Archivum Mathematicum

S. M. Mazhar

A generalization of Riesz-Fischer theorem

Archivum Mathematicum, Vol. 14 (1978), No. 1, 51--53

Persistent URL: http://dml.cz/dmlcz/106990

Terms of use:

© Masaryk University, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A GENERALIZATION OF RIESZ-FISCHER THEOREM

By
S. M. MAZHAR
(Received June 1, 1977)

1. Let $\left\{\Phi_{k}(x)\right\}$ be an orthonormal system in $[a, b]$. The expression

$$
\sigma(x)=\sum_{k=0}^{\infty} a_{k} \Phi_{k}(x)
$$

where $\left\{a_{k}\right\}$ is an arbitrary sequence of real numbers, is called an orthogonal series. If for some $f(x)$ we have $f(x) \Phi_{k}(x) \in L[a, b], k=0,1,2, \ldots$ and

$$
a_{k}=\int_{a}^{b} f(x) \Phi_{k}(x) \mathrm{d} x, \quad k=0,1,2, \ldots
$$

then $\sigma(x)$ is called orthogonal expansion of $f(x)$ in the system $\left\{\Phi_{k}(x)\right\}$ and the numbers $a_{k}, k=0,1,2, \ldots$ are called coefficients of the expansion of $f(x)$ in $\left\{\Phi_{k}(x)\right\}$.

The Riesz - Fischer theorem asserts that if the coefficients of $\sigma(x)$ satisfy the condition

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k}^{2}<\infty \tag{1.1}
\end{equation*}
$$

then $\sigma(x)$ is the orthogonal expansion of some function $f(x) \in L^{2}[a, b]$.
Recently Fomin [1] observed that for (1.1) to hold, it is necessary and sufficient that there exists an increasing sequence of positive numbers $\left\{v_{k}\right\}, v_{k} \rightarrow \infty$, such that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \int_{a}^{b}\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|^{2} \mathrm{~d} x<\infty \tag{1.2}
\end{equation*}
$$

This led him to formulate an analogue of Riesz - Fischer theorem for $L^{p}[a, b], p \geqq 1$. He proved the following theorem with the assumption that $f(x) \in L^{p}[a, b] \Rightarrow f(x) \times$ $\times \Phi_{k}(x) \in L[a, b], k=0,1,2, \ldots$

Theorem A. Let $\left\{v_{k}\right\}$ be an increasing sequence of positive numbers tending to infinity with k. If

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \int_{a}^{b}\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|^{p} \mathrm{~d} x<\infty \tag{1.3}
\end{equation*}
$$

$p \geqq 1$ then the series $\sigma(x)$ is the orthogonal expansion of some function $f(x) \in L^{p}[a, b]$.
The main object of this note is to obtain a generalization of Theorem A.
2. Let $F(u)$ be a non-negative function defined for $u \geqq 0$. We say that a function $f(x)$ defined in $[a, b]$ belongs to class $L_{F}[a, b]$ if $F(\mid f(x))$ is integrable over $[a, b]$.

We assume that $f(x) \in L_{F}[a, b] \Rightarrow f(x) \Phi_{k}(x) \in L[a, b], k=0,1,2, \ldots$
Theorem. Let $\left\{v_{k}\right\}$ be an increasing sequence of positive numbers such that $v_{k} \rightarrow \infty$ as $k \rightarrow \infty$. If $F(u)$ is convex and non-decreasing function, but not constant, such that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \int_{a}^{b} F\left(\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|\right) \mathrm{d} x<\infty \tag{2.1}
\end{equation*}
$$

then $\sigma(x)$ is the orthogonal expansion of some function $f(x) \in L_{F}[a, b]$.
Proof. The hypothesis (2.1) shows that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) F\left(\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|\right)<\infty \tag{2.2}
\end{equation*}
$$

almost everywhere. Consider the function

$$
\begin{equation*}
g(x)=v_{0} \sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right)\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right| . \tag{2.3}
\end{equation*}
$$

We shall show that $g(x) \in L[a, b]$. Using Jensen's inequality for convex function we have

$$
F(g(x)) \leqq v_{0} \sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) F\left(\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|\right)
$$

so that

$$
\int_{a}^{b} F(g(x)) \mathrm{d} x \leqq v_{0} \sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \int_{a}^{b} F\left(\left|\sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x)\right|\right) \mathrm{d} x<\infty .
$$

Thus $g(x) \in L_{F}[a, b]$ and hence because of $[2], g(x) \in L[a, b]$. From this it follows. that the series in (2.3) converges almost everywhere and therefore, the series

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x) \tag{2.4}
\end{equation*}
$$

converges almost every-where to a function $f(x)$ which belongs to $L_{F}[a, b]$.
Let $S_{n}(x)$ denote the n-th partial sum of (2.4), then

$$
\begin{gathered}
f(x)=\lim _{n \rightarrow \infty} S_{n}(x)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{1}{v_{k}}-\frac{1}{v_{k+1}}\right) \sum_{m=0}^{k} a_{m} v_{m} \Phi_{m}(x) \\
=\lim _{n \rightarrow \infty} \frac{1}{v_{n+1}} \sum_{m=0}^{n}\left(v_{n+1}-v_{m}\right) a_{m} \Phi_{m}(x) .
\end{gathered}
$$

Now $\left|S_{n}(\chi) \Phi_{k}(x)\right| \leqq C g(x)\left|\Phi_{k}(x)\right|, k=0,1, \ldots$, where C is a positive ccostant. By the hypothesis $g(x) \Phi_{k}(x) \in L[a, b]$ and so

$$
\begin{gathered}
\int_{a}^{b} f(x) \Phi_{k}(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \frac{1}{v_{n+1}} \int_{a}^{b} \Phi_{k}(x) \sum_{m=0}^{n}\left(v_{n+1}-v_{m}\right) a_{m} \Phi_{m}(x) \mathrm{d} x \\
=\lim _{n \rightarrow \infty}\left(v_{n+1}-v_{k}\right) v_{n+1}^{-1} a_{k}=a_{k}, \quad k=0,1,2, \ldots
\end{gathered}
$$

Thus $\sigma(x)$ is the orthogonal expansion of $f(x) \in L_{F}[a, b]$.

REFERENCES

[1] G. A. Fomin: A generalization of the Riesz-Fischer theorem, Mat. Zam., 12 (1972), 365-372.
[2] A. Zygmund: Trigonometric Series, Vol. I, Cambridge Univ. Press (1959), p. 23.

Department of Mathematics
Kuwait University,
Kuwait

