Po Fang Hsieh On asymptotic integrations of $x^2y'' - P(x)y = 0$

Archivum Mathematicum, Vol. 14 (1978), No. 2, 75--83

Persistent URL: http://dml.cz/dmlcz/106994

Terms of use:

© Masaryk University, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ARCH. MATH. 2, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XIV: 75—84, 1978

ON ASYMPTOTIC INTEGRATIONS OF $x^2y'' - P(x)y = 0$

By PO-FANG HSIEH

(Received December 15, 1976)

1. Introduction. In the past decade since the publication of the paper by P. F. Hsieh and Y. Sibuya [2], substantial achievements have been made in the global study of the second order equation of the form

(1.1)
$$y'' - Q(x) y = 0, \qquad \left({'' = \frac{d^2}{dx^2}} \right)$$

where x is a complex variable, and

(1.2)
$$Q(x) = x^m + a_1 x^{m-1} + ... + a_m, \quad m: \text{ positive integer.}$$

A good collection of results in this direction can be found in the recent book of Y. Sibuay [5]. A similar study on an *n*-th order equation is done by B. L. J. Braaksma [1].

In this paper, we shall study the asymptotic integrations of

(E)
$$x^2y'' - P(x)y = 0$$

where P(x) is an *m*-th degree polynomial

(1.3)
$$P(x) = x^m + a_1 x^{m-1} + ... + a_m, \quad m: \text{ positive integer},$$

with a_1, a_2, \ldots, a_m complex parameters. First, let

(1.4)
$$\{x^{-m}P(x)\}^{\frac{1}{2}} = \{1 + \sum_{h=1}^{m} a_h x^{-h}\}^{\frac{1}{2}} = 1 + \sum_{h=1}^{\infty} b_h x^{-h}.$$

Then, b_h are polynomials of $a_1, a_2, ..., a_m$. We shall prove the following **Theorem 1.** The differential equation (E) has a solution

(1.5)
$$y = y_m(x, a_1, a_2, ..., a_m)$$

This work is partially supported by a Faculty Research Fellowship at Western Michigan University.

such that

- (i) y_m is entire in $(a_1, a_2, ..., a_m)$ and holomorphic in x for
- (1.6) $|x| > 0, |\arg x| < \pi;$

(ii) y_m and y'_m admit respectively the asymptotic representations

(1.7)
$$y_m \simeq x^{r_m} \{1 + \sum_{n=1}^{\infty} B_{mn} x^{-\frac{1}{2}n}\} \exp\{-2m^{-1} x^{\frac{1}{2}m} + \sum_{n=1}^{m-1} A_{mn} x^{\frac{1}{2}(m-n)}\},$$

(1.8)
$$y'_m \cong -x^{\frac{1}{2}m-1+r_m} \{1 + \sum_{n=1}^{\infty} C_{mn} x^{-\frac{1}{2}n}\} \exp\{-2m^{-1} x^{\frac{1}{2}m} + \sum_{n=1}^{m-1} A_{mn} x^{\frac{1}{2}(m-n)}\}$$

uniformly on each compact set in $(a_1, a_2, ..., a_m)$ – space as x tends to infinity in any closed sector which is contained in

(1.9)
$$|x| > 0, \quad |\arg x| < 3m^{-1}\pi$$

where

(1.10)
$$r_m = \begin{cases} -\frac{m}{4} + \frac{1}{2}, & m; \text{ odd,} \\ -\frac{m}{4} + \frac{1}{2} - b_{\frac{1}{2}m}, & m; \text{ even,} \end{cases}$$

with $b_{\frac{1}{2}m}$, $A_{mn}B_{mn}$ and C_{mn} polynomials of a_1, a_2, \ldots, a_m .

A similar problem has been proved by F. E. Mullin [3]. However, the quantily r_m was not given as explicitly there. The case of m = 2 and m = 3 are studied recently by T. Okada [4]. It is noteworthy that a Bessel differential equation

$$x^2w'' + xw' + (x^2 - n^2)w = 0$$

can be transformed by $w = x^{-\frac{1}{2}}y$ to

$$x^{2}y'' + \left(x^{2} - n^{2} + \frac{1}{4}\right)y = 0,$$

which is a type of (E) with m = 2.

2. Solutions in other sectors.

Put

$$\hat{x} = e^{i\theta}x,$$

then (E) is reduced to

(2.2)
$$\hat{x}^2 \frac{d^2 y}{d\hat{x}^2} - e^{im\theta} (\hat{x}^m + a_1 e^{i\theta} \hat{x}^{m-1} + \ldots + a_m e^{im\theta}) y = 0.$$

If we choose Θ satisfying $e^{im\theta} = 1$, then $y_m(\hat{x}, e^{i\theta}a_1, \dots, e^{im\theta}a_m)$ is also a solution of (E). Let

(2.3)
$$\Theta_k = 2km^{-1}\pi, \quad k = 0, 1, 2, ..., m - 1,$$

and

(2.4)
$$y_{m,k}(x, a_1, \ldots, a_m) = y_m(e^{i\Theta_k}x, e^{i\Theta_k}a_1, e^{2i\Theta_k}a_2, \ldots, e^{mi\Theta_k}a_m).$$

Denote the right hand side of (1.7) by $Y_m(x, a_1, ..., a_m)$. Then we have the following.

Theorem 2. The differential equation (E) has a solution $y_{m,k}$ satisfies the following conditions:

(i) $y_{m,k}$ is entire in $(a_1, a_2, ..., a_m)$ and holomorphic in x for

(2.5)
$$|x| > 0, \quad |\arg x + \Theta_k| < 3m^{-1}\pi;$$

(ii) $y_{m,k}$ and $y'_{m,k}$ admit respectively the asymptotic representation

(2.6)
$$y_{m,k} \cong Y_m(e^{i\Theta_k}x, e^{i\Theta_k}a_1, e^{2i\Theta_k}a_2, \dots, e^{mi\Theta_k}a_m)$$

(2.7)
$$y'_{m,k} \cong e^{i\Theta_k} Y'_m (e^{i\Theta_k} x, e^{i\Theta_k} a_1, e^{2i\Theta_k} a_2, \dots, e^{mi\Theta_k} a_m)$$

uniformly on each compact set in $(a_1, a_2, ..., a_m)$ – space as x tends to infinity in any closed sector which is contained in (2.5).

3. Preliminary transformations and a nonlinear equation. We shall prove Theorem 1 similar to the method in [2], as the regular singular point at x = 0 does not affect the asymptotic solutions at $x = \infty$. Same approach was used also in [3].

First, we shall write (E) as a system of equations. Let

(3.1)
$$u = \begin{pmatrix} y \\ y' \end{pmatrix} \text{ and } A(x) = \begin{pmatrix} 0 & 1 \\ x^{-2}P(x) & 0 \end{pmatrix}.$$

Then (E) becomes

$$(3.2) u' = A(x) u.$$

Put

(3.3)
$$x = \xi^2 \quad \text{and} \quad u = \begin{pmatrix} 1 & 0 \\ 0 & \xi^{m-2} \end{pmatrix} z.$$

Then, (3.2) becomes

(3.4)
$$\frac{\mathrm{d}z}{\mathrm{d}\xi} = \{\xi^{m-1} \sum_{k=0}^{2m} A_k \xi^{-k}\} z.$$

where A_k are 2 by 2 matrices linear in a_1, a_2, \ldots, a_m . In particular

$$A_0 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Let

(3.5)
$$z = Vw, \qquad V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Then, (3.4) becomes

(3.6)
$$\frac{\mathrm{d}w}{\mathrm{d}\xi} = \xi^{m-1} B(\xi) \, w,$$

where

$$B(\xi) = \sum_{k=0}^{2m} B_k \xi^{-k}, \qquad B_k = V^{-1} A_k V$$

and, in particular,

$$B_0 = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Put

(3.7)
$$B(\xi) = \begin{pmatrix} \alpha_1(\xi) & \beta_1(\xi) \\ \beta_2(\xi) & \alpha_2(\xi) \end{pmatrix}.$$

Then, $\alpha_i(\xi)$, $\beta_i(\xi)$ are linear in $a_1, a_2, ..., a_m$ and polynomials in ξ^{-1} . Furthermore, we have

(3.8)
$$\begin{cases} \alpha_1(\xi) = -2 + 0(\xi^{-1}), & \beta_1(\xi) = 0(\xi^{-1}), \\ \alpha_2(\xi) = 2 + 0(\xi^{-1}), & \beta_2(\xi) = 0(\xi^{-1}). \end{cases}$$

Now, put

(3.9)
$$w = {\binom{1}{p}} \exp \{\int \eta^{m-1} \gamma(\eta) \, \mathrm{d}\eta\}$$

into (3.6). Then we have

 $(3.10) \qquad \qquad \gamma = \alpha_1 + \beta_1 p$

and

(3.11)
$$\frac{\mathrm{d}p}{\mathrm{d}\xi} = \xi^{m-1} \{\beta_2 + \alpha_2 p - \gamma p\}.$$

Substitute (3.10) into (3.11), we obtain a nonlinear equation

(3.12)
$$\frac{\mathrm{d}p}{\mathrm{d}\xi} = \xi^{m-1} \{\beta_2 + (\alpha_2 - \alpha_1) p - \beta_1 p^2\}.$$

If we determine $p(\xi)$ by (3.12) and then use (3.10) to determine $\gamma(\xi)$, the quantity $w(\xi)$ in (3.9) is a solution of (3.6).

4. Existence and uniqueness of solution (3.12).

The equation (3.12) has the following form:

$$\frac{\mathrm{d}p}{\mathrm{d}\xi} = \xi^{m-1} \{ f(\xi) + g(\xi) \, p + h(\xi) \, p^2 \},\$$

where f, g, h are linear functions of $a_1, a_2, ..., a_m$ and polynomials of ξ^{-1} such that

$$f(\xi) = 0(\xi^{-1}), \quad g(\xi) = g_0 + 0(\xi^{-1}); \quad h(\xi) = 0(\xi^{-1}).$$

and g_0 is a nonzero constant. Here $g_0 = 4$.

We shall state a fundamental lemma concerning such a nonlinear differential equations whose proof may be found in detail in [2].

Lemma. Let f, g and h be polynomials in ξ^{-1} whose coefficients are linear in a_1, a_2, \ldots, a_n . Suppose that

$$f(\xi) = 0(\xi^{-1}), \quad g(\xi) = g_0 + 0(\xi^{-1}), \quad h(\xi) = 0(\xi^{-1})$$

where g_0 is a nonzero constant independent of $a_1, a_2, ..., a_m$. Then the differential equation

(4.1)
$$\frac{\mathrm{d}p}{\mathrm{d}\xi} = \xi^{m-1} \{ f(\xi) + g(\xi) p + h(\xi) p^2 \},$$

has the unique formal solution

(4.2)
$$\hat{p}(\xi) \sim \sum_{n=1}^{\infty} p_n \xi^{-n},$$

where the quantities p_n are polynomial of a_1, a_2, \ldots, a_m and independent of ξ .

Let δ be a sufficiently small positive constant. Then there exists a unique solution $p(\xi)$ of (4.1) which satisfies:

(i) for each positive constant r, there exists a positive constant N_r such that $p(\xi)$ is holomorphic with respect to $(\xi, a_1, ..., a_m)$ in the domain defined by

(4.3)
$$\begin{aligned} |\xi| > N_r, \quad |a_1| + |a_2| + \dots + |a_m| < N_r, \quad (0 < r < \infty), \\ |\arg g_0 + m\arg \xi| \le \frac{3\pi}{2} - \delta; \end{aligned}$$

(ii) $p(\xi) \cong \hat{p}(\xi)$ uniformly on each compact set in $(a_1, a_2, ..., a_m)$ – space as ξ tends to infinity in the sector

(4.4)
$$|\arg g_0 + m\arg \xi| \leq \frac{3\pi}{2} - \delta.$$

Applying this lemma, we find that equation (3.12) admits a solution $p(\xi)$ such that (i) for each r > 0 and each δ sufficiently small, there exists a positive number $N_{r,\delta}$ such that $p(\xi)$ is holomorphic with respect to $(\xi, a_1, ..., a_m)$ in the domain defined by

(4.5)
$$\begin{cases} |\xi| > N_{r,\delta}, & |\arg \xi| \le \frac{3\pi}{2m} - \delta, \\ |a_1|^2 + \dots + |a_m|^2 < r, & (0 < r < \infty), \end{cases}$$

(ii) we have

$$p(\xi) \cong \sum_{n=1}^{\infty} p_n \xi_{\perp}^{-n}$$

ig i forma a l

uniformly on each compact subset in (a_1, \ldots, a_m) -space as ξ tends to infinity in the sector

(4.6)
$$|\arg \xi| \leq \frac{3\pi}{2m} - \delta,$$

where p_n are polynomials of a_1, \ldots, a_m and independent of ξ .

But $\gamma(\xi)$ is now found from (3.10) to be

$$\gamma(\xi) = \alpha_1(\xi) + p(\xi) \beta_1(\xi).$$

Hence $\gamma(\xi)$ is holomorphic in (4.5), and we have

(4.7)
$$\gamma(\xi) \cong -2 + \sum_{n=1}^{\infty} \gamma_n \xi^{-n}$$

uniformly on each compact set in the $(a_1, ..., a_m)$ -space as ξ tends to infinity in (4.6), where γ_n are polynomials of $a_1, ..., a_m$ and independent of ξ

Let

(4.8)
$$\widehat{\gamma}(\xi) = \gamma(\xi) - \left[-2 + \sum_{n=1}^{m} \gamma_n \xi^{-n}\right]$$

and my task takes in the processe

(4.9)
$$E(\xi) = \xi^{\gamma m} \exp\left\{-\frac{2}{m}\xi^{m} + \sum_{n=1}^{m-1} \frac{\gamma_{n}}{m-n}\xi^{m-n}\right\}.$$

Then

(4.10)
$$w(\xi) = \left(\frac{1}{p(\xi)}\right) E(\xi) \exp\left\{\int_{\infty}^{\xi} \eta^{m-1} \widetilde{\gamma}(\eta) \, \mathrm{d}\eta\right\}$$

is a solution of (3.6), where the path of integration lies in the sector (4.6). Clearly, this is holomorphic with respect to (ξ, a_1, \ldots, a_m) in (4.5) and

(4.11)
$$w \cong \{w_0 + \sum_{n=1}^{\infty} w_n \xi^{-n}\} E(\xi),$$

uniformly in each compact subset of the (a_1, \ldots, a_m) -space as ξ tends to infinity in (4.6) where w_n are two dimensional vectors whose elements are polynomials of a_1, \ldots, a_m and independent of ξ and

If we now let

(4.13)
$$u(x) = \begin{pmatrix} 1 & 0 \\ 0 & \xi^{m-2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ p(\xi) \end{pmatrix} E(\xi) \exp\{\{\int_{\infty}^{\xi} \eta^{m-1} \gamma(\eta) \, \mathrm{d}\eta\}.$$

then u(x) is a solution of (3.2). If we can prove that u(t) is an entire function of a_1, \ldots, a_m , then we have proved (i) of Theorem 1. To do this, let x_0 be an arbitrary point such that $|x_0| > 0$. Let $\Phi(x)$ be the two by two matrix such that

$$\frac{\mathrm{d}\Phi}{\mathrm{d}x} = A(x)\,\Phi, \qquad \Phi(x_0) = I_2$$

where I_2 is the two by two identity matrix. The elements of the vertices $\Phi(x)$ and $\Phi^{-1}(x)$ are entire functions of a_1, \ldots, a_m for |x| > 0, and analytic in x for |x| > 0, $|\arg x| < \pi$, and

$$u(x) = \Phi(x) u(x_0).$$

Now let $(a_1^0, a_2^0, ..., a_m^0)$ be fixed and consider a small neighborhood U of this point. Then, if x_0 is chosen so that $(\xi_0, a_1, ..., a_m)$ lies in the domain (4.3), for every $(a_1, ..., a_m)$ in U, where $\xi_0^2 = x_0$, it follows from (4.12) that $u(x_0)$ is analytic in U. This proves that u(x) is an entire function of $(a_1, ..., a_m)$ for |x| > 0 and analytic in x for |x| > 0, $|\arg x| < \pi$.

5. Determination of r_m , A_{mn} , B_{mn} and C_{mn} .

To complete the proof of Theorem 1, it remains to show the coefficients of the right hand sides of (1.6) and (1.7) are polynomials of a_1, a_2, \ldots, a_m .

First, by computing the entries of (3.7) from (3.2), (3.3) and (3.6), we have

$$\alpha_{1}(\xi) = -\{1 + x^{-m}P(x)\} - \frac{1}{2}(m-2)\xi^{-m},$$

$$\alpha_{2}(\xi) = \{1 + x^{-m}P(x)\} - \frac{1}{2}(m-2)\xi^{-m},$$

$$\beta_{1}(\xi) = \{1 - x^{-m}P(x)\} + \frac{1}{2}(m-2)\xi^{-m},$$

$$\beta_{2}(\xi) = -\{1 - x^{-m}P(x)\} + \frac{1}{2}(m-2)\xi^{-m}.$$

Thus,

$$\alpha_2(\xi) - \alpha_1(\xi) = 2\{1 + x^{-m}P(x)\},\$$

$$\beta_1(\xi) \beta_2(\xi) = \frac{1}{4} (m-2)^2 \xi^{-2m} - \{1 - x^{-m}P(x)\}^2,\$$

and, consequently,

$$\{\alpha_2(\xi) - \alpha_1\}^2 + 4\beta_1(\xi) \beta_2(\xi) = 16x^{-m}P(x) + (m-2)^2 \xi^{-2m}$$

On the other hand, from (3.12), we have

$$2\beta_{1}(\xi) p(\xi) =$$

$$= \alpha_{2}(\xi) - \alpha_{1}(\xi) - \left[\left\{ \alpha_{2}(\xi) - \alpha_{1}(\xi) \right\}^{2} + 4\beta_{1}(\xi) \beta_{2}(\xi) - 4\xi^{-(m-1)}\beta_{1}(\xi) \frac{dp}{d\xi} \right]^{\frac{1}{2}} =$$

$$= 2\left\{ 1 + x^{-m}P(x) \right\} - \left[16x^{-m}P(x) + (m-2)^{2} \xi^{-2m} - 4\xi^{-(m-1)}\beta_{1}(\xi) \frac{dp}{d\xi} \right]^{\frac{1}{2}}.$$

Hence

(5.1)
$$\gamma(\xi) = \alpha_1(\xi) + p(\xi) \beta_1(\xi) = -2\sqrt{x^{-m}P(x)} + 0(\xi^{-m-2}).$$

From the expressions of $E(\xi)$ and $\gamma(\xi)$ in (4.7) and (4.9), we have

$$\sum_{n=1}^{m-1} A_{mn} x^{\frac{1}{2}m-n} = \sum_{n=1}^{m-1} \frac{\gamma_n}{m-n} \xi^{m-n} =$$

= $-2 \int_0^{\xi} \eta^{m-1} \sum_{1 \le h < \frac{1}{2}m} b_h \eta^{-\frac{1}{2}h} dt = -\int_0^x t^{\frac{1}{2}m-1} \sum_{1 \le h < \frac{1}{2}m} b_h t^h dt =$
= $-\sum_{1 \le h < \frac{1}{2}m} \frac{2}{m-2h} b_h x^{\frac{1}{2}m-h}.$

Put

(5.2)
$$q(x) = -x^{\frac{1}{2}m-1} \{ 1 + \sum_{1 \le h < \frac{1}{2}m} b_h x^{-h} \}$$

and

(5.3)
$$y = z \exp \{ \int_{0}^{x} q(t) dt \}.$$

Then (E) becomes

(5.4)
$$z'' + 2qz' + \{q' + q^2 - x^{-2}P(x)\} z = 0$$

It is easy to see that

$$2q = x^{\frac{1}{2}m-1} \{ -2 + 0(x^{-1}) \}$$

and

$$q' + q^{2} - x^{-2}P(x) = x^{\frac{1}{2}m-2}\{s_{m} + 0(x^{-K_{m}})\},\$$

where

(5.5)
$$s_m = \begin{cases} -\frac{m}{2} + 1, & m: \text{ even,} \\ -\frac{m}{2} + 1 - 2b_{\frac{1}{2}m}, & m: \text{ odd,} \end{cases}$$
 $K_m = \begin{cases} 1, & m: \text{ even,} \\ \frac{1}{2}, & m: \text{ odd.} \end{cases}$

By putting

$$z = x^{rm} \{ 1 + 0(x^{-\frac{1}{2}}) \}$$

we get

(5.6)
$$r_m = \frac{1}{2} s_m = \begin{cases} -\frac{m}{4} + \frac{1}{2}, & m: \text{ odd,} \\ -\frac{m}{4} + \frac{1}{2} - b_{\frac{1}{2}m}, & m: \text{ even.} \end{cases}$$

Put

Then (5.4) becomes

 $w'' + 2(r_m x^{-1}q) w' + \{(r_m x^{-1})^2 - r_m x^{-2} + 2qr_m x^{-1} + q' + q^2 - x^{-2}P(x)\} w = 0.$ The coefficients of w' is $x^{\frac{1}{2}m-1}\{-2 + 0(x^{-1})\}$, while that of w is $0(x^{\frac{1}{2}m-2-K_m})$. Hence, by putting

$$w = 1 + \sum_{n=1}^{\infty} B_{mn} x^{-\frac{1}{2}n},$$

we can determine B_{mn} successively as polynomials of a_1, \ldots, a_m .

By differentiating the right hand side of (1.6) we can get C_{mn} . Thus, Theorem 1 is proved.

REFERENCES

- B. L. J. Braaksma: Recessive solutions of linear differential equations with polynomial coefficients, Pp. 1–15, Lecture Notes in Math., Vol. 280, Springer, Berlin, 1972.
- [2] P. F. Hsieh and Y. Sibuya: On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients, J. Math. Anal. Appl., 16 (1966), 84-103.
- [3] F. E. Mullin: On the regular perturbation of the subdominant solution to second order linear ordinary differential equations with polynomial coefficients, Funk. Ekv., 11 (1968), 1-38.
- [4] T. Okada: A study of asymptotic solutions of second order linear differential equations, Specialist Project, Western Mich. Univ., 1976, 53 pp.
- [5] Y. Sibuya: Global Theory of a Second Order Linear Ordinary Differential Equations With a Polynomial Coefficient, Math. Studies 18, North-Holland, 1975, xv + 290.

Po-Fang Hsieh Department of Mathematics Western Michigan University Kalamazoo, Michigan 49008 U.S.A.