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ON SOME PROPERTIES OF PROXIMITY 
IN METRIC SPACES 

HANA VYMAZALOVA, Brno 
(Received October 10, 1974) 

The task of this article is to prove a lemma concerning proximity in metric spaces 
and then prove that a metric space is completely bounded if and only if the <5-space 
constructed by its metric is a completely bounded <5-space. 

1. D E F I N I T I O N A N D S O M E P R O P E R T I E S 

O F P R O X I M I T Y S P A C E S 

Concepts and lemmas given in this chapter are taken from articles (2) and (3). 
Proximity space (or 5-space) is a non-empty set P together with a mapping 8 

(called proximity) of the set 2P x 2P into the set {0, 1} which fulfils following axioms: 

BY 

B2 

B3 

BA 

BS 

8(A, B) = 8(B, A) 

5(A KJB,C) = 8(A, C) . S(B, C) 

8({x},{y}) = 0ox = y 

d(A, 0) = 1 

if 8(A, B) = 1, then there exist sets C, D g P such that C u D = P and 
8(A, C) = 8(B,D) = 1. 

Instead of 8(A, {x}) we write 5(A, x). 
We construct a topology 3Td in the <5-space (P, 8) in this way: a set A g P is closed 

iff 8(A, x) = 0 o x e A. 
A set A g P is a ^-neighbourhood of a set B g P iff 5(B,P\A) = 1. In this case 

we write B a A. 
A covering y of the set Pis called a 5-covering of the <5-space (P, 8) iff for any A, 2? g 

g P such that 8(A, B) = 0 there is a set F 6 y such that Anr^0=£Bnr. 
Let y be a covering of the set P, we put UyC = U{r | F e y and F n C # 0} for 

any C g P. 

63 



If C = {x} then we write only Uvx. Evidently if y is a <5-covering of (P, <5) and B g P 
then B C UyB. Let a, f} be <5-coverings of (P, <5). We write a < * /?iff for any x 6 P 
there is a set B e ft such that Uax g B. 

A <5-covering y is uniform iff there exists a sequence {yJ„*Li of <5-coverings such 
that 7 = 7i > * 72 > * ••• We denote Sf(P, S) the set of all uniform <5-coverings of 
(P, S). 

A <5-space is completely bounded iff for any its uniform <5-covering y there exists 
a finite subcovering y0 of y. 

If (P, Q) is a metric space then we can define on P a proximity SQ in a natural way: 
<5(A, B) = sgn Q(A, B). 

The- two following lemmas, which are taken from article (4), page 276, are used 
in the sequel. 

Lamma 1: Let (P, S) be a S-space, <x, ft, y be its S-coverings such that a > * /? > * y, 
F0 e y. Then there exists a set A e a such that A 2 UyF0. 

Lemma 2:Ifye ^(P, <5), then y° = {F° | F e y} is an open uniform S-covering of the 
S-space (P, <5). 

2. SOME PROPERTIES OF PROXIMITY IN METRIC SPACES 

Lemma 3. Let (M, Q) be a metric space, (M, SQ) be a S-space constructed from the 
metric Q. Let {x j j0 e M be a cauchy sequence, y e Sf(M, SQ). Then there exists a set 
t0ey and a positive integer N such that {xj# £ F0. 

Proof: a) Let y be an open uniform <5-covering of (M, SQ). Then there is a sequence 
of open (uniform) <5-coverings y = yt > * y2 > * ... We shall distinguish two cases: 

1. There is a set 3F e y3 and a subsequence {x„k}f such that {xnk}f £ 3F. According 
to lemma 1 there is a set F0 e y such that F0 2 U73

3F 3 3F 2 {xnk}?. Therefore 
tO({*»Ji°> M\T0) = e > 0. {xn}f is a cauchy sequence which implies that for 
e > 0 there is a positive integer N0 such that Q(x„k, xn) < e/2 for any n ^ N0 and 
any k such that nk}£ N0. Put N == max (nl9 N0). Now Q(X„, M\F0) ^ e/2 for 
any n ^ N, hence Q({X„}%, M\F0) ^ e/2 and therefore {x j £ € F0. 

2. Suppose that any set 3F e y3 contains a finite number of elements of {x j j0 . We 
choose such a subsequence {xnk}f that any set 3Fey 3 (and therefore evidently also 
any set T e y \ , i = 4, 5,...) doesn't contain more than one element of {xUk}f. 
Denote eFnk a set of y6 containing Uyixnk, for every positive integer k. According 
to lemma 1 there exists (for any positive integer k) a set 4F„k e y4 such that 4Fnk 2 
2 Uy*THu 3 6FWk. Suppose that 4F„. n ATn. ^ 0 for some / /J . Then there exists 
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a set 3F e y3 such that 3F g 4FM; u 4rn. a {xni, xn.}, which contradicts our sup
position. Thus 4F„. n 4F„. = 0 for any /,j, / ^ 7 and thus ^(6F„., 6F„,) * 1 if 
i *h {xnk}T 1s a cauchy sequence. Hence for any e > 0 there exists a positive 
integer K such that Q(XHJ9 xnk) < e for any /, k ;> K Besides xHjeM\6rHk if 
J ?- k and thus O(xM/<, M\6F,Ik) < e for k j> K This implies that there exists 
a point >>*, of the boundary of 6F,Ik for which Q(x„k,yk) < e; yke M\6Tnk as 
6F„k is an open set. As 6rnjn

6Tni = 0 for / *j9 we haveyh e M\ U{6F„, \j = 1,2,...}. 
Hence Q({xHk}?9 M\ U{6F„. |./ = 1, 2, . . . } )< g for any g > 0, therefore 
te({Xnk}?>M\U{6rHj\j = 1,2,...}) = 0. Then there exists a set 7 F e y 7 such 
that {xHk}? n 7F # 0 ^ (M\ U{6rnj\j = 1, 2, ...}) n 7F. This implies that 
x„koe

 7F for an appropriate positive integer k0, but then 7F g Uy7.vnfc g 7Fn 

and 7F n (M\ U{6F„. |J = 1, 2, ...}) # 0, which is a contradiction. Case (2) is 
then impossible. 
b) Let y e Sf(P9 3), then according to lemma 2 y° = {F° | F e y} is an open uni

form (5-covering and we have already proved the assertion for y°. It is then proved 
for y, too. 

Theorem: Let (M, O) be a metric space, (M, O^) be a 5-space constructed from the 
metric O. Then the following statements are equivalent. 

a) (M, O) is a completely bounded metric space, 
b) (M, SQ) is a completely bounded S-space. 

Proof: a) Let (M, O) be a completely bounded metric space, y e Sf(M, SQ). Then 
there are yx,y2, ...e Sf(M, Se) such that y = yt > * y2 > * ... Suppose that for any 
positive integer n there is a point xe M such that k(x, 1/n)\F # 0 for any Fey. 
Thus k(x, l / n ) \ T ^ 0 for any t e y ; and any i = 1,2,... Let xt € M be such 
a point that k(xX, 1) \ T =£ 0 for any T e yt, i = 1,2,... Assume that there exists 
a set 2F*ey2 such that k(x, 1/2) g 2FX for every xek(xl9 1/2). Then k(xl9 1) = 
= U{k(x, 1/2) I Q(X19X) < 1/2, xGM} g Uy2x! g Fi for an appropriate FX ey, 
which is a contradiction. Thus there exists a point x2 e k(xx, 1/2) such that k(x2, 1/2) \ 
\ F -£ 0 for any Fey. We can construct a sequence {xn} f such that x„ + 1 e k(x„, l/2«) 
and k(xn, 1/w) \ F # 0 for any Fey and any n = 1,2,... {x j j0 is evidently a cauchy 
sequence, therefore (according to lemma 3) there is a set r0ey and a positive integer 
No such that {xn}%0 € F0, i.e. Q({XH}S0, M\F0) = s > 0. 

There exists also a positive integer Nt such that Q(XNI, xn) < e for n ^ Nx. Let N 
be a positive integer such that N ;> max (N0, Nt, Ijs). Then k(xN, 1/N) g F0 which 
contradicts our supposition that k(xN9 1/N) \F # 0 for any Fey. Hence there 
exists a positive integer n0 such that for any point x e M there is a set F e y such 
that k(x, l/«0) g F. (M, Q) is a completely bounded metric space. Thus there exists 
a finite set {yl9...9ym} g M such that there exists an index i0e {I, ...,m} with 
0(*>yio) < l/«o for every xe M. Choose any Ffey with r( 3 k(^, \jn0) for r = 
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= 1, . . . , m. Then {F l5..., Fm} is a finite covering of M which is a subcovering of y. 
Therefore (M, SQ) is a completely bounded (5-space. 

b) Let (M, dQ) be a completely bounded <5-space, e > 0. Then there exists a positive 
integer n such that 2~n ^ e. As y„ = {k(x, 2~n) | xe M} e Sf(M, Se) there exists its 
finite subcovering {k(xl5 2""), . . . , k(xm, 2~n)}. Then there exists an index i0 e 
€ { 1 , . . . , m} with g(xio, x) < 2~n for every xG M. Therefore (M, Q) is a completely 
bounded metric space. 
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