then f|j€5 Kx(/, J) ^ 0. 

PROOF : The statements (i) and (ii) are trivial. To prove (iii) suppose that 
Fix(/, Ji) H Fix(/, J2) 7̂  0 for every Ji, J2 G 5. Using (i) one can prove easily 
that each finite subfamily of {Fix(/, J) : J € S} has nonempty intersection. Since 
Fix(/, J),J € S wee closed sets in the compact space I, we have f)J€S.Fix(/, J) 7-= 0. 

• 
Lemma 4.18. Xci / € C°(J,I),a:o,yo € Fix(/), J 6c an tnierva/ containing y0. 
Let lim inf dist(/n( J) , x0) = 0. Then x0 € Fix(/, J). 

n »oo 

PROOF : If x0 = y0, the lemma is trivial. So we may without loss of gener­
ality assume that x0 < y0. Clearly, the set Orb(J) is an /-invariant interval and 
inf Orb(J) < x0. If inf fk(J) < x0 for some nonnegative integer k, the lemma holds. 
So we may assume that inf Orb(J) = x0 < inf fk(J) for every k = 0,1,2, — Now 
we distinguish two cases. 
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Case 1. For every e > 0 there is an x € ]%o<> #o -f e [ with f(x) < x. Then it is easy 
to see that x0 € Fix(/ , J) and the proof is finished. 

Case 2. There is an e > 0 such that for every x € ]x0, x0 -fe [, / (# ) > x. We are going 
to show that this case is impossible. Denote s = supOrb(J). Since x0 £ Orb(J), 
we have f(t) > x0 for every t € ]x0, s[. There are two possibilities. 

Subcase 2A. f(s) > x0. Denote m = min/([x0 + £,s]). Then 
Orb(J) C [min{inf J,ro},.s] and we have a contradiction, since inf Orb(J) = x0 < 
min{inf J,m}. 

Subcase 2B. f(s) = x0. Then for every nonnegative integer k, sup /*(J) < s. In 
fact, in the opposite case we would have a contradiction with the fact that for every 
k, x0 < inf /*(J) . Now denote M = max/([a;o,.s]). Since M € / ( ] x 0 , s [ ) we have 
M 6 Orb(J). Then M < s and maxjsupJ, M} < s = supOrb(J). If we realize 
that Orb(J) C ]x0, max{sup J, M}] we get a contradiction. • 

L e m m a 4.19. Let f € C°( I , I ) , a,b € Fix( /) , Ji,J2 be intervals with a € Ji,& € 
J2. LeHiminfdist(/n(Ji),/n(J2)) = 0. Then Fix(/ ,J i )H F ix(/,J2) f 0. 

n—•oo 

PROOF : If a = 6 the lemma is trivial. So let a ^ 6, say a < 6. For i = 1,2 
denote F{ = {x € .F ix ( / ) : lim inf dist(/n(Jj),a;) = 0}. By Lemma 418, F{ = 

n—*oo 

Fix(/ , J,), i = 1,2. Denote ci = maxKi and c2 = minF 2 . To prove the lemma it 
suffices to show that Ci ^ c2. So suppose on the contrary that ci < c2. There are 
two possibilities. 
Case l . F ix ( / )n ]c i , c 2 [= 0. Let for every a: €]ci ,c2[ , / (a;) > x (if f(x) < a: for every 
x between Ci and c2 we proceed similarly). If for some n , s u p / n ( J i ) > Ci, then c2 € 
Ki and we have a contradiction. If for every n , s u p / n ( J i ) < ci, then the assump­
tion that lim inf d i s t ( / n (J i ) , / n (J 2 ) ) = 0 implies that lim inf dis t ( / n (J 2 ) ,c i ) = 0. 

n—+oo n—*oo 

Hence Ci € F2 and we have a contradiction again. 
Case 2. There exists a fixed point p of / such that maxFi = ci < p < c2 = minF2-
From the definition of Fx and F2 we have lim inf dis t( / n(J t) ,p) > 0 for i = 1,2. 

n—••oo 

But then lim inf d is t ( / n (J i ) , /n(J2)) > 0, a contradiction. The proof of the lemma 
n—>oo 

is complete. • 
L e m m a 4.20. Let f € C°(J, I), Ji, J2 be intervals with lim inf d is t ( / n (J i ) , / n (J 2 ) ) 

n—•oo 

= 0 and LSD(/, Jt) > 0, i; = 1,2. Then there exists a periodic point x0 of f such that 
l imn—c»dist(/n(J ;) , /n(.r0)) = 0fori = 1,2 and, consequently, Hmn-+oodist(/n(Ji), 
fn(J2)) = 0- Moreover, if the condition (f-1) from Theorem 1.2 is fulfilled, then x0 

can be chosen such that it is a fixed point of f, i.e. Fix(/, Ji) fl Fix(/, J2) =fi $• 

PROOF : Since dist(A,.B) = dist(A,H), diamA = diamA and f(A) = f(A) for 
every sets A,2?, we can assume the intervals Ji,J2 to be compact. According to 
Lemma 4.7, Orb(/ , Jj) contains a periodic point of / of period p,',t = 1,2. Let 
g = /* , where p is the least common multiple of p\ and pi. Then Orb(#, Ji) and 
Orb(y, J2) contain fixed points of g. Without loss of generality we can assume that 
J! and J2 contain them. So let a € Ji, b € J2 be fixed points of g. Since by 



806 L.Snoha 

Lemma 4.1 (i) lim inf dist(gn(Ji),gn(J2)) = 0> Lemma 4.19 implies the existence 
n—*oo 

of a point x0 G Fix(y, J i ) 0 Fix(#, J2). The point #o is a periodic point of / and 
by Lemma 4.1 (ii) we have limn-.oodist(/n(Jj),/n(a:o)) = 0 for i = 1,2. Thus the 
proof of the first part of the lemma is finished. 

Now let, moreover, the condition (f-1) from Theorem 1.2 be fulfilled. Then by 
Lemma 4.7, we can assume that pi G {1,2} for i = 1,2 and consequently, p is 1 or 2. 
Thus we have limn_>oo dist(fn(J%)p /n(#o)) = 0, i = 1,2,'for some periodic point x0 

of / of period 1 or 2. To finish the proof we need to show that if the period of x0 

is 2, then there is a fixed point yo of / such that yo G Fix(/, J i ) 0 Fix(/ , J2). So 
suppose that the period of x0 is 2. Let y0 be a fixed point of / lying between x0 

and /(-Co). We are going to prove that y0 G Fix(/, J i ) . This is clear if for some n, 
fn(J\) ^ Vo- So suppose that yo $ Orb(/ , J i ) . Then it is not difficult to see that 
the fixed point a G Ji of g = f2 mentioned above is a periodic point of / of period 2 
and y0 lies between a and f(a). Since by the condition (f-1) from Theorem 1.2 
lim inf d i s t ( / n ( J i ) , / n ( / ( J i ) ) ) = 0, we have lim inf dist (y n (J i ) ,y 0 ) = 0. Then from 

n—+oo n—*oo 

Lemma 4.18 we get yo € Fix(y, J i ) and by Lemma 4.1 (ii), y0 € Fix(/, J i ) . Similarly 
one can show that y0 G Fix(/, J2) . The proof of the lemma is complete. • 
Lemma 4.21. Let f G C°(J, J ) , A , H be intervals and let for every subinterval A0 

of A and every subinterval B0 of B, Orb(/ , Ao) H BQ ^ 0. Then there is a point 
x £ A with orb(/ , x) D B. 

PROOF : Let B\,B2,... be the sequence of all open intervals with rational end-
points lying in B. Then for every i, the set A, = - 4 n | j £ l 0 f"k(Bi) is an open dense 
set in A. Hence H ^ i -4t ^ 0. So there is a point x £ A with the desired property. • 

Lemma 4.22. Let f € C°(I,I) be topologically transitive. Then the condition (f) 
from Theorem 1.2 is fulfilled. 

PROOF : We are going to prove the condition (f-1) by showing that whenever J i , J2 
are intervals and e is positive, we have dist( /n( J i ) , / n ( J2)) < £ for some nonnegative 
integer n. To prove it, take a transitive point x € Ji and an m with fm(x) £ J2 . 
Denote fm(x) by y. Let x0 be a fixed point of / . Take some 0 < 6 < e/2 with 
fm(]x0 - 6,x0 + 6[) C)x0 - e/2,x0 + e/2[ and a k with fk(y) £]x0 - o > 0 + 6[. 
Then for n = m + k we have \fn(x) - / n ( y ) | < e and thus d i s t ( / n ( J i ) , fn(J2)) < e. 

It remains to prove (f-2). Since / is transitive, it has a periodic orbit of period 
four (in the opposite case every trajectory would have at most two limit points 
(see [14, p. 66]), which is a contradiction with the topological transitivity of / ) . 
Then / has a periodic orbit {a, 6} of period two lying in intl . Because of the 
transitivity of / the interval with endpoints a, b cannot be /-invariant. It follows 
from it that there is a point z lying between a and 6 with f(z) € {a, b}. Then there 
is a d > 0 such that none of the points /*(-?), A: = 1,2,.. . belongs to ] z — d, z + d[. 
Now take any interval J, a transitive point x £ J and a positive integer m with 
fm(x) € J . Denote fm(x) by y. Let e > 0. Take some 0 < 6 < e/2 with 
fm(] z-6,z + 6[) C] fm(z) - e/2, fm(z) + e/2[ and a Jb with fk(y) G] * - «, z + 6[. 
Then for n = m + k we have \fn(x) - / n ( y ) | > d-e and thus d i a m / n ( J ) > d- e. 
We have proved that for every interval J and every e > 0 there is an n with 



Generic chaos 807 

diam/ n (J ) > d — e. Hence for every interval J, LSD(/, J) ^ d and the proof is 
finished. • 

Lemma 4.23. Let f £ C°(I, I) be topologically transitive and XQ be a fixed point 
of f. Then for every interval J, lin^^oo dis t ( / n (J ) , XQ) = 0. 

PROOF : Without loss of generality we may assume that J is a compact interval. By 
Lemma 4.22 the assumptions of Lemma 4.7 are fulfilled. Hence, Orb(/ , J) contains 
a periodic point yo of / of period 1 or 2. We may assume that yo € J. Denote g = / 2 . 
Since J contains a transitive point of / , we have Hm inf dist( /n(J) ,xo) = 0 and by 

n—•oo 

Lemma 4.1 (i), Hm inf dist(gn(J),xo) = 0. Since a:o,yo € Fix(gf), Lemma 4.18 gives 
n—•oo 

that x0 € Fix(g, J). From Lemma 4.1 (ii) we obtain XQ £ Fix(/, J) and the proof is 
finished. • 
5. Proofs of main resul t s . 

PROOF of Theorem 1.2: We prove (a)==>(b)===>(c)==>(d)====>^ 
=>(h ) =* ( f )=>(a ) . 

(a)=>(b) This follows from Lemma 4.3 ((i)=>(iii)) and Lemma 4.16 (((v)& 
(f-l))==>(iii)). 

(b)==>(c) This is trivial. 
(c)=>(d) See Lemma 4.16 ((iv)==>(vi)). 
(d)=>(e) This follows from Lemma 4.3 ((ii)=>(iii)) and Lemma 4.16 (((vi)& 

(f-i))-=Kiv)). 
(e)=>(f) See Lemma 4.3 ((ii)=>(iii)) and Lemma 4.16 ((iv)==>(i)). 
(f)==->(g) The implication (f-2)=>(g-2) is proved in Lemma 4.16 ((i)===>(ii)). 

Further, if (f-1) and (f-2) are fulfilled then by Lemma 4.20, Fix(/, J\ )flFix(/, J2) ^ 0 
for any two intervals Jx, J2. But then by Lemma 4.17 (iii) we get (g-1). 

(g)=>(h) We will say that an interval A /-covers an interval B if for some non-
negative integer n, / n ( A ) D B. Let (g) be fulfilled. Denote L = [XQ — 6/2, #0 — 6/4] 
and R = [x0 -f 6/4, x0 -f 6/2]. Then at least one of the intervals L and R is a sub­
set of I and every subinterval of I /-covers L or R. Let, for example, L C L 
Either every subinterval of L /-covers L or some subinterval L\ of L does not 
/-cover L. But then also R C I and every subinterval of L\ /-covers R. So in 
either case, by Lemma 4.21, there is a point y whose orbit is dense in some com­
pact interval K. Since orb(/ ,y) D K we have orb(/ ,y) D Orb ( / ,K ) . Clearly, 
(g) implies (f). Therefore the function / and the compact interval K satisfy all 
the assumptions of Lemma 4.7. Thus either there is an r such that fr(K) con­
tains a fixed point of / or there is no such r but then for some s, f9(K) con-
tains a periodic point of / of period 2. In the former case it is easy to see that 
Orb(/, fr(K)) is an invariant transitive interval of / . In the latter case denote 
by z a fixed point of / lying between f9(K) and / * + 1 ( K ) . Then z lies between 
the intervals Orb( / 2 , / * (K ) ) and Orb(/2 J9+\K)). Since from (g-1) we have 
H m n ^ o o d i s t ( / n ( / * ( K ) ) , / n ( / a + 1 ( ^ ) ) ) = 0, the set Orb( / , /* (K ) ) is an interval. 
Clearly, it is an invariant transitive interval of / . 

So we have proved that / has at least one invariant transitive interval. On the 
other hand, it is easy to see that two invariant transitive intervals cannot have more 
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than one point in common and in view of (g-1) their distance cannot be positive. 
Hence / cannot have more than two invariant transitive intervals and if it has two 
such intervals, their intersection is a singleton which is obviously a fixed point of / . 
The proof of (h-1) is finished. 

It remains to prove (h-2). Denote by U the union of all invariant transitive 
intervals of / and suppose on the contrary that for some interval J, Orb(/ , J) fl 
int (7 = 0. Since the interval U is /-invariant and by (g-1) we have XQ € Fix(/ , U) D 
Fix(/ , J), the point XQ must be an endpoint of ll, say the left one. Then XQ —min I > 
b. Denote [x0 - 6, x0[ by M. Since Orb(/, J) D M we have Orb(/ , M) f) int U = 0. 
Hence Orb(/ , M) is an interval whose right endpoint is x0. For every subinterval S 
of M we have Orb(/ , S) 0 int U = 0, x0 € Fix(/, S) and LSD(/, S) > b. This implies 
Orb(/ , S) = Orb( / ,M) . By Lemma 4.21, Orb(/, M) is an invariant transitive 
interval of / . This is a contradiction with the assumption that U is the union of all 
invariant transitive intervals of / . 

(h)=>(f) By Lemma 4.22, to every invariant transitive interval T of / it is possible 
to assign an a(T) > 0 such that for every interval A C T, LSD(/, A) > a(T). Since 
/ has one or two invariant transitive intervals, there exists the minimum a > 0 of 
such a(T)'s. Using (h-2) we get that for every interval J C I, LSD(/, J) > a. Thus 
we proved (f-2). 

It remains to prove (f-1). Take any two intervals Ji, J2. We are going to prove 
that lim inf d i s t ( / n (J i ) , / n (J 2 ) ) = 0. Since for every interval J, Orb(/, J) meets 

n—>oo 

the interior of some invariant transitive interval, we may without loss of generality 
assume that J\ C T\ and J2 C T2 for some invariant transitive intervals Ti and T2 

of / . If Ti = T2 we get lim inf d i s t ( / n (J i ) , / n (J 2 ) ) = 0 from Lemma 4.22. If Tt 
n—*oo 

and T2 are different, we get it from Lemma 4.23, if we realize that Ti and T2 have 
a common fixed point of / . 

(f)==>(a) This follows from Lemma 4.3 ((iii)=>(i)) and Lemma 4.16 ((i)==>(v)). 
Finally, from the fact that in Lemma 4.16 the implications (iv)===>(i) and 

(i)=>(iii) hold with the same a, we get. .that (e)=>(f) and (f)==>(b) hold with 
a = e. Since (b)=>(c) and (c)===>(e) hold with the same e trivially, the proof of 
the theorem is complete. • 
PROOF of Theorem 1.3: Let / be generically e-chaotic. By Theorem 1.2 ((a)-==>(h)) 
there is an interval J such that / | J is topologically transitive. Now h(f) > 
(1/2) log 2 follows from the facts that every topologically transitive function has 
topological entropy greater than or equal to (1/2) log 2 (see [3]) and that the en­
tropy of a function cannot be less than the entropy of its restriction. On the other 
hand, for any 0 < e < d i aml there is a generically e-chaotic function / € C°(I , I) 
with h(f) = (1/2) log2. In Example 3.7 this is shown for I = [0,1]. The general 
case is similar. • 
PROOF of Theorem 1.4: Let / be generically chaotic. By Theorem 1.2 ((a)=>(h)) 
there is an interval J such that g = / | J is topologically transitive. Then by [2, 
pp. 10 and 12], g2 has a periodic orbit of period 3. Thus / has a periodic orbit of 
period 2.3. Examples 3.1 and 3.7 show that generically chaotic functions may or 
may not have periodic orbits of odd periods greater than 1. • 
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PROOF of Theorem 1.5: We leave some technical details to the reader. As far as 
nowhere density is concerned, it suffices to prove it for densely chaotic functions. 
So let B(f,e) be an open ball in C°(I,I). Since / has at least one fixed point 
XQ, it is possible to define a function g € B(f,e) such that for some X\ and x2 

very close to x$ and for some small a > 0 the intervals Ji = [xi — a,Xi -f a), i = 
1,2 are disjoint and g(Ji) = {xi},i = 1,2. Then there is a 6 > 0 such that 
simultaneously B(g,6) C B(f,e) and for every h £ B(g,6),h(Ji) C Ji,i = 1,2. 
Then lim inf dist(/in(Ji), hn(J2)) > 0 and thus C(h) 0 (Ji x J2) = 0. So B(g, 6) 

n—•oo 

contains no densely chaotic function. 
Further, from Lemma 4.2 (iii) and from the fact that arbitrarily close to any 

function there are functions topologically conjugate with it, we get that generically 
chaotic functions and also densely chaotic functions are dense in itself. The same 
result can be obtained for e-chaos as follows. Take a ball B(f, 6) where / is generi­
cally e-chaotic. From Theorem 1.2 ((b)<==->(f) with a = e) and from Lemma 4.15 it 
follows that / is generically S\-chaotic for some e\ > e. Then it is easy to see that 
for a homeomorphism h sufficiently close to the identity, the function F = hofoh"1 

belongs to B(f,6) and satisfies the condition (f) with a = e. This completes the 
proof. • 
6. O p e n p rob lems . 

We finish our paper with the following problems: 

(1) Are the conditions (f-1) and (g-1) from Theorem 1.2 equivalent? 
(2) Is it true that if J C I is a compact interval, x0 € / and lim inf \fn(x) — 

n—•oo 

fn(xQ)\ = 0 for everyx € J, then l im n _ 0 0 diam/ n (J ) = 0? 
(Cf. Lemma 4.11.) 

(3) Under what conditions does dense chaos imply generic chaos? 
(4) Characterize densely chaotic functions. 
(5) It turns out that densely chaotic functions have positive topological entropy 

Find ini{h(f) : f is densely chaotic}. 
(6) Prove an analogue of Theorem 1.4 for densely chaotic functions. 
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