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ON ASYMPTOTIC INTEGRATIONS OF x2y» - P(x)y = 0 

By PO-FANG HSIEH 

(Received December 15, 1976) 

1. Introduction. In the past decade since the publication of the paper by P. F. Hsieh 
and Y. Sibuya [2], substantial achievements have been made in the global study of 
the second order equation of the form 

„.„ /-ew, = o, (•-.£) 
where x is a complex variable, and 

(1.2) Q(x) = xm + axx
m~l + ... + am, m: positive integer. 

A good collection of results in this direction can be found in the recent book of 
Y. Sibuay [5]. A similar study on an n-th order equation is done by B. L. J. Braaksma 

In this paper, we shall study the asymptotic integrations of 

(E) xy-n*)y = o, 
where P(x) is an m-th degree polynomial 

(1.3) P(x) = x™ + a!*™-1 + ... + am, m: positive integer, 

with at, a2,..., am complex parameters. First, let 
m oo 

(1.4) {x-mP(x)}± = {1 + £ a**"*}* = 1 + I hx": 
/ l = l / l = l 

Then, bh are polynomials of ax, a2, ...,am. We shall prove the following 
Theorem 1. The differential equation (E) has a solution 

(1.5) y =ym(x,ai9a2,...9am) 
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such that 

0) ym is entire in (alia2, ..., am) and holomorphic in x for 

(1.6) | x | > 0, | a rgx | < TI; 

00 ym and ym admit respectively the asymptotic representations 
oo m~ 1 

(1.7) ym _ **"{1 + £ B-x'1"} exp {-2m-1x*m + £ Am„x*(m-n)}, 

(1.8) >/„ _ -x*"-1+"»{l + X C_x-*"} exp {-2m-1**" + £ .41_x*"-">} 
n = l n = l 

uniformly on each compact set in (ax, a2, ..., am) — space as x tends to infinity in any 
closed sector which is contained in 

(1.9) U | > 0 , | a r g x | < lnTln 

where 

m l ,, 
-j- + —, m; odd, 

(1.10) TmH , 
m 1 

"~4~+ T ~ b±m> m; e v e n ' 
wth biw, AmnjBmw and Cmn polynomials of au a2, ..., aw. 

A similar problem has been proved by F. E. Mullin [3]. However, the quantily rm 

was not given as explicitly there. The case of m = 2 and m = 3 are studied recently 
by T. Okada [4]. It is noteworthy that a Bessel differential equation 

x2wn + xw' + (x2 - n2) w = 0 

can be transformed by w = x~*y to 

xy + (x*- „2 + ^ y = 0, 

which is a type of (E) with m = 2. 

2. Solutions in other sectors. 

Put 

(2.1) x = eiex, 

then (E) is reduced to 

(2.2) x 2 - ^ - eim0(xm + a^xT'1 + ... + aweI'm0)y = 0. 
dx 
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If we choose O satisfying eim0 = 1, then ym(x9 eieax, ..., eimBam) is also a solution of 
(E). Let 

(2.3) 0k =2km-17r, k = 0 , 1,2, . . . ,m - 1, 

and 

(2.4) > V k (x , ^ , ..., am) = J m ( e ^ x , * " % , e2'^a2, •••, em^aml 

Denote the right hand side of (1.7) by Ym(x, at, ..., am). Then we have the following. 

Theorem 2. The differential equation (E) has a solution ymfk satisfies the following 
conditions: 

0) ym.fe w tfwf/re /» (fli, a2, ..., aw) and holomorphic in x for 

(2.5) | x | > 0, | a rgx + 0k\ < 3m'xn; 

00 ym.fc andy'm,k admit respectively the asymptotic representation 

(2.6) Jm>fc s Ym(ei&kx, e"*ax, e2i0ka2, • • •, emi0%n) 

(2.7) Jm>fc S e^Ym(ef0kx, e^at, e2'^a2, ..., em^am) 

uniformly on each compact set in (aX, a2, ..., am) — space as x le/ias to infinity in any 
closed sector which is contained in (2.5). 

3. Preliminary transformations and a nonlinear equation. We shall prove Theorem 1 
similar to the method in [2], as the regular singular point at x = 0 does not affect the 
asymptotic solutions at x = oo. Same approach was used also in [3]. 

First, we shall write (E) as a system of equations. Let 

(3-1) * = (; ,) and ^ ) = ( x - 2 ° p w ; ) . 

Then (E) becomes 

(3.2) uf = A(x) u. 

Put 

(3.3) x = £2 and "(lrf 
Then, (3.2) becomes 

áz lm 

(3.4) - ^ = {r- 1EA f c r*}z. 

where Ak are 2 by 2 matrices linear in ax, a2, ..., am. In particular 
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Let 

(3.5) , - » . , . ( _ ; ; ) . 

Then, (3.4) becomes 

(3.6) -^.--{--•Bíöw, 

where 
2w 

-Ю--ІB.Г*, ß^г Ч ғ 
lt = 0 

and, in particular, 

-.-(I.)-
Put 

(3.7) M;» 
Then, af(0> WO a r e linear in at,a2, ..., aw and polynomials in ^ *. Furthermore, 
we have 

( 3 8 ) f«i(«) = -2 + O^"1), /?i(0 = oor1), 
{a2(0= 2 + 0(r 1 ), )S2(O = 0(r 1 ) . 

Now, put 

(3.9) w = Qexp{|i,"-1y(»,)di,} 

into (3.6). Then we have 

(3.10) 7 = «i + PiP 

and 

(3-11) ^ • = r- , { .52 + «2P-yp}-

Substitute (3.10) into (3.11), we obtain a nonlinear equation 

(3.i2) ^ ^ r ' 1 ^ + («2 - « I ) P - ^P 2 } . 

If we determine p(£) by (3A2) and then use (3.10) to determine y(Q, the quantity 
w(£) in (3.9) is a solution of (3.6). 

4. Existence and uniqueness of solution (3.12). 
The equation (3.12) has the following form: 
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- ^ = r_1{/«) + g(o P + m-p2h 

where / g, h are linear functions of at, a2, •••, am and polynomials of £ - 1 such that 

/ ( 0 = 0 ( r 1 ) , g(0 = g0 + Otf-1); h(O=0(C1). 

and g0 is a nonzero constant. Here g0 = 4. 
We shall state a fundamental lemma concerning such a nonlinear differential 

equations whose proof may be found in detail in [2]. 

Lemma. Let f g and h be polynomials in <̂ **1 whose coefficients are linear in 
al9 al9 ...9an. Suppose that 

/(0 = o(r1), g(t) = go + otr1), h© = o(r1) 

where g0 is a nonzero constant independent of al9al9 . . . ,am . Then the differential 
equation 

(4.1) ~J- = r - 1 { /« ) + 9(0 P + h({)p2}, 

has the unique formal solution 

(4.2) p(o ~ £ Pnc; 
H = - l 

where the quantities pn are polynomial of al9a29 ..., am and independent of £. 
Let 5 be a sufficiently small positive constant. Then there exists a unique solution p(£) 

of(4A) which satisfies: 
(i) for each positive constant r, there exists a positive constant Nr such that p(£) is 

holomorphic with respect to (£9al9 ..., am) in the domain defined by 

K I > K, I at | + | a2 | + ... + | am \ < Nr9 (0 < r < oo), 
(4-3) 3n 

| arg#o + rn arg £ | ^ — - <5; 

(ii) p(£) = p© uniformly on each compact set in (al9a29 ..., am) —• space as £ /ew/s 
to infinity in the sector 

(4.4) | arg g0 + m arg {| ^ - y - - <5. 

Applying this lemma, we find that equation (3.12) admits a solution p(£) such that 
(i) for each r > 0 and each S sufficiently small, there exists a positive number Ntti 

such thatp(£) is holomorphic with respect to (£, at, ..., am) in the domain defined by 
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(4.5) 

(ii) we have 

KI>ЛГ ř i i , | a r g í | á - ^ - - « , 

[ | a i |
2 + ... + | a J 2 < r , ( 0 < r < c o ) , 

P(0 = I VÁ' 

uniformly on each compact subset in (a l 9 ..., am)-space as £, tends to infinity in the 
sector 

(4.6) | a r g { | ^ - ^ - - 5 , 

where p„ are polynomials of ax, ..., am and independent of 6 
But y(£) is now found from (3.10) to be 

?« )=« , (« )+ /*£) J8,(«|). 

Hence y(£) is holomorphic in (4.5), and we have 
00 

(4.7) y(£)^-2+y>„r" 

uniformly on each compact set in the (ax, ..., am)-space as £ tends to infinity in (4.6), 
where yn are polynomials of ax, ..., am and independent of £ 

Let 

(48) y(£) = y(<D-[ -2+Zv„r n3 
« = 1 

and 

(4.9) £(<*) = ewexp{—— €" + Y — ^ — T " " " } . 

Then 

(4.10) w© = f - M £(|) exp {J tT^yifi) dn} 
\p(Z)J 

is a solution of (3.6), where the path of integration lies in the sector (4.6). Clearly, this 
is holomorphic with respect to (£, at, ..., am) in (4.5) and 

(4.11) ws{w0 + f w„r"}£«)-
n = l 

uniformly in each compact subset of the (at, ..., am>space as <* tends to infinity in 
(4.6) where wB are two dimensional vectors whose elements are polynomials of 
«!, . . . , am and independent of £ and 

i> 



0 (4.12) w0 

If we now let 

(4.13) u(x) = ( J r ° - 2 ) ( _ J | ) Q 0 ) E ( O e x p {j i f "'rOOdi,}. 

then u(x) is a solution of (3.2). If we can prove that u(t) is an entire function of 
ax,..., am, then we have proved (i) of Theorem 1. To do this, let x0 be an arbitrary 
point such that | x0 | > 0. Let <P(x) be the two by two matrix such that 

— = A(x)*, *(x0)=-/2 , 

where I2 is the two by two identity matrix. The elements of the vertices <P(x) and 
<P~ i(x) are entire functions of ax,..., am for | x \ > 0, and analytic in x for | x \ > 0, 
| arg x | < 7t, and 

u(x) = <P(x) u(x0). 

Now let (a°x, a\, ..., am) be fixed and consider a small neighborhood U of this point. 
Then, if x0 is chosen so that (^0,a1, ...,am) lies in the domain (4.3), for every 
(al9..., am) in U, where £% = x0, it follows from (4.12) that u(x0) is analytic in U. 
This proves that u(x) is an entire function of (at, ..., am) for | x \ > 0 and analytic 
in x for | x \ > 0, | arg x \ < n. 

5. Determination of rm, Awn, Bmn and Cmn. 
To complete the proof of Theorem 1, it remains to show the coefficients of the 

right hand sides of (1.6) and (1.7) are polynomials of at, a2,..., am. 
First, by computing the entries of (3.7) from (3.2), (3.3) and (3.6), we have 

«i(© = - { 1 + x~mP(x)} - y (m - 2)<Tm, 

« a (0 = {1 + x"wP(x)} - y (m - 2) r m , 

^ ( O = {1 - x~mP(x)} + y (m - 2) T m , 

Thus, 

ßi(0= - U -дГ"Р(*)} + y ( m -2)«Г 

«-«) - «i(€) -= 2{1 + x-mP(x)}, 
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and, consequently, 

{«a(0 - «i)}2 + 4/&i(© &(€) = 16x-mP(x) + (m - 2)2 <T 2m. 

On the other hand, from (3.12), we have 

2/*i«)p«)--

* «2«) - «i«D - [{«2«) - «i«)}2 + 4,3.«)/?2«) - 4r<-» .« .«) - ^ T = 

= 2{1 + X-mP(x)} - ll6x-mP(x) + (m - 2)2{-2 m - - ^ " - " f l . t f A T . 

Hence 

(5.1) y(0 - «i«) + />«)&({) = -2jx~mP(x) + 0 (r"- 2 ) . 

From the expressions of £(£) and y({) in (4.7) and (4.9), we have 

ľ^-^E^ 
m - l 

I 
n=-l 

{--» = 

- - - J ч " " 1 I гvг*fcd.= -r.*"-1 Z ь/dŕ = 
0 l ^ Л < i m 0 l ^ Л < i m 

- - I l<fcíim^--2ft 
Put 

(5.2) 

and 

(5.3) 

Then (E) becomes 

(5.4) z" + 2qz' + {q' + q2 - X-2P(x)} z = 0 

It is easy to see that 
2«7 =;<*"-x{-2+ O0T1)} 

« ( x ) - - x * " - Ҷ l + £ ČVГ*} 
l£h<im 

y *zexp{f rg(/)dř}. 
o 

and 

where 
q' + ą1 - x~zP{x) = x*m~ 2&» + 0(x -кm)Ь 

(5.5) sж = 

m — — + l, m: even, 

— _ .4. i - 2Ь ł l и, m: odd, 
кm = 

1, 

1 
2 ' 

m: even, 

m: odd. 
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By putting 

we get 

2 = ^ { 1 +0(ЛГ-^)} 

1 m l 
~"T" + y m : o d d ' 

m 1 —__ + _ _ bim, m: even. 

Put 

(5.7) z = xTw. 

Then (5.4) becomes 

w" + 2(rmx~lq) w' + { ( V 1 ) 2 - rmx~2 + 2qrmx"1 + q' + q2 - x~2P(x)} w = 0. 

The coefficients of w' is xim"1{-2 + 0(x- 1)}, while that of w is 0(x i m-2-*m). 
Hence, by putting 

w = 1 + f Bmnx-*\ 
n = l 

we can determine Bmn successively as polynomials of ax, ..., am. 
By differentiating the right hand side of (1.6) we can get Cmn. Thus, Theorem 1 is 

proved. 
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